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Abstract—HIV-1 infection degrading the human
immune system and recent advances of drug thera-
pies for the HIV-1 dynamics under the application of
highly active anti-retroviral therapy (HAART) gener-
ated considerable research interest in this area. It is
specially associated with virus - specific Cytotoxic T-
Lymphocyte (CTL) response that declines with dis-
ease progression. Here we introduced a population
model representing long term dynamics of HIV-1 in-
fection in response to available drug therapies. We
also considered that T-cells can be created by pro-
liferation of existing CD4+T cells in body. These
models focus on the interactions of susceptible T-cells,
virus producing cells and cytotoxic T-cells, that would
be able to provide a complete understanding of the
long term dynamics of the system. Some crucial sys-
tem parameters may significantly collided the way in
which HIV-1 infected AIDS patient are treated with
potent antiretroviral drugs. Results from our analysis
of the model are consistent with clinical observation.

Keywords: Asymptotic Stability, CD4+T cells, CTL,

HAART, HIV-1, T-cell proliferation, Time Series So-

lutions.

1 Introduction

Over the last several years extensive research has been
made in our understanding of the pathogenesis of HIV-1
infection. Though impressive amount of knowledge and
information have been gathered till date regarding the
implications of genetic variations of immune cells, HIV-1
pathogenesis and drugs which act either by blocking the
integration of viral RNA into the host CD4+T cells, or by
inhibiting the proper cleavage of viral proteins inside an
infected cell [1] - [4]. But still the fundamental questions
remain unanswered. On that point of view HIV-1 infec-
tion is very much associated with an extremely vigorous
virus specific Cytotoxic T- Lymphocyte (CTL) response
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that declines disease progression [2], [3], [5] - [7].

Retroviral therapy when began to a HIV-1 individual, the
main clinical indicators of that HIV-1 positive patient are
in the follow up both the viral load and the CD4+T cells
count in blood plasma [1], [8], [9]. Also it is to be men-
tioned that when therapy is started, make a portion to
the immune cells to be toxic thereby introducing toxicity
in the immune system of the individual. Thus qualitative
aspects of the HIV-1 specific CTL response is to be an
important determinants of the efficacy of these response
in controlling viral replication. The main purpose of this
study is to develop a mathematical framework that can
be used to understand the various drug therapy in opti-
mum controlled level for which it should be maximize the
survival time of each infected individual and minimize the
number of new infection [10] - [12].

It has been observed clinically that patients infected with
immunodeficiency virus type-1 (HIV-1), if treated with a
combination of inhibitor-drugs lamivudine and zidovu-
dine shows a 10 to 100 fold reduction of viral load and
nearly 25% increase in the healthy CD4+T cells count.
Sustenance of such drug receiving patients is observed to
be more than one year [8], [9], [13].

In this paper we build on a mathematical model HIV-
1 infection to CD4+T cell as a host cell including the
mentioned inhibitor drug. The system response to the
drug stimulation by generating Cytotoxic T-Lymphocyte
(CTL) and this CTL’s in-turn attack the actively infected
CD4+T cells and kill them. We have also considered that
the growth of CD4+T cells is governed by a logistic equa-
tion. It is to be mentioned here that in the absence of lim-
ited population the average specific CD4+T cells growth
rate may be obtained. Our focus in this paper which
deals specifically when that mentioned inhibitor drug is
to be given to a HIV-1 patient, what will be the dy-
namical behavior of the human immune system through
drug stimulation by generating CTL with maximum pro-
liferation of T-cells and that T-cells population at which
proliferation shuts off [8], [9], [14], [16], [17].

The model equation is analyzed in two different av-
enues, analytical and numerical. Different equilibria and
boundedness of the system carried out through the con-
ditions under which the system dynamics is permanent
and asymptotically stable around the interior equilibrium
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point. It is also been checked that under which condition
the system is globally asymptotically stable. Model has
been solved numerically to find out the threshold values
of the system parameters for which the diseases can be
controlled. Numerical findings are in agreement with the
results of theoretical analysis.
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Figure 1: Population density of the uninfected, Infected
cells and CTL converges to their equilibrium. Time series
solution of the model variables for different values of the
proliferation rate. Various model parameters are as in
Table.1.

2 Formulation of HIV-1 Model

To generate a realistic model of HIV-1 infection to
CD4+T cells, we consider x(t) and y(t) be the uninfected
and infected (virus producing cells) portions of the hosts
CD4+T immune cells at a time t. Uninfected CD4+T
cells are produced at a constant rate λ and are removed
on the system through the natural death rate d. A vari-
able denoting free virus load in the system becomes rele-
vant while considering short term viral dynamics. How-
ever when one is interested in drug induced changes at
the steady state the variable corresponding to free virus
can be omitted. At the steady state it is inherently as-
sumed that the free virus populations is proportional to
the virus-producing CD4+T cells which are already in-
fected [3]. Note that infected CD4+T cells produce free
virus by their replication through the process of cell ly-
sis. The process of infection to the uninfected CD4+T
cells follows the law of mass action under mixing homo-
geneity. This means that the number of new infection
at the steady state is proportional to x(t)y(t). Some im-
munocompetent T cells are produced by the lymphatic
system. Over a shorter period of time, their production
rate is constant and independent of the number of T cells.
This constant rate of production denote as β. It is to be
assumed that T cells may be created by proliferation of
existing T cells and the total number of T cells cannot in-
crease unboundedly. Here we represent the proliferation
of T cells by a logistic fashion in which p is the maximum
proliferation rate constant and it proliferate to a max-
imum given by Tm, mentioning that T cell population
density at which proliferation shuts off. To formulate of

our mathematical model we thus considered the logistic
term in the form of px(1− x

Tm
) [8], [9].

Based on the above assumption one can write down a
simple model as

dx
dt = λ + px(1− x

Tm
)− dx− βxy

dy
dt = βxy − ay

(2.1)

Where the parameter a is the normal death rate of in-
fected CD4+T cells. It can be seen in the literature that
the rate at which uninfected CD4+T cells are converted
into virus producing (infected) portion is smaller than β,
we consider here the rate to be same as β. The argument
in support of such enforcement goes at steady state under
the condition of mixing homogeneity and the law of mass
action holds perfectly.

Whenever a HIV-1 infected patient is subjected to
RTI (Reverse Transcriptase Inhibitors) drug or HAART
(Highly Active Anti-Retroviral Therapy), the virus repli-
cations within the virus producing T-cells faces a reduc-
tion. Such effect may be incorporated in the two variable
simple viral dynamics model by reducing the numerical
value of the parameter β (rate of infection). However,
mere reduction of β in the basic viral dynamics model
fails to explain the strong suppression of equilibrium virus
load observed during long term drug therapy. Therefore
it is imperative to include another variable in the basic vi-
ral dynamics model (2.1), in order to make the long term
immune response of the model at per with those observed
in reality. We include a variable z to represent the density
of the Cytotoxic-T-Lymphocyte (CTL) responses against
virus infected cells. The basic viral dynamics model with
this inclusion becomes

dx
dt = λ + px(1− x

Tm
)− dx− βxy

dy
dt = βxy − ay − kyz
dz
dt = sy − bz.

(2.2)

Where k is the killing rate of virus producing cells by
CTL, s is the rate of stimulation (production) of CTL and
b be the base line mortality rate of CTL. The system (2.2)
needs to analyzed with the following initial condition:
x(0) > 0, y(0) > 0, z(0) > 0 and we denote

R3
+ = {(x, y, z) ∈ R3, x ≥ 0, y ≥ 0, z ≥ 0}

(2.3)

3 Equilibria and Local Stability

In this section, we only consider positive equilibriums
(Including positive equilibriums) of the system and there
stability. The system (2.2) with the initial condition (2.3)
possesses the following positive equilibrium E0(x0, 0, 0)
and E∗(x∗, y∗, z∗) where,

x0 = Tm

2p [(p− d) +
√

(p− d)2 + 4 pλ
Tm

] (3.1)
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and

x∗ =
( abβ

sk +p−d)+

√
( abβ

sk +p−d)2+4λ( bβ2
sk + p

Tm
)

2( bβ2
sk + p

Tm
)

y∗ = b
sk (βx∗ − a)

z∗ = βx∗−a
k

(3.2)

satisfy the following inequalities

p > d and x∗ > a
β (3.3)

To study the stability of the following equilibrium let
us introduce the basic reproduction ratio R0 defined as
R0 = x0

x∗ of the system (2.2). This represents the aver-
age number of secondary infection caused by the single
infected CD4+T cells in an uninfected T cells population
in the infection period for the long period of time.

Since x0 and x∗ satisfy

λ + px0(1− x0
Tm

)− dx0 = 0
λ + px∗(1− x∗

Tm
)− dx∗ = bβ

sk (βx∗2 − ax∗)

so that we can get

x∗ > a
β ⇒ x0 > x∗

and x∗ < a
β ⇒ x0 < x∗ (3.4)

i.e if R0 > 1, then the positive equilibrium E∗(x∗, y∗, z∗)
exists.

Now the Jacobian matrix of the system (2.2) is



p− d− 2px
Tm

− βy − βx 0
βy βx− a− kz − ky
0 s − b


 (3.5)

For the equilibrium E0(x0, 0, 0), the characteristic equa-
tion becomes

(ρ− p + d + 2px0
Tm

)(ρ + a− βx0)(ρ + b) = 0 (3.6)

whose eigen values are

ρ1 = p− d− 2px0
Tm

= −(px0
Tm

+ λ
x0

) < 0,

ρ2 = βx0 − a > 0
and ρ3 = −b < 0

(3.7)

Hence E0(x0, 0, 0) is locally asymptotically stable if R0 <
1 and it is saddle with dimW s(E0) = 2, dimWu(E0) = 1
for R0 > 1. Thus we can establish the theorem.

Theorem 3.1 : If R0 < 1 then E0 is locally asymptoti-
cally stable, if R0 > 1 then E0 is unstable. Now for the
equilibrium E∗(x∗, y∗, z∗) the characteristic equation is
as follows,

ρ3 + Aρ2 + Bρ + C = 0 (3.8)

0 100 200 300 400 500 600
0

500

1000

1500

Time(day)

C
el

l P
op

ul
at

io
n(

ce
ll/

m
m

3 )

0 100 200 300 400 500 600
0

500

1000

1500

2000

2500

Time(day)

C
el

l P
op

ul
at

io
n(

ce
ll/

m
m

3 )

0 100 200 300 400 500 600
0

1000

2000

3000

4000

Time(day)

C
el

l P
op

ul
at

io
n(

ce
ll/

m
m

3 )

0 100 200 300 400 500 600
0

500

1000

1500

2000

2500

Time(day)

C
el

l P
op

ul
at

io
n(

ce
ll/

m
m

3 )

Uninfected Cell

CTL Uninfected Cell

Infected Cell

CTL

Infected Cell

Uninfected Cell

Uninfected Cell

CTL

Infected Cell

Infected Cell 

CTL

(b) β=0.002(a) β=0.0008

(c) β=0.005 (d) β=0.01

Figure 2: Time series solution of the model variables for
different values of β. Various model parameters are as in
Table.1.

where,

(i) A = px∗

Tm
+ λ

x∗ + b > 0,

(ii) B = b(px∗

Tm
+ λ

x∗ ) + sky∗ + β2x∗y∗ > 0,

(iii) C = sky∗(px∗

Tm
+ λ

x∗ ) + bβ2x∗y∗ > 0
(3.9)

From the Routh-Hurwitz criterion, the necessary and suf-
ficient condition for locally asymptotic stability of the
steady state is

AB − C > 0 i.e
(px∗

Tm
+ λ

x∗ + b)[b(px∗

Tm
+ λ

x∗ ) + sky∗ + β2x∗y∗]
−[sky∗(px∗

Tm
+ λ

x∗ ) + bβ2x∗y∗] > 0
(3.10)

and the system locally asymptotically stable around the
positive interior equilibrium if,

(i) x∗ > a
β (ii) d > β, (iii) p > (ad−λ)β2Tm

a(βTm−a) ,

(iv) bβ2

sk + p
Tm

> 0, (v) p > dβ − abβ
sk ,

(vi) β >
−apTm+

√
(apTm)2+4(a2− 1

Tm
)[Tm(λ−ad)+ b

sk ]p

2[Tm(λ−ad)+ b
sk ]

(3.11)
Then we can establish the theorem
Theorem 3.2: If (i)R0 > 1 and (ii) AB − C > 0 then
the positive equilibrium E∗(x∗, y∗, z∗) is locally asymp-
totically stable.

4 Boundedness and Permanence of the
system

To discuss the permanence of the system (2.2) we assume
R3

+ = {(x(t), y(t), z(t))|x(t) > 0, y(t) > 0, z(t) > 0} a
positively invariant set. Also we assume that x(t), y(t),
and z(t) are random positive solution of the system with
initial values. To prove the permanence of the system we
first prove the boundedness by using some theorem given
below.

Theorem 4.1: There is M > 0 such that,
for any positive x(t), y(t), and z(t) of system
(2.2), x(t) ≤ M, y(t) ≤ M, and z(t) ≤ M for
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large t

Proof: let L(t) = x(t) + y(t) According the system (2.2)
we can find dL

dt ≤ −hL + M0 where

M0 = p2Tm+4λp
4p

(4.1)

Then there exist M1 > 0 depending upon the parameter
of the system (2.2) such that L(t) ≤ M1 for large t ≥
T . Hence x(t) and y(t) are bounded above. From the
third equation of the system (2.2), z(t) is also bounded
above. Therefore for large t ≥ T , there exist M such that
x(t) ≤ M , y(t) ≤ M , and z(t) ≤ M . Hence it is proved
that the system is bounded above.

Theorem 4.2: The system (2.2) satisfy the initial con-
dition (2.3) and there exist m such that x(t) ≥ m,
y(t) ≥ m, z(t) ≥ m for large t ≥ T .

Proof: To prove the following lemma we choose large
t ≥ T such that,

dy
dt = y(βx− a− kz) ≥ y(βx− a− kM) ≥ 0 and
dz
dt = sy − bz ≥ sy − bM ≥ 0
for x ≥ m1 and y ≥ m2

where m1 = a+kM
β and m2 = Mb

s

(4.2)
Then z(t) is also bounded below i.e z(t) ≥ m3 where
m3 = s

bβ [ λβ
a+MK + p(1 − a+Mk

Tmβ ) − a]. Then there exists
m = max(m1,m2,m3) such that x(t) ≥ m, y(t) ≥ m,
and z(t) ≥ m for large t ≥ T . Hence it is proved that the
system is bounded below.

Now we can define
D = {x(t), y(t), z(t)|m ≤ x(t) ≤ M, m ≤ y(t) ≤ M, m ≤
z(t) ≤ M} where D is ultimately bounded set of the sys-
tem (2.2) where each solution of the system with positive
initial value will be enter the compact region D and re-
main it finally. Thus we have the following persistence
theorem.

Theorem 4.3: The positive invariant solution of the
system (2.2) with boundedness is permanent.

5 Global Stability of System

If the system (2.2) together with the initial condition
(2.3) holds the inequalities (3.11), then at the equilibrium
point E∗(x∗, y∗, z∗) the system is locally asymptotically
stable.

We construct the Liapunov function

V (x, y, z) = w1(x− x∗ − x∗ ln x
x∗ ) + w2(y − y∗ − y∗ ln y

y∗ )
+ w3

2 (z − z∗)2

Calculating the upper right derivative of V (x, y, z) along
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Figure 3: Time series solution of the model variables for
different values of k and s, keeping others parameters are
as in Table.1.

with the system (2.2) we obtain,

D+V (x, y, z) = w1(x−x∗
x )dx

dt + w2(y−y∗

y )dy
dt

+ w3(z − z∗)dz
dt

= −w1( λ
x∗ (x− x∗)2 + p

Tm
)− w3b(z − z∗)2

+(x− x∗)(y − y∗)(w2β − w1β) + (y − y∗)(w3s− w2k)
(5.1)

Thus if w1 = w2 = sw and w3 = kw, then we have ,

D+V (t) = −[w1( λ
xx∗ + p

Tm
)(x− x∗)2 + w3b(z − z∗)2]

< 0
(5.2)

Therefore, we have the following theorem according to
the Liapunov function.

Theorem 5: If the system (2.2) satisfy (2.3) and the in-
equalities of (3.11), then at the interior equilibrium point
E∗(x∗, y∗, z∗), system is globally asymptotically stable.

6 Numerical solutions of the model
Equations

Theoretical analysis of the model is done to explore equi-
libria and their stability of the solutions. It has been
proved that the positive invariant solution of the system
with boundedness is permanent. Our analytical solu-
tions also reveal that the system moves to globally stable
regime. But for physical realization of the time evolution
of different populations with varying model parameters,
we consider numerical solutions of the set of equations
(2.2). This enables us to visualize the dynamical behav-
iors of variables x, y, and z. Initially we choose the de-
fault values of the parameter from their reported range
in various article [3], [9], [12], [17]. Numerical solution of
the model equations (2.2) are done with the basic model
parameters set to their standard values as in Table.1.
At t = 0, values of model variables are considered as
x(0) = 50, y(0) = 50, and z(0) = 2.
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Table.1. Values of parameters used for models dynamics
calculations.

Para- Definition Default
meter Value

λ Constant rate of
production of CD4+T 10.0 mm−3day−1 [12], [9]

p Proliferation
rate constant 0.03 day−1 [17], [9]

Tm Maximum
proliferation 1500 mm−3 [17], [9]
of CD4+T cells

d Death rate
of Uninfected 0.01 day−1 [9]
CD4+T cells

β Rate of contact
between x and y 0.002 mm−3day−1 [3]

a Death rate of virus
producing cells 0.24 day−1 [12]

k Killing rate of Virus
producing cells 0.001 mm−3day−1 [3]

s Rate of simulation
of CTL 0.2 day−1 [3]

b Death rate of CTL 0.02 day−1 [3]

In the first panel (left side) of Fig.1 we find an inte-
rior equilibrium point E∗(591.19, 7.4903, 188.62) which is
asymptotically stable with the default parameter values
given in the Table.1.

Here we are interested to see the effect of the dynami-
cal system due to the change in parametric values of the
model. In Fig.1 we also plot a time series of the model
variables for different values of proliferation rate as shown
in the figure. Changes in the time series solution with in-
crease of p are apparent from the figure.

Fig.2 is a plot of a time series solution for the model
variables x, y, and z for different values of β . In the
above figure we see that if β increases from 0.0008 to 0.01
the uninfected cell population decreases fast and the virus
producing cell population as well as the CTL population
increases slowly.

In Fig.3 we simulated the system for k = 0.001 to 0.005
and s = 0.01 to 0.05 separately, keeping all other pa-
rameters fixed. It is observed that when k increase from
0.001 to 0.005 the activated CD4+T together with CTL
population increases whereas the infected cell population
decreases.

If s increases from 0.1 to 0.5 similar qualitative features
observe as shown for for k. Note that in the Fig.3 the
variation of s and k is also restricted by the condition
sk
b ∼ 0.01− 0.05.

7 Discussion and Conclusions

Here we introduced a population model representing long
term dynamics of HIV-1 infection in response to available
drug therapies. Basically in this paper we have formu-
lated a basic mathematical model of HIV-1 infection in
CD4+T cells with CTL response. In the proposed model
we introduced the proliferation of T cells by a logistic
fashion in which we considered proliferation growth rate
of CD4+T cells together with constant rate of prolifer-
ation. The set of differential equations of the model are
solved both analytically and numerically. Our main focus
is to find out the threshold values of the system parame-
ters for which the diseases can be controlled. In our ana-
lytical study it shows that for the positive equilibrium of
the system, the proliferation rate is always greater than
the death rate of uninfected cells. It implies that the dis-
ease free system can not be obtained for no such threshold
values of the system parameters. In our stability analy-
sis we have shown that if the basic reproduction ratio
R0 < 1, then the infected free equilibrium E0(x0, 0, 0) is
locally asymptotically stable. If R0 > 1 then the E0 is
unstable. We also obtained the stability condition under
(3.11) and hence we get the Theorem 3.2 for the positive
equilibrium E∗(x∗, y∗, z∗). From the condition (3.11) we
can find that there exist a definite parametric regions for
which the equilibrium E∗ is locally asymptotically stable.
To investigate the boundedness of the system we thus for-
mulate a compact region of D in which the the positive
invariant solution of the system (2.2) with boundedness is
permanent. It has also been shown that under the con-
dition of (3.11), in which E∗ is globally asymptotically
stable.

Complete numerical solutions of the model equations for
the parameters as in Table.1, yield results which are con-
sistent with the parametric conditions obtained analyti-
cally. Also in this case we put emphasis on how the model
dynamics evolve with threshold values of the system pa-
rameters for which the diseases can be controlled. In our
numerical simulation we plot different figure to see the
effect of parameter on the system. In Fig.1 we see that if
proliferation rate constant p increases with its reported
range then the uninfected cell increases fast but the in-
fected and CTL population increases slowly. We also see
that if p is small then there is an oscillation in early stage,
but for the large value of p the system moves towards its
equilibrium point with short period of time. In Fig.2
we see that if the parameter β (the force of infection)
increases then the numerical value of infected cell and
CTL population increases whereas uninfected cell pop-
ulation decreases. In Fig.3 we change the parameter of
killing rate of virus producing cells (k) and the rate of
simulation of CTL (s) separately restricting the condi-
tion sk

b ∼ 0.01− 0.05. Notice that in both the cases with
the increases of k or s, the uninfected cell population in-
creases fast whereas the infected cell population moves
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towards extinction.

From our discussion of the results it is clear that the
system competes with the killing rate of infected T-cells
as well as stimulation rate of CTL. It is thus imperative
for increasing of proliferation rate and for k or s, we can
control the force of infection β. If this force of infection
is restricted then disease can be controlled. In support
of our analytical and numerical results we plot a mesh
diagram (Fig.4) between proliferation rate constant p,
killing rate of virus producing cells k, and force of infec-
tion β. In this figure we see that if p and k increases then
the threshold value 0.000158 of β as reflected in (Fig.4),
from where it is clearly manifested that the decease can
be controlled. Moreover, shift of the system to globally
stable regime carry along with it the assurance of eradi-
cation of toxic T-cells from the immune system naturally,
as represented in our analysis.
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