
Enhanced Design of a Rule Based Engine
Implemented using Structured Query Language

Mohammad J. Sawar, Umair Abdullah, Aftab Ahmed

Abstract—Rule Based Systems belong to a well established
branch of Artificial Intelligence. So far thousands of rule
based systems and their related systems have been built
and successfully used. Recently a Rule Based Engine has
been successfully designed and developed using
Structured Query Language, and applied in Medical
Claim processing domain. The rule engine has been
integrated with medical billing software to identify billing
errors in medical claims at real-time. Performance of the
engine has been good, giving promising results. To further
improve the efficiency of the system and to utilize power
of rule based systems’ techniques, enhancements in the
existing rule based engine are being proposed in this
research paper. Besides explaining the design of new rule
based engine, this paper also reviews the design of current
engine, which is already in operation, and the overall
architecture of the whole system. Enhanced rule engine
being proposed here can be implemented in any domain
which involves large number of knowledge oriented
checks, and in which frequent modification or updating of
these checks is required. This research work proposes a
new frame work of rule based systems related to relational
database environment (i.e. Structured Query Language),
and can have great impact on business world where large
amount of data is stored in relational format.

Index Terms—Artificial Intelligence and its
Applications, Knowledge Engineering, Rule Based Systems.

I. INTRODUCTION

Incorporation of production rule systems in relational
database is not a new idea; it is regularly used in active

databases [11]. Similarly deductive and inductive databases
also involve rules for learning purpose [4], [5]. However, one
feature is common in all of these studies i.e. they focus on
programming of rules at database server level. Similarly
research conducted by Hanson and Widon [2] gives us an
overview of production rule systems developed in relational
database environment, but again it describes “programming of
production rules” at database server level with production rule
programming language. In order to be flexible, efficient, and
robust a production rule should not be programmed rather it
should be inserted like a record. In other words rules should be
part of data not part of program or source code. That is why no
success stories have been revealed so far about the
implementation of a rule based system at application layer
level without the need of rule programming. Such systems
have not found widespread adoption outside of academia. In
active databases production rules are like triggers with some
additional conditions and action parts [2], [11]. One cannot
realize the need of an advance form of database trigger to be
called as production rule in database. To understand the
concept of a rule based system we need to explain the
difference between an “if” statement in a programming
language, a “trigger” in a database and a “rule” in a production
rule system.

At conceptual level all of these are the same i.e. having a
condition portion and a then-part which is executed when
condition part returns true. One possible explanation is that an
“if” statement of a programming language and a “trigger” in a
database are part of code, while a “rule” is part of data,
separate from code. Changing a portion of code requires
programming skills and a development environment. While
changing data does not require programming skills and
development environment, rather it needs some editor or
interface for editing of rules (rule editor, knowledge editor).
This separation of knowledge from code gives us fast flexible
and powerful ways for implementation of knowledge oriented
checks without the need of programming skills i.e. a domain
user can develop rules by himself/herself by using a rule
editor.

Conceptual relationship between a rule and a SQL query is
well-known, and well-understood (i.e. a rule can be considered
as “where” clause of a SQL query). But relationship between a
Rule Inference Engine and SQL is neither well-known, nor
well-understood.

Artificial Intelligence systems, which originally started
with machine learning techniques, such as inductive learning
and explanation based learning [6], [7], [13], [15], are now
moving towards integration of data mining modules to take
further advantage of huge volumes of business data stored in
almost every organization. Simple architecture of classical
expert system with and without a data mining module has been

Manuscript received March 18, 2010. This work has been supported by

Higher Education Commission of Pakistan under “5000 – indigenous PhD
Fellowships Scheme”.

Mohammad J. Sawar is Dean of Faculty of Engineering & IT, Northern
University, Nowshera, Pakistan. (phone: +923218507321; e-mail:
sawar@northern.edu.pk). He is also acting as Director at Barani Institute of
Information Technology, Rawalpindi, Pakistan. (e-mail: sawar@biit.edu.pk)

Aftab Ahmed is Dean and Director at Foundation University of
Engineering and Management Sciences, Foundation University Islamabad,
Pakistan. (e-mail: aftab_ff@hotmail.com).

Umair Abdullah is PhD scholar at FUIEMS, Foundation University,
Islamabad. Pakistan. (e-mail: umair_pitafi@yahoo.com).

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

described by Nada Lavra’c [10]. Many researchers around the
world are working on integration of data mining and AI
systems (rule based, intelligent, knowledge based, expert etc.)
Main hypothesis behind all these research activities is that an
AI system fed with knowledge from domain experts, using
data mining plus machine learning techniques can acquire
refined and large volumes of knowledge as compared to AI
systems which use domain experts and machine learning only
[1]. System developed by Ortega [12] is an example of
intelligent system which uses data mining techniques, thus
following the hypothesis stated above.

Medical billing is a process employed by healthcare
providers (such as Surgeons, Physicians, Practicing Nurses,
etc.) or their billing companies, to submit and follow-up
medical claims [17]. The medical claims are generally
submitted to Insurance Companies for reimbursement of
services rendered by the providers. Claim itself is a complex
beast, composed of codes for procedures (treatments/tests),
diagnoses (diseases) and their relevant modifiers along with
patient data. The relevance of procedures to diagnosis is very
critical; similarly various modifiers change the overall
meaning of a diagnosis code, etc. Generally medical practices
employ experienced coders to achieve their billing goals.

When the billing is carried out by the healthcare providers
locally it is termed as in-house billing, which invariably tends
to be a very tedious task. To overcome this problem, the
providers generally sign up with medical billing companies
which are geared up for bulk claim submissions and follow-
ups. Follow-up normally occurs when a claim is rejected due
to inconsistency in patient data, services rendered or improper
relation between the diagnoses and the procedures.

There are a number of medical billing companies providing
claim submission and follow-up services plus other IT based
healthcare solutions (such as Electronic Medical Records,
Automated Patient Calling for data verification, etc.). One
major challenge for these billing companies is to handle claim
rejection issue and to minimize the costs related to claim
follow-ups. Some companies have developed claim scrubbing
software, which allows them to check the claim for
inconsistencies in patient data and improper use of procedures
for specific diagnoses, before sending the claim forward [8],
[9], [14], [16], [17]. Claim scrubbing reduces the claim turn-
over time and at the same time increases the chance of claim
acceptance.

This paper presents the research and development work
being carried out at a medical billing company. A rule based
system was developed using Structured Query Language [16].
The rule engine has been moved to production by integrating it
in medical billing software. Now rules are being developed
and added to the system by knowledge engineers (operations
staff) of the company. These rules perform medical billing
related data consistency checks and modify claims where
required.

Second section of this paper briefly outlines the overall
architecture of the whole rule based system [1]. Simplified
version of rule based engine design taken from [16] has been
presented in the third section. Fourth section describes the
characteristics of current Rule Based Engine (RBE),
highlighting strong and weak points. Section V is the detailed
explanation of proposed enhanced rule engine design being

implemented using Structured Query Language. Last section
contains the final conclusion along with future research
directions.

II. OVER ALL ARCHITECHTURE OF RULE BASED SYSTEM

Architecture of a data mining driven learning apprentice
system for medical billing is given in [1]. A simplified version
of Rule Based System (RBS) is shown Fig. 1. Billing software
is the main entity with which most of the users interact. Billing
executives use it for inserting, updating, modifying claims’
data. Domain experts use it for pulling various types of reports,
importing data and following up claims. Billing software
triggers Rule Based Engine (RBE) to perform billing
compliance related checks on a claim saved at that time. Thus
RBE applies its production rules on the claim (which is being
saved) and informs the user about faults found in the claim.
RBE also performs scrubbing activity i.e. modify record(s),
which is defined as “then” part of the production rules. Main
database contains claim related data, input from billing
software, web sites, HL7 (i.e. Health Level 7) files, data
imported from database of new practices and data sent by
synchronization server.

Electronic Data Interchange (EDI) module gets data from
the database and converts it into text files in specific format
(like 837 format) which is acceptable by the insurance
companies. Submission module sends these files to the
insurances via internet as electronic submission or paper
submission. This process is outside the domain of our learning
apprentice system (represented by the box). The team which is
developing and managing the RBS communicates with domain
experts (operations staff) through email for knowledge
engineering process. Domain experts use knowledge editor to
add new knowledge (as production rules) to the knowledge

Figure 1. Simplified Architechture of Rule Based System for Medical Billing.

Medical

Billing

Related

Software

 Operational
Database

Knowledge
Editor

Rule Learning
Module

Knowledge Base

Domain
Users

Domain
Experts

Rule Based Engine
(RBE)

Insurances

Claim
data

Payment
info

Rule Based System (RBS)

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

base or verify any new rules discovered by production rule
mining module.

III. DESIGN OF EXISTING RULE BASED ENGINE

Design of Rule Based Engine (RBE) has been discussed in
detail in [16]. A simplified version of existing RBE design is
shown in Fig. 2. It has been implemented in structured query
language for claim scrubbing process. Main components of
RBE are “meta rules”, “rules” and “logical variables”, stored
in the database in their respective tables.

First phase (represented by dotted line box in Fig. 2) is the
selection of applicable rules. In the initial stage only those
rules are selected which have priority 25 or 75. Then all the
Meta rules are executed one by one. When a Meta rule returns
true then its related rules are selected. At the end of this phase
all applicable rules have been selected (either due to priority or
due to true condition of their Meta rule).

In the second phase, rule engine applies all these selected
rules individually on a given claim and identifies the
inconsistencies and errors. Each rule is like a check with some
action part associated to it, implemented as a “where” clause
of a SQL query [16]. The “select” portion of the rule query is
attached automatically within RBE. For example the check of
“missing date of birth” will be implemented as “where
‘<DOB>’ = ‘’ ”. The token <DOB> is a logical variable and
will be replaced by its value. RBE will get its value by
executing the query stored in Logical variables table. For
example, if <DOB> is blank then rule query after replacing the
value of logical variable will become:

select @rowcnt = count(*) where ‘’ = ‘’

Now “where” clause is true so @rowcnt SQL variable will
get value 1 indicating the error of “patient date of birth
missing”. Suppose date of birth of the patient is not missing
i.e. it is “08/20/2009” then rule query after replacing value of
logical variable <DOB> will become:

select @rowcnt = count(*) where ‘08/20/2009’ = ‘’

In this case @rowcnt SQL variable will get 0 value (as
condition is false in “where” clause) thus indicating that error
of “patient date of birth missing” has not occurred.

The claim scrubbing behavior of RBE is briefly
demonstrated above, where it can identify the inconsistencies
in the patient data (such as the missing or invalid information).
Each production rule in the RBE’s knowledge base has its own
scrubbing behavior. The critical rules in general stop RBE
from submitting a faulty claim, while non critical rules simply
generate a warning message [17]. Some rules exclude faulty
procedure code instead of blocking the whole claim.
Furthermore some rules apply modifiers with the procedure
code, but these are according to the instructions given by
providers. Rule application log is maintained by the system.
This log is used for pulling “daily claim error report” and
“RBS blocked claim reports” and any other analysis related to
the performance of RBS [16].

IV. CHARACTERISTICS OF EXISTING RULE BASED ENGINE

This section describes characteristics of existing rule based
engine, which is currently in production. Current RBE has
some advantages. First of all it is implemented in structured

query language (SQL), in the form of stored procedures and
functions. It eliminates the need of transformation of data from
operational environment (i.e. relational database) to some
knowledge base environment. Meta rules have been used to
find out potential errors without executing/ evaluating the
whole condition. Meta rules increase the efficiency of the
system. Concept of “must try” priorities (which are 25 and 75
for lower and higher must try rules respectively) has been
used. These numbers are intuitive, assuming the priority of a
rule between 1 to 100. Rules which must be tried should be
defined with priority 25 or 75. Rules with priorities between
these two, will be tried after the execution of priority 75 and
before trying priority 25 rules.

Figure 2. Simplified Design of Current Rule Based Engine.

Start

Get Rule Query

Execute rule queries formed in above
step.

NO

YES

Exit

Select all active Meta rules and rules, to be
considered for rest of the process

Select rules having priority 75 or 25 as
‘Applicable Rules’

Meta Rule
Exists?

Get a Meta Rule Query

Replace Logical Variables with their
values in Meta Rule Query.

YES

NO

Execute Meta rule. If result is true then
include all the rules associated with the

Meta rule in ‘Applicable Rules’

Update Meta Rule Application Log

Any
Applicable Rule

Exists ?

Update Rule Application Log

Replace Logical Variables with their
values in Rule Query.

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

Start

Exit

Single claim data moved to Working Memory
(WM). Active rules are flagged

Initializations

#Rules
Empty?

Get top 1 rule from #Rules on the basis of
priority

Replace Logical Variables with their
values (from WM) in selected rule query.

Yes

NO

Execute rule queries, formed in above step.
Delete the rule from #Rules. Execute action-
part of the rule if condition is true.

Update Rule Application Log

Current design has following weaknesses causing
efficiency problems when number of rules and claims are in
thousands.

1. No separate working memory. Whole production
database serves the purpose of working memory.

2. Rules are not interacting with each other and work
independently.

3. Original tables of operation database are accessed
again and again for getting values of logical variables.
If a logical variable is used again in another rule, its
value will be acquired again from original operational
tables.

4. There is only one level of hierarchy below meta rules.
A rule cannot associate with more than one meta
rules, causing bottlenecks in various situations.

5. Rule engine performs linear one pass evaluation of
RBS rules, that is rules are selected and tried. If
condition of a rule is true then its then-part is
executed. While traditional rule engines perform
multiple passes of rules and continues to try rules till
some specific condition is met or exists in working
memory.

6. Although priority numbers have been associated with
every rule but it is of no use when only priorities 25
and 75 are currently being used.

7. When a critical rule identifies some error, it simply

blocks the claim i.e. it no longer remains “being
billed” to insurance. This stops remaining rules from
executing on the given claim. Since all the rules
should be applied/tried when claim is being billed.
This limitation stops RBE from identifying all the
errors present in the claim.

8. Mutually exclusive rules are not catered for. If a rule
returns true other rules which are mutually exclusive
are also tried, understandably consuming more CPU
time without generating any results.

9. Works in batch format, where the claims from
multiple practices and users are processed
sequentially, thus reducing the overall efficiency of
RBE.

Improved RBE design described in the following section is
also being implemented using Structured Query Language
(SQL). It is expected to overcome all the weaknesses
mentioned above, and will be more thorough and efficient as
compared to existing engine.

V. PROPOSED ENHANCED DESIGN OF RULE BASED

ENGINE

Proposed enhanced design is according to the true nature of
Rule Based Systems [3]. Proposed design of enhanced engine
has been shown in Fig. 3. It is simple yet expected to be more
powerful and efficient than the existing engine design. Starting
point is same i.e. like existing engine, enhanced engine will
also take one claim at a time as input and process that claim. It
will check the claim for potential errors and carry out
modifications where possible.

First of all before starting the main loop, RBE fetches all
the data which is related to the given claim into working
memory. As the design is proposed to be developed in SQL,
the working memory is represented by temporary tables. When
fetching the values of logical variables, engine will not access
original data tables rather it will use these temporary tables
(working memory).

Second major modification proposed is the selection of
rules for applying on the claim. Instead of using must execute
priority and meta rules, in enhanced RBE, rules will be
activated and deactivated by other rules, starting from “rStart”
which is the designated starting rule of the engine. It will
activate other rules, which in turn can activate more rules.

A temporary table #Rules will be used for activating and
deactivating rules. A rule is activated (by other rule) by simply
adding its name to #Rules table and a rule is deactivated (by
some other rule) by simply deleting its name from #Rules
temporary table.

This kind of mechanism will allow multi-level rule
hierarchy i.e. one condition will be checked in one rule and if
it is true remaining condition will be checked in the following
rule (which will be activated by this rule) and so on.

Furthermore main loop of rule engine will be multi-pass. It
will continue trying rules till the #Rules table is empty. Note
that a rule will be automatically deleted from #Rules table
immediately after its execution. But it can be re-activated
again by some other rule. Similarly mutually exclusive rules
will also be handled in the same fashion.

Figure 3. Proposed Enhanced Design of Rule Engine.

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

Third proposed major change is the defining of
#Variable_values temporary table for storing values of logical
variables. This will allow us to overcome problem of showing
only one error at one time. It will also reduce RBE effort of
fetching value(s) of the same logical variable again and again.
Result of a rule will also be stored in #Variable_values
temporary tables, so that it could be used in other rules thus
allowing multi-level rule hierarchy and step by step checking
of faulty conditions or data inconstancies.

A. Working Memory (WM)

The expected difference in problem solving power and
efficiency of existing RBE and enhanced proposed RBE
design is due to the introduction of #Rules, #variable_values
and claim related temporary tables. These tables serve the
purpose of working memory of the rule engine. These tables
will be populated when the RBE is activated on a single claim
and will be flushed at the end. Working memory (temporary
tables) will be re-filled again when RBE is applied on other
claims.

B. Concurrency

Contrary to the existing RBE, the proposed RBE will
operate concurrently, where many users will be able to process
their claims simultaneously. Each user will have its own set of
temporary tables (working memory), for scrubbing the claim.

VI. CONCLUSION

Proposed enhanced design is according to the true nature of
Rule Based Systems. Existing engine is linear with only two
levels of hierarchy i.e. Meta rules and rules. Only Meta rules
can activate normal rules. While in proposed enhanced RBE
design normal rule can activate and also deactivate one or
more rules, thus allowing multi-levels of rule hierarchy.

The concepts of working memory and concurrency in Rule
Based System have been handled very elegantly by using
temporary tables, which allow multiple users to execute
multiple instances of the RBR in the same SQL environment.

Although both (existing and proposed) engine designs are
being used in medical billing domain, but these engines can be
applied (without modification of rule engine SQL code) to
virtually any real life domain which requires extensive
application of knowledge oriented data consistency checks.

ACKNOWLEDGMENT

Many thanks to USA based medical billing company for
providing excellent research environment. Name of the
company has not been disclosed due to the “Cooperate Identity
Disclosure Policy” of the company.

REFERENCES
[1] A. Ahmed, U. Abdullah, M. J. Sawar, “Software Architecture of a

Learning Apprentice System in Medical Billing” The 2010 International
Conference of Computational Intelligence and Intelligent Systems, at
World Congress on Engineering, London, U.K., 30 June - 2 July 2010.
to be published.

[2] E. N. Hanson, J. Widom, “An overview of production rules in database
systems.” Knowl. Eng. Rev. 8, 2, 121-143. 1993.

[3] F. Hayes-Roth, “Rule-based systems,” Communications of the ACM,
vol. 28, pp. 921-932, September 1985.

[4] Herve Gallaire , Jack Minker , Jean-Marie Nicolas, “Logic and
Databases: A Deductive Approach,” ACM Computing Surveys
(CSUR), v.16 n.2, p.153-185, June 1984.

[5] Luc De Raedt, “A perspective on inductive databases,” ACM SIGKDD
Explorations Newsletter, v.4 n.2, p.69-77, December 2002.

[6] M. J. Sawar and R. C. Thomas “Learning Apprentice System for
Turbine Modeling” in Proceedings of IEA/AIE-90, Charleston, U.S.A.
July 1990.

[7] M. J. Sawar, T. G. Brennan, A. J. Cole and J. Stewart “An Expert
System for PostOperative Care (POEMS)”, Proceedings of MEDINFO-
92, Geneva, Switzerland, Sep. 1992.

[8] Mays II, Carl "Don't Leave Money on the Table - Use a Claim
Scrubber." 30 Sep. 2008.

[9] “MediSoft The Total Revenue Cycle Solution For Physicians” SLC
Software Services, www.slcsoftware.com

[10] N. Lavra'c, “Data Mining and Decision Support: A note on the issues of
their integration and their relation to Expert Systems” PKDD'01
workshop on Integrating Aspects of Data Mining, Decision Support and
Meta-Learning: Positions, Developments and Future Directions, p 1-8.
2001.

[11] Norman W. Paton , Oscar Díaz, “Active database systems,” ACM
Computing Surveys (CSUR), v.31 n.1, p.63-103, March 1999.

[12] P. A. Ortega, C. J. Figueroa, G. A. Ruz, “A medical claim fraud/abuse
detection system based on data mining: A case study in Chile” ,
DMIN'06, The 2006 International Conference on Data Mining, Las
Vegas, Nevada, USA, June 26-29, 2006.

[13] Pat Langley and Herbert A. Simon, “Applications of Machine Learning
and Rule Induction," Communications of the ACM November 1995,
Vol. 38, No. 11. Pages 55-64.

[14] T. Hazen, “Scrubbing Reimbursement Rates Clean” Alpha II Claim
Staker solution (online) www.alphaII.com

[15] T. M. Mitchell, Sridhar Mahadevan, and Louis I. Steinberg. “LEAP : A
Learning Apprentice for VLSI Design," in Proceedings of Ninth IJCAI.
pp. 573-580. 1985.

[16] U. Abdullah, M. J. Sawar, A. Ahmed, “Design of a rule based system
using Structured Query Language”, in Proceedings of 2009 Eighth
IEEE International Conference on Dependable, Autonomic and Secure
Computing (DASC09), Chengdu, China. pp 223-228, 2009.

[17] U. Abdullah, M. J. Sawar, A. Ahmed, “Comparative Study of Medical
Claim Scrubber And A Rule Based System” in Proceedings of IEEE
2009 International Conference on Information Engineering and
Computer Science (ICIECS 09), Wuhan, China. pp 1-4, 2009.

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

