
 

 

 

 

Abstract— Periodic stimuli are known to induce chaotic 

oscillations in the squid giant axon for a certain range of 

frequencies. This behaviour is modelled by the Hodgkin-Huxley 

equations when a periodic stimulus is applied.  The responses 

resulting from chaotic neural dynamics have irregular 

inter-spike intervals and fluctuating amplitudes. These 

characteristics are absent in steady state responses of the 

Hodgkin-Huxley neuron which are generated using a constant 

current stimulus. It is known that firing time information is 

adequate to estimate similarity of steady state responses; 

however, in the presence of chaotic oscillations, similarity 

between neural responses cannot be estimated using firing time 

alone. The results discussed in this paper present a 

quantification of the similarity of neural responses exhibiting 

chaotic oscillations by using both amplitude fluctuations and 

firing times. We relate the similarity thus obtained between two 

neural responses to their respective stimuli. Identical stimuli 

have very similar effect on the neural dynamics and therefore, 

as the temporal inputs to the neuron are the same, the 

occurrence of identical chaotic patterns result in a high estimate 

of similarity for the neural responses. Estimates of similarity 

are compared for periodic stimuli with a range of inter-spike 

intervals. 

 
Index Terms— chaotic oscillations, periodic stimuli, neural 

response comparison, chaotic dynamics, spike trains.  

 

I. INTRODUCTION 

The non-linear dynamics of a neuron have been studied 

both theoretically and physiologically in recent years to 

extend the understanding of its underlying mechanism 

[1-13]. The spikes or action potentials are evoked when an 

external stimulus is applied to the neuron. It is thought that 

either the firing rate or firing time of individual spikes carries 

specific information of the neuronal response [14-16]. This 

holds for all steady state responses of a neuron when a 

constant current stimulus is applied. However, on injection of 

a periodic or sinusoidal stimulus the steady state response is 

no longer preserved [17-26].  The self-excited oscillations of 

a Hodgkin-Huxley (HH) neuron [27] may become chaotic 

when a sinusoidal stimulus is applied with proper choices of 

 
Manuscript received March 18, 2010. Chaotic Oscillations in a 

Hodgkin-Huxley Neuron – Quantifying Similarity Estimation of Neural 

Responses  

Mayur Sarangdhar is currently a PhD student within the Neural, 
Emergent and Agent Technologies Group, Department of Computer 

Science, University of Hull, Hull, East-Yorkshire, HU6 7RX, UK (phone: 

01482 465253; e-mail: M.Sarangdhar@ 2006.hull.ac.uk).  
C. Kambhampati is currently a Reader in the Department of Computer 

Science, University of Hull, Hull, East-Yorkshire, HU6 7RX, UK. (e-mail: 

c.kambhampati@hull.ac.uk). 

magnitude and frequency [20-21, 25-26]. Physiological 

experiments on squid giant axons [18-19] and Onchidium 

neurons [22] have confirmed the occurrence of chaotic 

oscillations. This paper quantifies the similarity estimated 

between neural responses exhibiting chaotic oscillations. B 

using the amplitude distribution and the firing times of a 

neural spike train to estimate similarity.  

The nature of a periodic stimulus is responsible to induce 

chaotic oscillations in a biological neuron. Irregular 

inter-spike interval (ISI) and fluctuating amplitudes are the 

characteristics of chaotic oscillations absent in steady state 

responses generated by constant current stimuli. Information 

on stimuli similarity can be derived from neural response 

comparison. Firing time information is adequate to estimate 

similarity of steady state responses; however, in the presence 

of chaotic oscillations or when the amplitudes of a neural 

response fluctuate, amplitude and firing time collectively 

reflect the true dynamics of a neuron and therefore both 

should feature in similarity estimation [28-30]. Similarity 

estimation is based on the principle of relative coincidences 

without coincidences by chance [31-32]. The amplitudes a 

neural response exhibiting these chaotic oscillations fit a 

Normal distribution and it is possible to determine amplitude 

coincidences using the properties of Normal distribution. 

Similarity between these responses can be estimated by a 

composite similarity measure based on amplitude and firing 

time coincidences. Results show that similarity based on this 

composite approach is mathematically realisable than 

similarity based on firing times or amplitudes alone. It is 

observed that similar periodic stimuli induce similar chaotic 

patterns in the neural responses and therefore the resulting 

neural responses have a high degree of similarity. The effect 

of distinct periodic stimuli is evident in the dissimilar chaotic 

patterns displayed in the responses. It can be derived from 

these results that chaotic responses with high similarity 

originate from very similar periodic stimuli. This agrees in 

principle that initial representation of a neural response is 

unique to the stimulus [9, 33].   

In this paper, Hodgkin-Huxley (HH) neural responses 

generated by varying the Inter-Spike-Interval (ISI) of 

periodic stimuli are compared to estimate similarity. It is 

observed that estimating similarity of neural responses 

exhibiting chaotic dynamics requires knowledge of both 

firing times and amplitude distribution. A comparison of 

similarities estimated by a) an approach considering firing 

times alone and b) an approach based on firing times and 

amplitude distribution shows that fluctuations induced by 

periodic stimuli are differentiated better by considering 
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amplitude distribution in addition to firing time information. 

This paper quantifies the similarity thus estimated and it is 

observed that it is approximately equal to the percentage 

number of absolute coincidences. Absolute coincidences are 

the number of spikes that coincide with respect to both firing 

times and amplitudes with a pre-defined precision . 

II. NEURONAL MODEL AND SYNAPSE 

A. The neuron model 

The computational model and stimulus for an HH neuron is 

replicated from [15]. The differential equations of the model 

are the result of non-linear interactions between the 

membrane voltage V and the gating variables m, h and n for 

Na  and K and Cl . 
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The variable V is the resting potential of the membrane and 

NaV , KV and LV are the reversal potentials of the Na , K

channels and leakage. The values of the reversal potentials

.5.54,77,50 mVVmVVmVV LKNa  
The conductance 

for the ionic channels are 2/120 cmmSg Na , 2/36 cmmSgK  

and 2/3.0 cmmSgL . The capacitance of the membrane is

2/1 cmFC . 

  

B. The synaptic current 

An input spike train give by [34]  is considered to generate 

the pulse component of the external current.   

n

fai ttVtU )()(             (4) 

where, 
ft is the firing time and is defined as 

Ttt
nfnf )()1(

                (5) 

0
)1(ft                                                (6) 

T represents the ISI of the input spike train and can be 

varied to generate a different pulse current. The spike train is 

injected through a synapse to give the pulse current PI . 

)()( syna

n

fsynP VVttgI                     (7) 

synsyn Vg , are the conductance and reversal potential of the 

synapse. [32] define the function  as 

),()/()( / tett t                          (8) 

where,  is the time constant of the synapse and )(t is the 

Heaviside step function. ,30mVVa
mssyn 2 , 

2/5.0 cmmSg syn  and mVVsyn 50 . 

  

C. The total external current 

The total external current applied to the neuron is a 

combination of static and pulse component 

PSi III                                        (9) 

where, 
SI is the static and pI is the pulse current, is the 

random Gaussian noise with zero mean and standard 

deviation 025.0 .  

It is understood that distinct sinusoidal stimuli induce 

different chaotic oscillations which result in dissimilar neural 

responses [28-30]. 

III. SIMILARITY ESTIMATION USING  

The similarity between neural responses exhibiting chaotic 

oscillations can be determined using chaotic . chaotic

estimates similarity through differences between the actual 

coincidences pcoincN and the expected number of 

coincidences pcoincN relative to the average number of spikes 

in the two spike trains. The similarity is normalised between 

0 and 1 by a normalising factor chaotic .  

chaotic

pcoincpcoinc
chaotic

NN

NN 1

)(
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1
21

      (10) 

where pcoincN  is the number of conditional coincidences 

(amplitude coincidence given firing time coincidence) 

between the two spike trains,  pcoincN  is the conditional 

mean (average number of amplitude coincidences given 

firing time coincidences) and chaotic  is the normalising 

factor for chaotic oscillations.  is the number of spikes in 

the train 1,  is the number of spikes in train 2. This 

formulation is based on [32] where similarity based on firing 

times was estimated through relative number of coincidences 

without coincidences by chance.  

Let 1 and 2 be the normal distributions for the spike 

trains  and  with means 1  and 2 and respective 

standard deviations 1  and 2 . The mean probability of 

coincidence of any amplitude from 2 with an amplitude 

from 1can be approximated using the mean of 2 . 

1

12
meanz

               (11) 
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                     (12) 

(11) and (12) give the mean probability that an amplitude 

from 2 will lie within 1 and coincide with an amplitude 

from 1  The expected number of amplitude coincidences for 
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any two neural responses generated by periodic stimuli is 

therefore 1Nzmean . If the rate of fire of  is  and the 

precision for coincidence is , then the expected number of 

coincidences are given by 

meanpcoinc zNN 22
           (13) 

and the normalising factor chaotic  normalises the 

estimate of similarity to a value between 0 (dissimilarity) and 

1(exact match) 

meanchaotic z21
           (14) 

Similarity on the basis of firing times alone can be 

determined from (10) by omitting the amplitude 

considerations in pcoincN , pcoincN  and chaotic . This result is 

consistent with [35]. 

IV. RESULTS 

Due to the nature of periodic stimuli and chaotic oscillations, 

estimating similarity between neural responses on the basis 

of firing times is inaccurate in view of a) false positives and 

b) incorrect inference about stimuli similarity. Similarity 

estimation is done for neural responses by varying the 

stimulus ISI ( ) within a limit of 2ms. Stimulus is varied 

between 14ms-16ms (set I), 13ms-15ms (set II) and 

15ms-17ms (set III) and similarity is estimated by comparing 

neural responses with reference responses for each set. 

The reference responses are generated by fixing the ISI(  

) for the sets at 15ms for set I, 14ms for set II and 16ms for set 

III. This section compares the similarity estimated by 

coincidence factor ( ) and . 

A. Comparison of  and , Set I, 14ms-16ms 

 represents the difference between the stimulus ISI ( ) and a 

reference ISI . A positive or negative change in  

indicates that neural stimuli have dissimilar ISI and their 

respective influence on neural dynamics is unique to the 

applied stimulus. The neural responses with underlying 

chaotic oscillations require both amplitude fluctuations and 

irregular firing times considered to estimate similarity. It is 

observed that false positive (circled) obtained by coincidence 

factor at  is eliminated (fig. 1). The overall similarity 

between pairs of neural responses is reduced in comparison 

with  due to amplitude fluctuations being considered in 

addition to firing time information. 

 
Fig.1: Similarity of neural responses generated by periodic stimuli with 

 and .  represents the similarity 

estimated by coincidence factor and  is the similarity based on firing 
times and amplitudes coincidences. The incorporation of amplitude 

fluctuations to estimate similarity helps  eliminate false positive 

(circled) at . 

 

Table (1) gives a clear comparison of firing time and 

amplitude coincidences. For , half of the neural 

spikes from  and  coincide with a precision of 2ms. 

However, only 20.83% of the amplitudes coincide with a 

precision 2mV. This is characteristic of neural responses 

exhibiting chaotic oscillations – a change in the stimulus 

reflects on the neural dynamics. Absolute coincidences are 

conditional coincidences i.e. number of amplitude 

coincidences given that corresponding firing times coincide. 

The number of absolute coincidences is 16.67%, which 

implies that out of all the neural response pairs, only 16.67% 

exhibit amplitude and firing time coincidences.  The 

similarity estimated by  is 0.161. It appears to 

accurately reflect the absolute coincidences. In addition, 

 also considers coincidences by chance or expected 

coincidences which renders the similarity estimated by 

unique to a pair of neural responses. 

 
Table 1: Firing time, amplitude and absolute coincidences for various values 

of  in set I.  represents the similarity between pairs of neural 

responses. Firing time coincidence precision is 2ms, amplitude coincidence 
precision is 2mV and absolute coincidence is a conditional coincidence of 

amplitudes given that corresponding firing times coincide.  
accurately calculates similarity and this can be correlated with the percentage 

of absolute coincidences. 

 

Firing 

time 

Coincide

nces (%) 

Amplitud

e 

Coincide

nces (%) 

Absolute 

Coincide

nces (%) 
 

-1 50 20.83333 16.6667 0.161 

 

75 29.1677 25 0.2489 

79.1667 37.5 29.1667 0.2908 

83.3333 12.5 8.3333 0.0753 

79.1667 25 20.8333 0.1997 

87.5 29.1667 20.8333 0.1984 

100 100 100 1 

91.6667 50 45.8333 0.4513 

79.1667 33.3333 25 0.2392 

87.5 16.6667 16.6667 0.1312 

37.5 12.5 4.1667 0.0003 

+1 100 29.1667 29.1667 0.2729 
 

At , both stimuli have the same ISI (

). All neural spikes coincide in firing 

times and amplitudes. The absolute coincidences confirm 

that the neural responses are an exact match, hence, similarity 

. At  , as all neural spikes show firing 

time coincidences, coincidence factor classifies the neural 

responses  and  as identical. This result is a false 

positive as indicated by the number of amplitude fluctuations. 

Though all neural spikes coincide with firing times, only 

29.17% of amplitudes coincide, hence the absolute 

coincidences are 29.17%. The corresponding value of 

 is 0.2729 which is substantially lower than 1 

(estimated by coincidence factor). The consideration of 

amplitude fluctuations in addition to firing time information 

successfully eliminates the false positive. 
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B. Comparison of  and , Set II, 13ms-15ms 

 
Fig.2: Similarity of neural responses generated by periodic stimuli with 

 and .  represents the similarity 

estimated by coincidence factor and  is the similarity based on firing 

times and amplitudes coincidences.  eliminates false positives 

(circled) between  . 

 

False positives (circled) estimated by coincidence factor, , 

shown in fig. 2. occur for . Table 2 shows that 

firing time coincidences are 100% for . These 

pairs of neural responses are classified identical by 

coincidence factor. However, the corresponding amplitude 

coincidences are 12.5%, 33.33% and 29.17% which indicate 

that though the firing times coincide, the amplitude 

fluctuations are not identical, hence these are termed as false 

positives. These non-identical amplitude fluctuations are 

caused by the dissimilar periodic stimuli. The corresponding 

absolute coincidences for the false positives are 12.5%, 

33.33% and 29.17%. The similarity estimated by  is 

0.1224, 0.3302 and 0.2846 respectively which reflects the 

absolute coincidences. The composite consideration of 

irregular firing times and varying amplitudes helps 

differentiate neural responses and relate their dissimilarity to 

the stimuli. 

 

For , the neural responses are generated by identical 

stimuli ( ). Identical stimuli 

cause similar chaotic oscillations, hence the resulting neural 

responses are an exact match. This is seen in table 2 and fig. 

2, at , the firing time coincidences, amplitude 

coincidences and the absolute coincidences are 100%. This 

justifies that the neural responses are an exact match and they 

were generated by identical stimuli, hence . The 

similarity determined by  for other neural response 

pairs is also consistent in correlation with the absolute 

coincidences. 

 

C. Comparison of  and , Set III, 15ms-17ms 

Set III exhibits false positives (circled) for 

(fig. 3). Table 3 shows that the corresponding firing 

time coincidences are 100% which result in coincidence 

factor classifying the pair of neural responses identical. 

However, the amplitude coincidences are 29.17% and 

20.83% indicating that the underlying oscillations are 

non-identical. The corresponding similarity determined by 

 is 0.2754 and 0.1992. As , the neural 

responses are not an exact match and they were generated by 

dissimilar stimuli. 

 

Table 2: Firing time, amplitude and absolute coincidences for various values 

of  in set II.  eliminates the false positives occurring for 

. Similarity estimated by  correlates to the percentage of 

absolute coincidences. 

 

Firing 

time 

Coincide

nces (%) 

Amplitud

e 

Coincide

nces (%) 

Absolute 

Coincide

nces (%) 
 

-1 75 16.6667 12.5 0.1204 

 

75 25 20.8333 0.2044 

83.3333 37.5 33.3333 0.3272 

100 12.5 12.5 0.1224 

100 33.3333 33.3333 0.3302 

100 29.1667 29.1667 0.2846 

100 100 100 1 

87.5 37.5 29.1667 0.2857 

79.1667 16.6667 12.5 0.1178 

58.3333 8.3333 4.1667 0.0263 

41.6667 33.3333 4.1667 0.0243 

45.8333 45.8333 12.5 0.1075 

+1 45.8333 20.8333 12.5 0.1188 

 
 

 
Fig.3: Similarity of neural responses generated by periodic stimuli with 

 and .  represents the similarity 

estimated by coincidence factor and  is the similarity based on firing 
times and amplitudes. The incorporation of amplitude fluctuations to 

estimate similarity helps  eliminate false positives (circled) for  

. 

 
Table 3: Firing time, amplitude and absolute coincidences for various values 

of  in set III.  The false positives determined by coincidence factor 

for are eliminated. Similarity between neural response 

pairs estimtated by  correlates with the percentage of absolute 
coincidences. 

 

Firing 

time 

Coincide

nces (%) 

Amplitud

e 

Coincide

nces (%) 

Absolute 

Coincide

nces (%) 
 

-1 100 29.1667 29.1667 0.2754 

 
100 20.8333 20.8333 0.1992 

70.8333 25 16.6667 0.1581 

83.3333 33.3333 33.3333 0.3243 

58.3333 12.5 8.3333 0.0666 

41.6667 12.5 8.3333 0.0704 

100 100 100 1 

95.8333 33.3333 29.1667 0.2851 

87.5 20.8333 16.6667 0.1558 

75 16.6667 12.5 0.1124 

+1 58.3333 37.5 8.3333 0.0617 

 

For , the neural responses are generated by identical 

stimuli ( ). The similarity 

between other neural response pairs reflects their dissimilar 

stimuli and correlates with the absolute coincidences. For 
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,  decreases with an increase in  indicating 

that similarity between the neural responses decreases with 

an increase in the difference in the ISI of two stimuli. Any 

difference in the ISI of a stimulus causes a temporal change 

and effect on neural dynamics is evident in the dissimilarity 

estimated by . 

V. CONCLUSIONS 

The nature of a periodic stimulus is responsible to induce 

chaotic oscillations in a biological neuron. Irregular 

inter-spike interval (ISI) and fluctuating amplitudes are the 

characteristics of chaotic oscillations absent in steady state 

responses generated by constant current stimuli. Information 

on stimuli similarity can be derived from neural response 

comparison. Estimating similarity based on firing times 

(coincidence factor) alone is insufficient in view of a) false 

positives and b) incorrect inference about neural stimuli. 

Firing time information is adequate to estimate similarity of 

steady state responses; however, in the presence of chaotic 

oscillations or when the amplitudes of a neural response 

fluctuate, amplitude and firing time collectively reflect the 

true dynamics of a neuron and therefore both should feature 

in similarity estimation [28-30].  

 

The amplitudes a neural response exhibiting chaotic 

oscillations fit a Normal distribution and using the properties 

of Normal distribution, it is possible to determine amplitude 

coincidences. Similarity between these responses can be 

estimated by a composite similarity measure based on 

amplitude and firing time coincidences. In addition, similar 

periodic stimuli induce similar chaotic patterns in the neural 

responses and therefore the resulting neural responses have a 

high degree of similarity. The effect of distinct periodic 

stimuli is evident in the dissimilar chaotic patterns displayed 

in the responses. It follows that chaotic responses with high 

similarity originate from very similar periodic stimuli. This 

agrees in principle that initial representation of a neural 

response is unique to the stimulus [9,33]. 

 

The results show that the similarity estimated using both 

firing times and amplitudes can be quantified by analyzing 

the number of absolute coincidences. Absolute coincidences 

are the number of spikes that coincide with respect to both 

firing times and amplitudes with a pre-defined precision . It 

is observed that similarity estimated by  is 

approximately equal to the percentage number of absolute 

coincidences. If the number of absolute coincidences are 

25%, then the similarity estimated by   is 

approximately 0.25. This quantification ensures that the 

estimated similarity is realistic and mathematically 

realizable. 
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