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Abstract—We present a new subband decomposi-
tion method for the separation of convolutive mix-
tures of speech. This method uses a sample-by-sample
algorithm to perform the subband decomposition by
mimicking the processing performed by the human
ear. The unknown source signals are separated by
maximizing the entropy of a transformed set of signal
mixtures through the use of a gradient ascent algo-
rithm. Experimental results show the efficiency of the
proposed approach in terms of signal-to-interference
ratio. Compared with the fullband method that uses
the Infomax algorithm, our method shows an impor-
tant improvement of the output signal-to-noise ratio
when the sensor inputs are severely degraded by ad-
ditive noise.
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1 Introduction

Blind source separation (BSS) is an approach trying to
separate mixed sources, assumed to be statistically inde-
pendent, without any a priori knowledge about original
source signals sj(n), j ∈ {1, · · · , N} but using only obser-
vations xi(n), i ∈ {1, · · · , M} through M sensors. Such
signals are instantaneously or convolutively mixed. In
this paper, we are concerned with the convolutive case,
i.e. the BSS of convolved sources of speech, where source
signals are filtered by impulse responses hij(n), from
source j to sensor i. Mixtures in that case can be ex-
pressed under a vector notation as:

X(n) =
∞∑

k=0

H(k)S(n − k), (1)

where X(n) = [x1(n), · · · , xM (n)]T is a vector of mix-
tures, S(n) = [s1(n), · · · , sN (n)]T is a vector of speech
sources, and H(k) = [hij(k)], (i, j) ∈ {1, · · · , M} ×
{1, · · · , N} is a matrix of FIR filters. To blindly esti-
mate the sources, an unmixing process is carried out, and
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the estimated sources Y(n) = [y1(n), · · · , yN (n)]T can be
written as:

Y(n) =
L−1∑

k=0

W(k)S(n − k) (2)

where W(k) = [wij(k)], (i, j) ∈ {1, · · · , M} × {1, · · · , N}
is the unmixing matrix linking the j-th output yj(n)
with the i-th mixture xi(n). Such matrix is composed
of FIR filters of length L. Each element is defined by
the vectors wij(k) = [wij(0), · · · , wij(L − 1)],∀(i, j) ∈
{1, · · · , M} × {1, · · · , N}.

To mitigate problems in both time and frequency
domains, we present an approach for separating con-
volutive mixtures based on subband decomposition,
referred to as Subband BSS. Subband BSS has many
advantages compared to the other frequency-Domain
BSS approaches regarding the well-known Permutation
ambiguity of frequency bins [2]. In fact, the subband
BSS’s permutation problem is quite less critical since the
number of subbands that could be permuted is obviously
less than the frequency bins. In addition, using a deci-
mation process for each subband can considerably reduce
the computational load if compared with time-domain
approaches (which could be computationally demanding
task in the case of real-room mixtures).

Many subband BSS methods were proposed [1, 6, 7, 8].
In [1], the subband analysis/synthesis system uses a
polyphase filterbank with oversampling and single side
band modulation. In low frequency bands, longer un-
mixing filters with overlap-blockshift are used. In [6], the
subband analysis filterbank is basically implemented as a
cosine-modulated prototype filter. This latter is designed
as a truncated sinc(.) function weighted by a Hamming
window. In [8], the impulse responses of the synthesis
filters are based on the extended lapped transform and
are defined by using the cosine modulation function. In
the approach reported in [7], analysis filters are obtained
by a generalized discrete Fourier transform. Analysis
and synthesis filters are derived from a unique prototype
filter which can be designed by iterative least-squares
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algorithm with a cost function that considers a stopband
attenuation.

Throughout this paper, we present a new framework for
the BSS of convolutive mixtures based on subband de-
composition using an ear-model based filterbank and in-
formation maximization algorithm.

2 Proposed method

In this section, we define the subband decomposition us-
ing the modeling of the mid-external ear and the basilar
membrane that aims at mimicking the human auditory
system (HAS). Afterwards, the learning rule wich per-
forms the sources’ separation will be introduced.

2.1 Subband decomposition

The proposed modeling of HAS consists of three parts
that simulate the behavior of the mid-external ear, the
inner ear and the hair-cells and fibers. The external and
middle ear are modeled using a bandpass filter that can be
adjusted to signal energy to take into account the various
adaptive motions of ossicles. The model of inner ear sim-
ulates the behavior of the basilar membrane (BM) that
acts substantially as a non-linear filter bank. Due to the
variability of its stiffness, different places along the BM
are sensitive to sounds with different spectral content. In
particular, the BM is stiff and thin at the base, but less
rigid and more sensitive to low frequency signals at the
apex. Each location along the BM has a characteristic
frequency, at which it vibrates maximally for a given in-
put sound. This behavior is simulated in the model by
a cascade filterbank. The number of filterbank depends
on the sampling rate of the signals and on other param-
eters of the model such as the overlapping factor of the
bands of the filters, or the quality factor of the resonant
part of the filters. The final part of the model deals with
the electro-mechanical transduction of hair-cells and af-
ferent fibers and the encoding at the level of the synaptic
endings [9].

2.1.1 Mid-External Ear

The mid-external ear is modeled using a bandpass filter.
For a mixture input xi(k), the recurrent formula of this
filter is given by:

xi
′
(k) = xi(k)−xi(k−1)+α1xi

′
(k−1)−α2xi

′
(k−2), (3)

where xi
′
(k) is the filtered output, k = 1, · · · , K is the

time index and K is the number of samples in a given
block. The coefficients α1 and α2 depend on the sampling
frequency Fs, the central frequency of the filter and its
Q-factor.

2.1.2 Mathematical Model of the Basilar Mem-
brane

After each frame is transformed by the mid-external filter,
it is passed to the cochlear filter banks whose frequency
responses simulate those of the BM for an auditory stim-
ulus in the outer ear. The formula of the model is as
follows:

xi
′′
(k) = β1,ixi

′′
(k−1)−β2,ixi

′′
(k−2)+Gi[xi

′
(k)−xi

′
(k−2)],
(4)

and its transfer function can be written as:

Hi(z) =
Gi (1 − z−2)

1 − β1,i z−1 + β2,i z−2
, (5)

where xi
′′
(k) is the BM displacement which represents

the vibration magnitude at position δi and constitutes
the BM response to a mid-external sound stimulus
xi

′
(k). The parameters Gi, β1,i and β2,i, respectively the

gain and coefficients of filter or channel i, are functions
of the position δi along the BM. Nc cochlear filters are
used to realize the model. These filters are characterized
by the overlapping of their bands and a large bandwidth.
We assume that the BM has a length of 35 millimeters
which is approximately the case for humans. Thus,
each channel represents the state of an approximately
Δ = 1.46 mm of the BM. The sample-by-sample algo-
rithm providing the outputs of the BM filters is given as
follows.

Initialize fx = (Fs Δx)2; H0 = 0; ri,j = 0;E0 = 0.
For i = 1 to Nc do
xi = i Δx; v = e−106.5 xi ; Fi = 7100 v − 100;
Ci = (27 v)2

fx
; Qi = (−8300 xi + 176.3) xi + 4;

Gi = e−80 xi ; u = e
− π Fi

Fs Qi ; β1,i = 2 u cos( 2 π Fi

Fs
);

β2,i = u2; Ei = 1
1+(2−Ei−1) Ci

; Ai = Ei Ci.

EndDo
For k = 1 to K Do

For i = 1 to Nc Do
Hi = [Gi (s

′
(k) − s

′
(k − 2)) + βi,2 r1,i−

β2,i ri,1] Ei + Hi−1 Ai

EndDo
For i = 1 to Nc Do
r1,i = Ai ri+1,3 + Hi;y

′
i(k) = ri,3

EndDo
For i = 1 to Nc Do

Forj = 1 to 2 Do
ri,j = ri,j+1

EndDo
EndDo

EndDo
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2.2 Learning algorithm

After performing the subband decomposition, the sepa-
ration of convolved sources per subband is done by the
Infomax algorithm. Infomax was developed by Bell and
Sejnowski for the separation of instantaneous mixtures
[3]. Its principle consists of maximizing output entropy
or minimizing the mutual information between compo-
nents of Y. It is implemented by maximizing, with re-
spect to W, the entropy of Z = Φ(Y) = Φ(WX). Thus,
the Infomax contrast function is defined as:

C(W) = H(Φ(WX)), (6)

where H(.) is the differential entropy, which can be ex-
pressed as H(a) = −E[Ln(fa(a))], where fa(a) denotes
the probability density function of a variable a. The gen-
eralization of Infomax for the convolutive case by using
a feedforward architecture is introduced in the proposed
method. Both causal and non-causal FIR filters are per-
formed in our experiments. With real-valued data for
vector X, entropy maximization algorithm leads to the
adaptation of unmixing filter coefficients with a stochas-
tic gradient ascent rule using a learning steepest μ. Then,
the weights are defined as follows.

W(0) = W(0) + μ([W(0)]−T − Φ(Y(n))XT (n)), (7)

and,

wij(k) = wij(k) − μ Φ(yi(n))xj(n − k);∀k �= 0, (8)

where W(0) is a matrix composed of unmixing FIR filters
coefficients as defined in Section 1, Y(n) and X(n) are
the separated sources and the observed mixtures, respec-
tively. Φ(.) is the score function of yi which is a non-linear
function approximating the cumulative density function
of sources, as defined in Eq. 9, where p(yi) denotes the
probability density function of yi.

Φ(yi(n)) =
δp(yi(n))

δyi(n)

p(yi(n))
. (9)

The block diagram of the proposed method is given in
Fig. 1. The input signals, that are the set of mixtures,
are firstly processed by the mid-external ear introduced
by Eq. 3, then outputs are passed through a filterbank
representing the cochlear part of the ear. A decimation
process is then performed for each subband output. Such
decimation is useful for many reasons. First, it improves
the convergence speed because input signals are more
whitened than the time domain approach. Second, the
wanted unmixing filter length will be reduced by a factor
of 1

M , where M is the decimation factor. After perform-
ing decimation, we group a set of mixtures belonging to

the same cochlear filter to be the input of the unmixing
stage. This latter gives separated sources of each subband
that are upsampled by a M factor. The same filterbank
is used for the synthesis stage. The estimated sources are
added from different synthesis stages.

Figure 1: The ear-based framework for the subband BSS
of convolutive mixtures of speech.

3 Experimental results

In order to evaluate the separation performance given by
the proposed ear-based subband BSS method, a set of
experiments have been carried out. In our experiments,
we used as sources speech data containing two sentences
spoken by a male and female speakers, those signals are
at sampling rate of 8 kHz, each one is an excerpt of
6 seconds. Infomax algorithm has several parameters:
the mixture signals are segmented into blocks; each
block is a size of 35 samples, and the learning rate
was fixed to μ = 0.001. Further, Φ(u) = 1

1+e−u was
used to approximate the cumulative density function.
Such sources are convoluted with impulse responses
modeling the Head Related Transfer Function (HRTF)
[5]. We tested our overall framework with a mixing
filters measured at the ears of a dummy head, illustrated
by figure 2 . We selected impulse responses associated
with source positions defined by 30- and 80-degree angles
in relation to the dummy head.

To evaluate the performance, the Signal to Interference
Ratio (SIR) is used [4]. This reliable measurement is
defined by:

SIR = 10 log10
||starget||2
||einterf ||2 , (10)

where starget(n) is an allowed deformation of the target
source si(n), einterf (n) is an allowed deformation of the
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Figure 2: The convolutive model with source positions at
30-and 80-degree angles in relation to the dummy head.

sources which accounts for the interference of the un-
wanted sources. Those signals are derived from a de-
composition of a given estimated source yi(n) of a source
si(n).

Figure 3: SIR improvement for both causal and noncausal
filters. We denote by Nc

′
the number of filters that have

been used among Nc filters and M is decimation factor.

Different configurations of the subband analysis and syn-
thesis stages as well as of the decimation factor have
been tested. The number of subbands was fixed at 24.
Through our experiments we observed that when we keep
the whole number of subbands, the results were not sat-
isfactory. In fact, we noticed that some subbands in high
frequencies are not used, and therefore this causes distor-
tions on the listened signals. However, as shown in Figure
3, the best performance was achieved for Nc

′
= 24 and

M = 4. In addition to the use of causal FIR filters, we
adapted unmixing stage weights for non-causal FIR by
centering the L taps. From Figure 3, we observe that
causal FIR yields to good results in SIR improvement

when compared with non-causal one. Another set of ex-
periments have been carried out to evaluate the perfor-
mance in the presence of an additive noise in sensors. We
used the Signal-to-Noise-Ratio (SNR) which is defined in
[4], by:

SNR = 10 log10
||starget + einterf ||2

||enoise||2 , (11)

where enoise is an allowed deformation of the perturbat-
ing noise, starget and einterf were defined previously. Fig-
ure 4 shows the SNR improvement using our subband
decomposition, comparing to the fullband method, i.e.
Infomax algorithm in convolutive case.

Figure 4: SNR comparison between the subband and full-
band methods.

4 Conclusion

An ear-based subband BSS approach was proposed for
the separation of convolutive mixtures of speech. The
results showed that using a subband decomposition that
mimics the human perception and using the Infomax al-
gorithm yields to better results than the fullband method.
Experimental results show the high efficiency of the new
method in improving the SNR of unmixed signals in the
case of noisy sensors. It is worth noting that an impor-
tant advantage of the proposed technique is that it uses a
simple time-domain sample-by-sample algorithm to per-
form the decomposition.
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