
 
 

 

 
Abstract— This paper presents the use of the wavelet 

transform to extract fiber surface texture features for 
classifying cashmere and superfine merino wool fibers. 
Extracting features from brightness variations caused by the 
cuticular scale height, shape and interval provides an effective 
way for characterizing different animal fibers and 
subsequently classifying them. This may enable the 
development of a completely automated and objective system 
for animal fiber identification. 
 

Index Terms— Cashmere fibers, image analysis, Merino 
fibers, wavelet texture analysis.  
 

I. INTRODUCTION 

  Cashmere is an expensive and rare animal fiber used to 
produce soft and luxurious apparel. As cashmere processing 
capacity outstrips available supplies of cashmere, some 
cashmere processors use superfine merino wool (19 µm and 
finer) to blend with cashmere. Cashmere wool blends 
provide the high quality worsted (twisted and spun from 
long staple fibers) suiting fabric [1] and produces a lower 
cost product while exploiting the positive market 
perceptions associated with the luxury cashmere content. 
Labeling textiles to indicate their composition in such 
blends is required from both technical and marketing 
perspectives. 

Current standard test methods for analyzing blends of 
specialty fibers with sheep’s wool are based on scanning 
electron microscopy (SEM) (IWTO test method 58) [2] and 
light microscopy (LM) (AATCC test method 20A-2000 [3] 
and [4] American Society for Testing and Materials (ASTM) 
method D629-88 [4]). The test accuracy that can be 
achieved depends largely on the operator’s expertise with 
the visual/microscopic appearances of different fibers. The 
current operator-based methods are tedious and subjective. 
It is desirable to develop an objective, automatic method to 
identify and subsequently classify animal fibers. 

A rational descriptive system of classifying the cuticular 
scale pattern of animal textile fibers was suggested by 
Wildman [5]. It consists of the following main features: the 
form of the scale margins, e.g., smooth, crenate (scalloped) 
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or rippled; the distance apart of the external margins of the 
scales, e.g., close, distant or near; and the type of overall 
pattern, e.g., regular, irregular mosaic, waved or chevron. To 
develop an automatic method similar to the above system, 
various authors have used combinations of microscopy and 
image analysis together with statistical and neural network 
techniques [6-10]. Cuticular scale characteristics and scale 
height have been used as the main diagnostic features to 
classify wool and specialty fibers. 

Scale parameters have been obtained using image 
processing techniques [10, 11]. They objectively describe 
the scale interval and scale shape, and form a basis for 
classification. However, the measurement of the scale 
parameters is based on a binary skeleton image, which has 
lost all the information of scale height. Converting the SEM 
or LM images into binary thin skeleton images needs 
complicated image processing techniques and loses the 
important scale height information. 

The scale height has been shown to be an important 
classification parameter for wool/specialty fiber blends [8, 
12-15]. By adding scale height to an array of scale pattern 
parameters [8], Robson greatly improved the accuracy in 
classifying the wool and cashmere fibers under study. 
However, as the variation in scale height depends on scale 
location along the fiber [16], the scale heights depend on the 
scales selected for measurement. For quantification of fiber 
blends, which requires a very large number of fibers, the 
measurement of scale height with techniques described by 
Robson [8] would be overly time-consuming. 

As the scale pattern is determined by the visible shape, 
height of each scale and the scale interval, changes in scale 
pattern may occur along the fiber length. The fiber surface 
texture/overall pattern is actually composed of scale height, 
scale shape and scale interval. Features of the fiber surface 
texture would be more useful in distinguishing wool fibers 
from specialty fibers than parameters based on individual 
scales. The main objective of this work is to develop a 
reliable fiber classification system using advanced texture 
analysis – wavelet texture analysis. Specifically, the 
discrimination between cashmere fiber and the superfine 
merino fiber is considered. 

 

II. SAMPLE IMAGE PREPARATION 

Images of cashmere and superfine merino wool fibers 
were scanned from the reference collection Cashmere Fiber 
Distinction Atlas [17]. The cashmere fiber collection 
includes samples taken from 16 main production areas in 
China. The mean diameter of the cashmere fibers is 14-16 
µm and that of the merino fibers is 16.5 µm. Fig. 1 shows 
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representative images scanned from the source [17]. 

 

 
 

Fig. 1. Scanned images of cashmere fibers (upper) and Merino 
wool fibers (lower) 

 
Individual fiber images were then cropped from the 

scanned image and placed in the centre of a 512×512 pixel 
black background (Fig. 2). All fiber images have been 
adjusted to the same contrast using Matlab function 
“imadjust”. From the Cashmere Fiber Distinction Atlas [17], 
13 cashmere fiber images and 15 merino fiber images were 
prepared. The diameters of the cashmere and merino wool 
fibers range from 7.0 µm to 19.9 µm. The image preparation 
was performed using the Matlab Image Processing Toolbox 
[18]. 

 

III. FIBER SURFACE TEXTURE FEATURE EXTRACTION 

Human vision researchers have found that the visual 
cortex can be modeled as a set of independent channels, 
each with a particular orientation and spatial frequency 
tuning [19]. These findings have been the basis for more 
recent approaches to texture using multiresolution or 
multichannel analysis such as Gabor filters [20, 21] and the 
wavelet transform [22-25].  The Gabor transform suffers 
from the difficulty that the output of Gabor filter banks is 

not mutually orthogonal, which may result in significant 
correlation  

 

 
 

Fig. 2. Prepared sample images of cashmere fiber (11.0-13.9µm) 
(upper) and Merino wool fiber (7.0-10.9µm) (lower) 

 
between texture features. It is usually not reversible, which 
limits its application to texture synthesis. Gabor filters 
require proper tuning of filter parameters at different scales 
(here ‘scale’ refers to different apparent size ranges in an 
image). By using the wavelet transform, most of these 
problems can be avoided. The wavelet transform provides a 
solid and unified mathematical framework for the analysis 
and characterization of an image at different scales [26-28]. 
The two-dimensional dual-tree complex wavelet transform 
(2DDTCWT) is an enhancement to the two-dimensional 
discrete wavelet transform, which yields nearly perfect 
reconstruction, an approximately analytic wavelet basis and 
directional selectiveness (±15º, ±45º, ±75º) in two 
dimensions. A detailed definition of the 2DDTCWT is 
available elsewhere [29]. It has been successfully applied, in 
a textile texture classification application, to the objective 
grading of fabric pilling [30]. 

By using 2DDTCWT, an image can be decomposed and 
reconstructed into single-scale only detail and 
approximation images. Fig. 3 displays the reconstructed 
scales 1 to 4 detail images and scale 4 approximation image 
from the cashmere fiber image in Fig. 2, where only the 
section that includes the fiber is displayed. The 2DDTCWT 
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was performed using the wavelet software from Brooklyn 
Polytechnic University, NY [31].  

 
 

Fig. 3. Reconstructed scale 1 to 4 detail images, and scale 4 
approximation image 

 
The wavelet transform measures the image brightness 

variations at different scales/frequencies [26, 27]. From Fig. 
3, it can be observed that the scale 4 (last scale) 
approximation image represents the lowest frequency 
brightness variation, that is the lighting or illumination 
variation, so it is not used to generate a textural feature. The 
scales 1 to 4 detail images measure the brightness variations 
of the cuticular scale edges at different scales/frequencies.  
The cuticular scale’s height, shape and interval are directly 
related to the brightness variation at scale edges, therefore, 
the texture features extracted from these detail images are 
intended to be a comprehensive measurement of the scale 
height, scale shape and scale interval. 

Each scale detail image consists of six directional (±15º, 
±45º, ±75º) detail subimages, which represent the cuticular 
scale margins more effectively. Textural features are 
generated from the six directional detail subimages at scales 
1 to 4. A commonly used textural feature is the normalized 
energy of the detail subimage. In this work, the analysis 
object is the fiber surface, and the texture feature is defined 
as: 

 

     (1) 

 
Where M×N is the size of the fiber surface image, and 

 
 are the pixel grey-scale values of fiber surface 

image in scale s and direction k. 
 

IV. RESULTS AND DISCUSSION 

From each of the 28 fiber images, a texture feature vector 
consisting of 24 (6 orientations x 4 scales) energy features 
was developed. Principal component analysis [32] was used 
to reduce the dimension of the texture feature vector. 
Principal component analysis is a quantitatively rigorous 
method for achieving this simplification. The method 
generates a new set of variables, called principal 
components. Each principal component is a linear 
combination of the original variables. All the principal 
components are orthogonal to each other, so there is no 
redundant information. The principal components, as a 
whole, form an orthogonal basis for the space of the data. 
Fig. 4 shows the amount of variance accounted for by each 
component. Principal components 9 through to 24 explain 
less than 0.176% of the variance, which is sufficiently close 
to zero. Thus eight is effectively the actual dimensionality of 
the 28×24 texture feature vector data. Principal component 
analysis was carried out using the Matlab Statistics Toolbox 
“princomp” function [33]. The principal component scores 
(28×8), which are the original 28×24 data mapped into the 
new coordinate system defined by the eight principal 
components, are used as the input of classifier. 

 

 
 

Fig. 4. Variance explained by principal components 
 
Models of data with a categorical response are called 

classifiers. A classifier is built from training data, for which 
the classifications are known. The classifier then assigns 
new data to one of the categorical levels of the response. 
Parametric methods, like discriminant analysis, fit a 
parametric model to the training data and interpolate to 
classify new data. Discriminant analysis was carried out by 
the Matlab Statistics Toolbox “classify” function [33], 
which uses quadratic discriminant function. 
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Table I tabulates the results from the quadratic 
discriminant analysis. When the 28 samples are all used as 
training data, 27 samples out of the 28 samples are correctly 
classified.  

 
Table I. Discriminant analysis results 

 
Round 1 2 3 4 5 
Training set size 28 26 24 22 20 
Training correct no. 27 25 23 22 20 
Testing set size 0 2 4 6 8 
Testing correct no. 0 2 4 5 6 

 
Fig. 5 shows the misclassified cashmere fiber and a wool 

fiber with the same range diameter. Based on fiber scale 
characteristics such as scale frequency and scale length, it is 
difficult to discern any difference visually. When 4 of 13 
cashmere fibers and 4 of 15 merino wool fibers are selected 
for testing and the rest used for training, the trained 
classifier with zero misclassification error correctly predicts 
6 samples out of the 8 samples. When the selected testing 
set number decreases, the accuracy of the testing set 
increases with the training set size. 

 

 

 
 

Fig. 5. Misclassified cashmere fiber (upper) and Merino wool fiber 
with the same diameter (lower) – 1 micron = 1 µm 

 

V. ALLIED AND FUTURE WORK 

In related work using wavelet texture analysis as the basis 
for the objective classification of fabric surface pilling (pills 
are entanglements of fibers that arise from wear that stand 
proud of the surface of a fabric), it has been shown that the 
performance of the texture classification method can be 
significantly improved by using a multilayer perceptron 
artificial neural network to perform the task of classifying 
the results of the principal component analysis.  Pilling 
evaluation is traditionally performed manually by an 
‘expert’ comparing a fabric test sample to a set of standard 
pilling images.  The evaluation produces a pilling rating in 
the range from 1 (heavily pilled) to 5 (no pilling).  This 
expert rating process relies on the subjective experience of 
the rater. 

Using a large set of 203 pilled fabric samples that had 
been previously rated for pilling intensity by an expert rater, 
a wavelet texture analysis method was employed to develop 
an objective pilling rating method.  All of the fabric samples 
were imaged using a digital camera.  As described above, 
the 2DDTCWT was used to decompose and reconstruct the 
sample images into their single-scale detail and 
approximation images.  It was observed that the pilling 
features were predominately localized in two detail scales.  
From each of the 203 fabric images, a texture feature vector 
consisting of 12 (6 orientation x 2 scales) energy features 
(using (1)) was developed.  Principal component analysis 
revealed that 87% of the variation in the texture feature 
vector was contained in the first principal component, and 
only minor proportions of the variation distributed amongst 
the remaining components.  Based on this result, the single 
transformed first principal component consisting 12 pilling 
texture features was used as the basis for classification. 

A neural network classifier was constructed comprising 
12 linear input neurons (1 for each pilling texture feature), 7 
nonlinear (tan-sigmoid) hidden neurons in a single layer, 
and 1 linear output neuron to provide a floating point pilling 
rating.  Two thirds of the fabric image sample set was used 
to train the neural network.  Following training, the 
remaining 68 image samples were presented to the neural 
network as test samples for automatic classification.  Fig. 6 
gives the test sample rating results from the neural network 
classifier (in black), paired with the original human expert 
rating (in white) for the same fabric sample. Note that the 
result pairs are ordered/grouped using the expert pilling 
ratings, creating the ‘staircase’ appearance in Fig. 6 and 
indicating the relative proportions of the 5 pilling ratings in 
the fabric sample set. 
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Fig. 6. Artificial neural network pilling classification results 
 
 
The difference between the classifier test results and the 

expert measured grades for the test subset samples ranges 
from -0.81 to 0.69 pilling grades.  If the classifier test results 
are converted to integer values, only a handful of test 
samples are misclassified, when compared to the expert 
ratings.  As with the misclassified cashmere sample noted 
previously, it was difficult to visually discern the difference 
between the pilling ratings of the fabric samples in question.  
This perhaps raises as many questions about the human 
expert rating ability as it does about the accuracy of the 
automatic classification.  Many human expert pilling raters 
claim the ability to interpolate half-interval pilling intensity 
ratings based on comparisons of fabric samples to a standard 
pilling image set.  The ability of the neural network 
classifier to produce a floating point output rating can match 
this purported precision rating precision. 

The very good results obtained in the application of 
automated pilling intensity rating based on wavelet texture 
analysis combined with neural network classification 
suggest a number of logical extensions of, and future work 
for, the application of wavelet texture analysis to the task of 
automatic identification of cashmere and other specialty 
fibers, including: 
1) the use of a neural network to perform the task of 

classifying the results of the principal component 
analysis; 

2) the testing of the performance of the wavelet texture 
analysis method of the fiber identification on a larger 
set of real cashmere and other fiber samples; and 

3) the application of the wavelet texture analysis method 
to the of task analyzing/assaying blends of specialty 
fibers – the determination of the relative component 
fiber proportions in cashmere-merino blends is of 
particular interest. 

 

VI. CONCLUSION 

This paper demonstrates the feasibility of using wavelet 
texture analysis in classifying cashmere and superfine 
merino wool fibers. By using the two-dimensional dual-tree 
complex wavelet transform (2DDTCWT) decomposition 
and reconstruction, an effective way to extract features that 
represent cuticular scale height, scale shape and scale 
interval is provided, which is needed to develop an 

automated and objective system for animal fiber distinction. 
While this preliminary study has used existing SEM images 
of cashmere and wool for analysis, work is on-going to 
examine the feasibility of using fiber images from simple 
optical microscopes for a similar analysis.  Further work is 
also planned to employ an artificial neural network as the 
classifier element, based on the good performance obtained 
in a similar textile texture classification application. 
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