
 
 

 

  
Abstract— Exudate detection is important for diabetic 

retinopathy screening systems. Early detection can help to 
reduce the incidence of blindness in diabetic patients. In this 
work we implement and evaluate the performance of different 
algorithms for automatic exudate detection. These consist of a 
mathematical morphological technique, a fuzzy c-means 
clustering technique, a naive Bayesian classifier, a support 
vector machine and a nearest neighbor classifier. The detection 
accuracy is defined with respect to expert ophthalmologists’ 
hand-drawn ground-truths and the results are presented and 
comparatively analyzed.  

 
Index Terms— comparative analysis, diabetic retinopathy, 

exudate detection.  

I. INTRODUCTION 
Exudates are a visible sign of diabetic retinopathy which is 
the major cause of blindness in patients with diabetes. If the 
exudates extend into the macular area, vision loss can occur. 
Automated early exudate detection could limit the severity of 
the disease and assist ophthalmologists in investigating and 
treating the disease more efficiently.  

A large number of methods for automatic exudate 
detection have been published. C. Sinthanayothin et al. [1] 
propose an automated system of detection of diabetic 
retinopathy using recursive region growing segmentation 
(RRGS). A. Osarah et al. [2, 3] use fuzzy c-means (FCM) 
clustering to segment color retinal images, then a neural 
network and support vector machines (SVMs) are used to 
separate exudate and non-exudate areas. Morphological 
reconstruction techniques to detect the contours of exudates 
are proposed by T. Walter et al. [4]. D. Usher et al. [5] use a 
combination of RRGS and adaptive intensity thresholding to 
detect candidate exudate regions and a neural network is used 
to classify exudates and non-exudates. X. Zhang and O. 
Chutatape [6] use local contrast enhancement and FCM to 
segment candidate bright lesion areas. SVMs are also used to 
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classify exudates and cotton wool spots. 
Most techniques mentioned earlier work on images taken 

on patients with dilated pupils in which the exudates and 
other retinal features are clearly visible. Good quality images 
are required to achieve optimal results from the application of 
the detection algorithms. The examination time and effect on 
the patient could be reduced if the detection system could 
succeed on images taken from patients with non-dilated 
pupils. Automatic exudate detection on images acquired 
without pupil dilation is investigated in this work with the 
aim of providing decision support in addition to reducing the 
workload of ophthalmologists.  

In our previous work, we have proposed and separately 
evaluated methods for automatic exudate detection using a 
mathematical morphological technique [7, 8], a FCM 
clustering technique [9], a combination of FCM and 
mathematical morphology [10], a naive Bayesian classifier 
[11], a SVMs classifier [12] and a nearest neighbor classifier, 
yet a descriptive comparative analysis has not been 
performed. In this paper, a descriptive comparative analysis 
of these automatic exudate detection methods is presented. 

 

II. METHOD 
All digital retinal images taken of patients with non-dilated 
pupils were obtained from a KOWA-7 non-mydriatic retinal 
camera with a 45° field of view. The image size is 752 x 500 
pixels with 24 bits per pixel. Pre-processing includes the 
removal of the optic disc from the images because it has some 
characteristics similar to exudates [13].  

A. Exudate Detection 
Exudate detection was performed using the traditional 

methods of mathematical morphology, FCM, a combination 
of FCM and mathematical morphology. Exudate detection 
was also performed using the machine learning approaches of 
naive Bayesian classifiers, SVMs, and nearest neighbor 
classifiers. These approaches are briefly presented in this 
section. Further discussion about the topics can be found in 
our previous publications. 

1) Traditional Methods 
With respect to the mathematical morphological method, the 
exudates are obtained by thresholding the difference between 
the original image and the reconstructed image [7]. While the 
four features of intensity value after pre-processing, standard 
deviation of intensity, hue and number of edge pixels from an 
edge image are the result of a numerical experiment. These 
features are selected as input for FCM clustering [9]. The 
result from the FCM clustering is then used as a rough 
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estimation of the exudates before segmentation using 
morphological reconstruction is applied for a finer result 
[10].  

2) Machine Learning Approaches 
Fifteen features are proposed to distinguish exudate pixels 

from non-exudate pixels by using a Naive Bayesian 
classifier. They are 1) the pixel’s intensity value after 
preprocessing, 2) the standard deviation of the preprocessed 
intensity value, 3) the pixel’s hue, 4) the number of edge 
pixel in a region around the pixel, 5) the average intensity of 
the pixel’s cluster, 6) size (measured in pixels) of the pixel’s 
cluster, 7) the average intensity of the pixels in the 
neighborhood of the pixel’s cluster, 8) the ratio between the 
size of the pixel’s cluster and the size of the optic disc, 9) the 
distance between the pixel’s cluster and the optic disc 10) 
another six Difference of Gaussian (DoG) filter responses 
with six different standard deviation values. The best feature 
set obtained from the Naive Bayesian is optimized by the 
greedy backward elimination method. The first model is 
estimated from a training set using all features. Features are 
iteratively deleted until the average of the precision and recall 
(“PR,” see section III.) stops improving [11]. 

We use the best feature set as an initial set for SVMs. We 
then add features back to the SVMs classifier one at a time 
and compare the PR of each classifier to that of the previous 
classifier. The sequence of the feature addition is the same 
with the Naive Bayesian classifier’s feature selection 
process. The feature-adding process is repeated until all 
features are added back. The best feature set is the set which 
provides the highest PR [12]. The nearest neighbor classifier 
with Euclidean and Mahalanobis distance metrics is used as 
baseline.  

 

III. RESULTS 
A data set of 60 retinal images including 40 images with 

exudates and 20 images without exudates are tested on an 
AMD Athlon, 1.25 GHz PC using MATLAB for the 
mathematical morphology, FCM and FCM with morphology 
techniques. For the naive Bayesian and SVM classifiers, we 
use 29 images for training and 30 images including 10 images 
with exudates and 20 images without exudates for testing. All 
exudate pixels and equal numbers of non-exudate pixels 
(randomly selected) are included in the training set. Over all 
29 training images, we obtained 115,867 examples of 
positive (exudate) pixels and an equal number of negative 
(non-exudate) pixels. Our 10 test images together contain 
42,909 exudate pixels. The Naive Bayesian classifier is tested 
on Weka data mining software running on standard PC while 
the SVMs and nearest neighbor techniques are tested on a 
20-node Gnu/Linux Xeon cluster.  

Detected exudates are compared with the 
ophthalmologists’ hand-drawn ground-truth images for 
verification. Example resulting images of exudate detection 
from all classification methods are shown in Figure 1 and 
testing and training performances are shown in Table 1 and 
Table 2 respectively. Sensitivity (Recall) is the percentage of 
the actual exudate pixels that are detected, and specificity is 
the percentage of non-exudate pixels that are correctly 

classified as non-exudate pixels. Precision is the percentage 
of detected pixels that are actually exudates, and PR is the 
average of the precision and sensitivity. Accuracy is the 
overall per-pixel success rate of the classifier.  

For the naive Bayesian classifier, the best classifier 
contained six features: 1. the pixel’s intensity after 
preprocessing, 2. the standard deviation of the preprocessed 
intensities in a window around the pixel, 3. the pixel hue, 4. 
the number of edge pixels in a window around the pixel, 5. 
the ratio between the size of the pixel’s intensity cluster and 
the optic disc, and 6. DoG4.  

For the SVMs, the best performance is obtained using 10 
features: 1. pixel’s intensity after preprocessing, 2. standard 
deviation of the preprocessed intensities in a window around 
the pixel, 3. pixel hue, 4. number of edge pixels in a window 
around the pixel, 5. ratio between the size of the pixel’s 
intensity cluster and the optic disc, 6. distance between the 
pixel’s cluster and the optic disc, 7. DoG1, 8. DoG2, 9. 
DoG4, and 10. DoG6, with ν = 0.002 and γ = 0.98. 

On the best feature set obtained from the naive Bayesian 
classifier, the nearest neighbor classifiers have a PR of 
61.54% and 61.81%, respectively. On the best feature set 
obtained from the SVM classifier, the nearest neighbor 
classifier achieved a PR of 65.15% and 64.99%, respectively. 
The results indicate that the naive Bayesian and SVM 
classifiers perform substantially better in PR than the nearest 
neighbor classifier. 

 
TABLE 1  TESTING PERFORMANCE 

Classifier 
 

SE 
(%) 

SP 
(%) 

Precision  
(%) 

PR  
(%) 

Acc  
(%) 

Mathematical  
morphology 80.00 99.46 51.78 65.89 99.29 
Fuzzy c-means 
 (8 clusters) 97.29 85.43 51.62 5.94 85.62 
Fuzzy c-means  
(8 clusters) + 
Morphology  87.28 99.24 42.77 65.02 99.11 
Naive Bayesian  93.38 98.14 47.51 70.45 98.05 
Support vector 
machines 92.28 98.52 53.05 72.67 98.41 
Nearest neighbor on 
best feature set for 
naive Bayesian 
(Euclidean) 90.48 96.62 32.60 61.54 96.51 
Nearest neighbor on 
best feature set for 
naive Bayesian 
(Mahalanobis) 90.44 96.71 33.18 61.81 96.60 
Nearest neighbor on 
best feature set for 
SVMs (Euclidean) 91.44 97.40 38.86 65.15 97.29 
Nearest neighbor on 
best feature set for 
SVMs 
(Mahalanobis) 91.11 97.41 38.87 64.99 97.30 

*SE = Sensitivity, SP = Specificity, Acc = Accuracy 
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TABLE 2 TRAINING PERFORMANCE 
Classifier 
 

SE 
(%) 

SP 
(%) 

Precision  
(%) 

PR  
(%) 

Acc  
(%) 

Naive Bayesian  94.53 89.19 89.74 92.13 91.86 
Support vector 
machines 92.06 94.92 94.77 93.41 93.49 

*SE = Sensitivity, SP = Specificity, Acc = Accuracy 
 

 
Figure 1 Example of exudate detection results. (a) Original images. (b) 
Morphological classification results. (c) FCM classification results. (d) FCM 
with Morphological classification results. (e) Naive Bayesian classification 
results. (f) SVMs classification results. (g) Nearest Neighbor (Euclidean 
distance) classification results on best feature set obtained from naive 
Bayesian. 
 

IV. CONCLUSION AND DISCUSSION 
We have implemented many automated exudate detection 

algorithms and we report the comparison results and the 
result analysis in this paper. Further result discussion and 
analysis can be found in this section. 

A. PR and Precision Values 
Among all the classifiers, our experimental results show 

that the mathematical morphology method achieves the 
highest specificity and accuracy with 99.46% and 99.29%, 
respectively. On the other hand, the mathematical 
morphology method achieves the lowest sensitivity with 
80%.   

As shown in the result images of exudate detection, Figure 
1, using the FCM classifier, most of the exudates are 
detected. The FCM classifier achieves the highest sensitivity 
of 97.29 %, but the lowest specificity and accuracy of 
85.43% and 85.62%. Rough exudate detection using only the 
FCM classifier achieves very low PR because of high false 
positive values.  The PR value is improved when fine exudate 
detection using the mathematical morphology technique is 
combined with the FCM classifier. SVMs achieved the 
highest PR and precision values with 72.67% and 53.05% 
respectively, as shown in Figure 2.  

Although the diagnostic PR of the FCM classifier with 
morphology, the naive Bayesian classifier and the SVMs 
classifier are close, the superiority of SVMs is very clear in 

the images. It can detect most of the exudates including their 
borders and fewer false positive pixels at the same time. 

B. Classifier Selection Factor 
The weakness of traditional exudate detection is that they 

require many predetermined parameters or features. Those 
features have to be optimized and may be suited to specific 
datasets. The performance of the algorithms may change 
significantly if the dataset is changed. The algorithms may 
also be camera dependent. 

The machine learning approaches of the naive Bayesian 
and SVMs classifier may take a longer time to learn in the 
training process but they can automatically search for the best 
feature set. A summary of the classifier selection factor is 
shown in Table 3. 

The pre-defined numbers of clusters are also the limitation 
of FCM clustering. The suitable number of clusters is 
dependent on the requirements of the ophthalmologist and 
the application. If the application requires a high PPV or 
PLR, such as an application where an automatic quantitative 
measurement of exudates is made, then a higher number of 
clusters is preferred. However, if the application does not 
require such a high accuracy, such as an application for a 
visual aid for ophthalmologists to assist exudate detection 
where the computer enhances the image quality and shows 
the approximate location of the exudates (the final decision is 
still made though by an expert ophthalmologist), then a 
smaller number of clusters is recommended. Also, with a 
smaller number of clusters, the system runs faster.  

The naive Bayesian and SVMs classification require a 
learning phase which takes time. Many parameters are also 
used in the SVMs classification and they can affect the 
classification accuracy. Computational costs for the SVMs 
are very expensive.  

C. Time Complexity Analysis 
The time complexity for each algorithm is analyzed and 

summarized in Table 4. In the testing phase, the time 
complexity for the traditional algorithm approach is higher 
than that for the machine learning approach. However, for the 
machine learning approaches, a training phase is also 
required so extra computational costs must be included. In 
the case of SVMs, for example, the training time is related to 
the number of support vectors, which depend on the dataset 
and on the non-linear mapping from input space to the feature 
space. The time complexity of the SVMs classifier is equal to 
the time complexity of the nearest neighbor classifier if the 
numbers of support vectors are equal to number of training 
points.  

D. Overall Evaluation 
Mathematical morphology is a simple method and 

computationally low cost but it does not achieve good 
sensitivity. FCM clustering can detect most of the exudate 
regions; however, the false positive rate is high. Additionally, 
sensitivity and specificity are dependent on the number of 
clusters which has to be predefined. Using FCM clustering 
followed by mathematical morphology reconstruction, gives 
a higher accuracy with a lower false positive value. Even 
though, naive Bayesian and SVMs, which are supervised 
classifiers, do not require predefined features, they are 
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computationally expensive during the training process. The 
SVMs classifier is also sensitive to parameter modification 
but it gains a higher precision value. 

Many techniques implemented and evaluated in this paper 
have different characteristics and should be applied in 
different situations. In medical decision support applications, 
for example, the mathematical morphology method has an 
advantage over others as it can analyze the retinal image very 
quickly. It could be used for the implementation of real-time 
assistant application. 

On the other hand, the SVMs classifier has an advantage 
over others as they achieve a high level of diagnostic 
accuracy in terms of PR. If the application needs precision for 
quantitative analysis of exudates, SVMs could be a better 
choice. Furthermore, SVMs allow further control on the 
generalization ability of the system in the case of unbalanced 
accuracy results that cannot be improved using traditional 
approaches. This means that the user has more control on the 
application implemented based on the SVMs algorithm. 
However, SVMs are very complex and require training. So, it 
depends on the purpose of application to be implemented. 

 
TABLE 3 CLASSIFIER SELECTION FACTOR 

Classifier 
 
 
 

Parameters 
sensitive 
 
 

 Learning 
phase 
 
 

High 
Computation  
Cost 
 

High 
specificatio
n 
 computer   
 system 

Mathematical  
morphology Yes    
Fuzzy c-means  Yes    
Fuzzy c-means  
+ Morphology  Yes    
Naive Bayesian   Yes  Yes 
Support vector 
machines Yes Yes Yes Yes 
Nearest neighbor    Yes 
 

 
TABLE 4 TIME COMPLEXITY (FOR ONE IMAGE) 

Classifier 
 

Training Time  
complexity  

Testing Time  
complexity 

Mathematical morphology - O (n2i) 
Fuzzy c-means  - O (nfc2i) 
Fuzzy c-means + morphology - O (nfc2i) + O (n2i) 
Naive Bayesian  O (mf) O (nf) 
Support vector machines O (m2f2) O (nfs) 
Nearest neighbor O (mf) O (nft) 
* m is number of training data (number of training pixels), n is number of 
testing data (number of testing pixels), i is number of iteration, c is number of 
cluster, f is number of features, s is number of support vectors and t is number 
of training points. 
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