
Optimization of Ensemble based Decision using
PSO

Asma Kausar, M. Ishtiaq, M. Arfan Jaffar, Anwar M. Mirza

Abstract—In matter of great importance, it is the innate 
behaviour for human beings to seek more than one consultant 
before making a decision. In such cases we weigh the individual 
opinions of experts on the basis of their competence and then 
combine them through some thought process in order to finalize 
the decision. In this paper we have proposed an idea of Particle 
Swarm Optimization (PSO) in order to optimize these weights 
which then better evaluate the competence of an expert. 
Weighted Majority Voting (WMV) is the most popular technique 
used to combine such opinions in an ensemble based 
classification. The weights associated to each base classifier in 
WMV on the basis of its competence are optimized under the 
influence of the basic idea of PSO. PSO has shown the stable 
performance on the selected datasets from UCI Repository and 
generally improved the performance of an ensemble system.

Index Terms— Classification, ensemble, PSO, Decision Profile, k-
fold, WMV, classifier fusion

I. INTRODUCTION

During the pattern analysis we come across various 
overlapping samples of a dataset. Few of these samples are 
better analysed using one classifier whereas some other 
classifier may work better for other type of samples. Instead 
of making complex solution or a poor decision due to the bad 
choice of classifier, we can make a risk free decision through 
an ensemble that may be a little lower in performance. 

Due to its simplicity and performance an ensemble based 
classification has been widely used to improve the confidence 
of making right decision. The main goal of our ensemble is to 
improve the confidence of making right decision, by weighing 
various opinions and combining them through some machine 
learning techniques to reach a final decision. Classifier fusion 
technique - all base classifiers are trained over the entire 
feature space - has been adopted by WMV combiner, which is 
considered as the most reliable technique of the latest era. 
Though the diversity - a basic strategy of an ensemble system-
is mainly achieved by using different base classifiers like 
Linear Discremenent Classifier, Quadratic Discremenent 
Classifier, K-Nearest Neighbour Classifier and Back 
Propagation. At the end resulting decision is optimized using 
PSO which is a stochastic population-based computer 
algorithm modelled on swarm intelligence. 

An ensemble based classification has been widely used for 
many data mining applications. It has provided dramatically
better results in case of multi classification applications like 
“multisensory data fusion” [1], real time object detection, pose
estimation (medical imaging) [2], and analysis of fatal 
desease-Al-Zhemer.
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Ensemble approach has provided better results for the 
applications where we are concerned with more feature of a 
dataset or more categories to be targeted. So far we do not 
have a sufficient theory to explain the performance of an 
ensemble system compared to single classifiers. Most of the 
developments in the area are based on the simplification and 
assumptions and they mostly consider special cases [3], [4], 
[5]. Due to the difficulty in choosing a suitable combination, 
recent offspring’s of pattern recognition and machine learning, 
ensemble based classifiers still enjoy many heuristic ideas. 
Many experimental studies have been published in [6] to 
provide guidelines in order to prioritise the ideas according to 
the application in hand.

In the past, pattern recognition focused on designing single 
classifiers which become much complex in case of non-linear 
or difficult applications. This paper is about combining the 
opinions of pattern classifiers from various domains, to make 
the new opinion more reliable and better than the individual 
base classifiers in performance. In this paper, the term expert, 
classifier and hypothesis are used interchangeably where the 
goal of an expert system is to obtain the optimized decision, 
by using classifier fusion technique based on their competence. 
The final expert/ classifier makes the hypothesis about the 
classification of a given data instance into one of the 
predefined categories known as supervised classification. The 
next section describes a brief history of ensembles based 
classification. In section 3 the major related work is 
introduced. Section 4 contains the proposed idea of 
optimization based on PSO which is followed by the 
experimental setup and results, provided in section 5. Section 
6 concludes the comparison of proposed technique with the 
existing ones followed by future work.

II. HISTORY

Though a modern area of pattern recognition and machine 
learning has started just a decade ago but, in fact, combining 
classifiers is much older. Although it began with the idea of 
viewing the classifier output as a new feature vector, traced 
back to Sbystyen [7] in his book Decision Making Processes 
in Pattern Recognition in 1962. In his book Sbystyen 
proposes a cascade machine in which the output of a classifier 
is fed as an input of the next classifier in a sequence and so on. 
Though the earliest work on ensemble system is considered to 
be done by Dasarthy and Sheela’s 1979 paper [8]. In this 
paper, two or more classifier models are used for partitioning 
the feature space depending on the location of the input. In 
1981, Rastrigin and Erinstein introduced dynamic classifier 
selection [9] in their book [10] which unfortunately reached
only to the Standered four-fold cross-validation set-up. The 
book by “Barabash” [11], was published in 1983, which 
contain meaningful results about the majority vote for 
classifier combination. The generalization performance of a 
neural network was shown to be improved using an ensemble 
of similarity configured neural networks by Hensen and 
Salamon [12] while Schapire proved that a strong classifier in 
probably approximately correct (PAC) sense can be generated 
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by combining the weak classifiers through boosting [13]. The 
research in ensemble systems has expanded to many creative 
names and ideas. Few of the examples are classifier 
systems[8], mixture of experts [14], stacked generalization 
[15], combination of multiple classifiers [16], [17], [18], 
dynamic classifier selection [19], classifier fusion [20],[21], 
committees of neural networks [22], voting pool of classifiers 
[23], classifier ensembles [24].

The above mentioned approaches usually differ from each 
other with respect to the specific procedures used for 
generating base classifiers, and the strategy employed for 
combining the classifiers. Two main strategies are used for 
combining the classifier outputs; one is classifier selection in 
which each classifier is trained to become an expert in some 
local area of feature space. The second is classifier fusion in 
which all classifiers are trained on the entire feature space 
called weak classifiers whose decisions are then merged to 
produce a strong single expert. In the later approach, empirical 
distribution method is applied along with hybrid approaches 
for the gain of maximum diversity (of base classifiers) and 
performance(of the final strong classifier). Examples of the 
above mentioned approach include bagging [25], boosting 
[26], [27] and many of their variations like Random Forest 
[28], Pasting Small Votes [29], and Adaboost [30], 
Learn++.NC [31] etc.

The combination of classifiers can be applied to the 
classification labels only, or to the specific continuous valued 
outputs of the individual experts [21], [32], [33]. The classifier 
outputs are often normalized to the [0,1] interval, and then 
named as support given by classifier to each class which is 
based on class-conditional posterior probabilities [21], [34]. 
Such type of support allows an ensemble to apply algebraic  
combination techniques like majority voting, maximum, 
minimum, sum, product or any other combinations of 
posterior probabilities [9], [33], [35]. Fuzzy integral [20], the 
Dempster Shafer based classifier fusion [18], [36] and 
Decision Templates [21], [32], [37] are the most recently used 
combination techniques for soft label outputs. Theoretical 
models were developed for combining Discremenent 
functions in [38], [39] and six commonly used combination 
rules are compared for their performance to predict posterior 
probabilities in [35]. 

III. RELATED WORK

A. Classifier Combination via Continuous-Valued Outputs
The degree of support for a given input can be interpreted 
in different ways, the two most common ones are 
i). Confidences in suggested labels and 
ii). Estimates of the posterior probabilities for the classes. 

Let � ∈ �� be a feature vector and Ω= {��, �� , . . . , �� } be the 
set of class labels. Each classifier �� in the ensemble 
� ={��,��,…,��} outputs � degrees of support. Without loss 
of generality we can assume that all � degrees are in the 
interval [0, 1], that is, ��: �� → [0,1]�. Denoted by ��,�(�), 
the support that classifier �� gives to the hypothesis that the 
instance � belongs to class �� . The larger the support, the 
more likely the class label�� . The � classifier outputs for a

Figure 1 Decision Profile for a given instance x
TABLE I

SUMMARY OF ARITHMETIC COMBINATION RULES

Rule Formula Combination 
function

Mean 
Rule F = mean

Max 
Rule F = max

Median 
Rule F = median

Minimu
m Rule F = min

particular input � can be organized in a decision profile 
(��(�)) as a matrix shown in Fig. 1. Kuncheva et al. define 
the decision profile matrix in [21], which allows the following 
combination rules from an unified perspective. The decision 
profile matrix ��(�), for an instance �, consists of elements 
��,�(�) = [0, 1], which represent the support given by the t th

classifier to class �� . The rows of �� (�), therefore, represent 
the support given by individual classifiers to each of the 
classes, whereas the columns represent the support received 
by a particular class from all classifiers. Combination methods 
that use only one column of ��(�) at a time are called “class-
conscious combiners” [21] for examples the simple and 
weighted average, product, and order statistics. Alternatively, 
we ignore the context of ��(�) and treat the values ��,�(�) as 
features in a new feature space, named as intermediate feature 
space. The final decision is made by another classifier that 
takes the intermediate feature space as input and outputs a 
class label. This class of methods is named “class-indifferent 
combiners” according to [21]. 

All of the class-conscious combiners are idempotent by 
design. The two main groups of this category are;

 Non-Trainable Combiners: also called fixed combiners 
which do not need to train any extra parameters. In this 
case the ensemble is ready for the operation as soon as 
the base classifiers are trained. Examples are algebraic 
combiners, some of whose formulae are given in table 1.

 Trainable Combiners: Some extra parameters are 
required here like the competence and support in order 
to prioritize the decision of classifiers. Its examples 
include Weighted Average which is of three types 
depending on it calculation of weights [40].

B. Classifier Combination via Label Outputs
Assume that the label outputs of the classifiers are given as 

C-dimensional binary vectors [d�,�, . . . , d�,�]�  ∈  [0, 1]� ,  j =

   ,
1

1 T

t jj
t

x x
T d



 

    ,
1...

1 max t jj
t T

x x
T d





    ,
1...

1 m t jj
t T

x x
T edian d





    ,
1...

1 min t jj
t T

x x
T d




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 [1, . . . , C] and t =  [1, … , T] , where d�,� = 1 if T� labels x in 
ω�, and 0 otherwise. “Majority Vote” is the main example of 
this group which became established in 1356 for the election 
of German kings. The ensemble decision for the plurality 
voting- a type of majority voting- decides the category/ class 
that is predicted by atleast one more than half the number of 
classifiers. It can be described by choosing class ω�,  if

(1)

C. Weighted Majority Voting
If the experts in a system do not provide identical accuracy, 

then it is better to give more power to the more competent 
expert in making the final decision. let us assume the decision 
of hypothesis h� on class ω� as d�,� , such that d�,� is 1, if h�
selects ω� and 0, otherwise. Further assume that we have a 
way of estimating the future performance of each classifier, 
and we assign a weight w� to classifier h� in proportion to its 
estimated performance. According to above assumption, the 
classifiers whose decisions are combined through weighted 
majority voting will chose class ω�, if








T

t
jtt

C

j

T

t
Jtt dwdw

1
,11

, max (2)

We can normalize these weights to sum up to 1; however 
normalization does not change the outcome of the WMV 
criterion. Normally we use the performance of a classifier on a 
separate validation dataset, or on the training dataset, as an 
estimate of the future performance of that classifier. This 
approach is followed by most commonly used ensemble 
technique, Adaboost. A detailed discussion about WMV can 
be found in [41].

Assigning the weights to the classifiers is not sufficient to 
guarantee the maximum performance. The prior probabilities 
of the classes must also be considered. The optimal weights 
only magnify the relevance of an individual classifier based 
on its competence but it does not consider the performance of 
the other member classifiers of the ensemble team.

D. Optimising confidence of Classifier Decision
Calculating the coefficients (weights) for a classifier on the 
basis of its competence is the major focus of most commonly 
used ensemble techniques. In this paper we optimize these
weights using Particle Swarm Optimisation (PSO) for making 
our decision more confident. PSO is a population based 
stochastic optimization technique developed by Dr. Eberhart 
and Dr. Kennedy in 1995 [42]. It is inspired by social

behaviour of bird flocking or fish schooling. PSO shares many
similarities with evolutionary computation techniques such as
Genetic Algorithms (GA). 

PSO is a zero-order; non-calculus-based method which
means that it does not need gradients making it suitable to
solve discontinuous, multimodal and non-convex problems. It 
includes some probabilistic features in the motion of particles. 
The system is initialized with a population of random 
solutions and it searches for the optima by updating 
generations. Unlike GA, PSO has no evolution operators such 
as crossover and mutation. It uses the potential solutions, 
called particles that fly through the problem space by 
following the current optimum particles.  PSO is easy to 
implement and there are fewer parameters to adjust than those 
of the other optimization techniques like GA. It has been 
successfully applied in many areas: function optimization, 
artificial neural network training, fuzzy system control, and 
other areas wherever GA can be applied. Each particle of 
swarm has three features according to [42]:

 Position (this is the ith particle at time k, notice vector 
notation)

 Velocity (similar to search direction, used to update the 
position)

 Fitness or objective (determines which particle has the 
best value in the swarm and also determines the best 
position of each particle over time.

The basic algorithm of swarm optimization is provided 
below:
Initial Swarm

- Establish the swarm size (normally 15 to 30)
- Randomly distribute the particles across the design 

space.
x�

� = x��� + rand(x��� − x���)
Where x��� and x��� are vectors of lower and upper 
limit values respectively.

- Evaluate the fitness of each particle and store:
o Particle best ever position(particle memory 

pi here is same as x�� )
o Best position in current swarm (influence of 

swarm p�
�)

- Generate initial velocity randomly.

v�
� = x��� + rand(x��� − x���)

∆t = position
time

Velocity Update
- To provide search directions it includes deterministic 

and probabilistic parameters.
- Combine the effect of current motion, particle own 

memory and swarm influence.

Position Update
- Update the position by velocity vector.

����
� = ��

� + ����
� ∆�

, ,11 1

max
T TC

t J t jjt t
d d

 

 
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Stopping Criteria
- Maximum change in best fitness smaller than 

specified tolerance for a specified number of moves 
(S).

�f�p�
�� − f �p���

� �� ≤ ε q = 1, 2, … , S

Figure 2 Block diagram of ensemble system optimization

System problems typically include continuous, integer, and 
discrete design variables. Basic PSO works with continuous 
variables. There are several methods which allow PSO to 
handle discrete variables. The simple method of rounding 
particle position coordinates to the nearest integers provides 
the best computational performance.

We have trained T number of different type base classifiers 
C�, C�, … , C� on the whole training dataset in order to make a 
team of hypothesis h� where t = 1, 2, … , T. The outputs of 
these classifiers are fused to attain the stronger classifier using 
weighted majority voting. The final decision of this 
heterogeneous ensemble of classifiers is then optimized by 
using the idea of particle swarm optimization. The process of 
optimization continues till a predefined threshold is achieved. 
A block diagram of our proposed method is shown in Fig.2.

IV. EXPERIMENTAL SETUP AND RESULTS

We have applied different classification techniques on the 
four multiclass applications from UCI Repository i.e. Heart, 
Diabetes, Iris and Transfusion. PSO parameters have been 
fixed exactly according to the basic strategy as proposed in 
[42]. Four base classifiers-LDA, QDA, KNN, and BP- have 
been used in our experiments considering their weak 
reliability, in order to diversify the members. The final results 
are then compared with these individual classifiers as well as 
their combinations using fixed algebraic combiners and 

plurality voting. Average error rates of these combiners are 
provided in table III. 

Practical Swarm Optimization has generously improved the 
performance of ensemble system on every database. 
Performance evaluation between simple ensemble and PSO
optimized ensemble is shown using the line graph separately 
on each dataset. A bar chart provides the overview of best 
performance that can be achieved by individual classifiers and 
ensemble systems. The proposed optimization has shown the 
best performance results in seven runs for each dataset except 
the Transfusion Dataset where it gains the highest 
performance in nine runs. Fig.7 shows the final comparison of 
best performance by Weighted Majority Voting combiner
with and without optimization.

V. CONCLUSION

An ensemble based system is more reliable than individual 
classifiers when we come across the multi classification of 
nonlinear and complex datasets. The performance of ensemble
based system can further be improved by using Practical 
Swarm Optimization. The idea proposed in this paper is a very 
simple technique and can also be applied to many other 
combination techniques of an ensemble. In future we aim to 
further improve this system by adding on the diversity 
measures.
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Figure 3 Performance of Simple and Optimised Weighted 
Majority Voting on Heart Dataset

Figure 4 Performance of Simple and Optimised Weighted 
Majority Voting on Diabetes Dataset

Figure 5 Performance of Simple and Optimised Weighted 
Majority Voting on Iris Dataset

Figure 6 Performance of Simple and Optimised Weighted 
Majority Voting on Transfusion Dataset.

TABLE III
AVERAGE PERFORMANCE OF DIFFERENT CLASSIFIERS ON DIFFERENT DATASETS

Datasets
Individual Classifier Error Weighted 

Combiner 
Error

Combiners Error PS 
Optimized 

ErrorLDC QDC kNNC BPN
C Prod Mean Med Max Min Vote

Heart 0.173 0.234 0.3566 0.231 0.201 0.197 0.227 0.227 0.227 0.227 0.195 0.158
Diabetes 0.241 0.261 0.2929 0.263 0.242 0.243 0.255 0.255 0.255 0.249 0.244 0.225

Iris 0.031 0.047 0.0495 0.066 0.036 0.031 0.050 0.054 0.054 0.042 0.037 0.022
Transfusion 0.232 0.232 0.2712 0.221 0.227 0.231 0.231 0.231 0.231 0.232 0.230 0.205

TABLE IV
BEST PERFORMANCE OF DIFFERENT CLASSIFIERS ON DIFFERENT DATASETS

Data set Best Individual Classifier Best 
Wvote

Best Combiner PS 
OptimizedLDC QDC kNNC BPNC Prod Mean Med Max Min Vote

Heart 0.142 0.201 0.312 0.179 0.154 0.169 0.185 0.185 0.185 0.201 0.153 0.1010
Diabetes 0.216 0.236 0.275 0.233 0.213 0.214 0.223 0.223 0.223 0.225 0.221 0.2000

Iris 0.019 0.009 0.038 0.038 0.009 0.019 0.038 0.038 0.028 0.009 0.019 0.0090
Transfusion 0.226 0.222 0.241 0.199 0.209 0.224 0.224 0.224 0.222 0.218 0.226 0.1576

Figure 7 Best Performance of Different Classifiers on Different Datasets
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