
 
 

 

  
Abstract—The paper proposes a sequential computation 

method of the state vector associated to a circuit in dynamic 
behavior, for pre-established time intervals or punctually. 
Based on discrete circuit models with direct or iterative 
companion diagrams, the method is intended to a wide range of 
analog circuits: linear or nonlinear circuits, with or without 
magnetically coupled inductors or excess elements. The 
enclosed example proves the efficiency and the accessibility of 
the proposed analysis method.   
 

Index Terms—Analog circuit, discrete modeling, numerical 
integration, state variable formulation.  

I. INTRODUCTION 
The discretization of the circuit elements, followed by 

corresponding companion diagrams, leads to discrete circuit 
models associated to the analyzed analog circuits [1,2]. Using 
the Euler, trapezoidal or Gear approximations [3,4], simple 
discretized models are generated, whose implementation 
leads to an auxiliary active resistive network. In this manner, 
the numerical computation of desired dynamic quantities 
becomes easier and faster. Considering the time constants of 
the circuit, the discretization time step can be adjusted for 
reaching the solution optimally, in terms of precision and 
computation time. 

The discrete modeling of nonlinear circuits assumes an 
iterative process too, that requires updating the parameters of 
the companion diagram at each iteration and each integration 
time step [4,5]. If nonzero initial conditions exist, they are 
computed usually through a steady state analysis performed 
prior to the transient analysis.  

The discrete modeling can be associated to the state 
variables approach [6,7], as well as the modified nodal 
approach [4,8], the analysis strategy being chosen in 
accordance with the circuit topology, the number of the 
energy storage circuit elements (capacitors and inductors) 
and the global size of the circuit.  

The known computation algorithms based on the discrete 
modeling allow the sequential computation, step by step, 
along the whole analysis time, of the state vector or output 
vector directly [4,9]. In this paper, one proposes a method 
that allows computing the state vector punctually, at the 
moments considered significant for the dynamic evolution of 
the circuit. Thus, the sequential computation for 
pre-established time subdomains is allowed. 
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II. MODELING THROUGH COMPANION DIAGRAMS 
The time domain analysis is performed for the time 

interval  ],[ 0 ftt , bounded by the initial moment 0t  and the 

final moment ft . It can be discretized with the constant time 
step h , chosen sufficiently small in order to allow using the 
Euler, trapezoidal or Gear numerical integration algorithms 
[1-4]. One can choose 00 =t  and hwt f = , where w  is a 
positive integer.  

The analog circuit analysis using discrete models requires 
replacing each circuit element through a proper model 
according to its constitutive equations. In this way, if the 
Euler approximation is used, the discretization equations and 
the corresponding discrete circuit models associated to the 
energy storage circuit elements are shown in table 1, for the 
time interval whhnnh <+ ,])1(,[ . 

The tree capacitor voltages Cu  and the cotree inductor 
currents Li  [6,7] are chosen as state quantities, assembled in 
the state vector x . The currents CI  of the tree capacitors and 
the voltages across the cotree inductors LU  are 
complementary variables, assembled in the vector X . 

At the moment nht = , the above named vectors are 
partitioned as: 

 












= n

L

n
Cn

i
ux ,  












= n

L

n
Cn

U
IX  (1) 

 
with obvious significances of the vectors n

L
n
C

n
L

n
C UIiu ,,, . 

For the magnetically coupled inductors, the discretized 
equations and the companion diagram are shown in table 1, 
where the following notations were used: 
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For nonlinear circuits, the state variable computation at the 

moment hnt )1( +=  requires an iterative process that 
converges towards the exact solution [4,5]. A second upper 
index corresponds to the iteration order (see table 2). 
Similar results to those of table 1 and table 2 can be obtained 
using the trapezoidal [4,10] or Gear integration rule [3,4]. 
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Table I: Discrete modeling of the energy storage elements. 
No. Element  Symbol Discretized expressions Companion diagram 
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Table II: Iterative discrete modeling. 

No. Element  Iterative dynamic 
parameter Companion diagram Notations in the companion 

diagram 
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III. SEQUENTIAL AND PUNCTUAL STATE COMPUTATION 
The treatment with discretized models assumes 

substituting the circuit elements with companion diagrams, 
which consist in a resistive model diagram. It allows the 
sequential computation of the circuit solution. 

A.  Circuits without excess elements 
If the given circuit does not contain capacitor loops nor 

inductor cutsets [6,7], the discretization expressions 
associated to the energy storage elements (table 1, lines 1 and 
3), using the notations (1), one obtains 
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where S  is the diagonal matrix of capacitor elastances and Γ 
is the matrix of inductor reciprocal inductances. 

Starting from the companion resistive diagram, the 
complementary variables are obtained as output quantities 
[4,9,10] of the circuit 

 
11 ++ += nnn uFxEX , (4) 

 
where E and F are transmittance matrices, and 1+nu  is the 
vector of input quantities [4,6,7] at the moment hnt )1( += . 

From (3) and (4) one obtains an equation that allows 
computing the state vector sequentially, starting from its 
initial value )0(0 xx =  until the final value )(whw xx = : 
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1  being the identity matrix, and 
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Starting from eq. (5), through mathematical induction, the 

useful formula is obtained as 
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where the upper indexes of the matrix M are integer power 
exponents. The formula (8) allows the punctual computation 
of the state vector at any moment nht = , if the initial 
conditions of the circuit and the excitation quantities are 
known. 

If a particular solution )(tpx  of the state equation exists, it 
significantly simplifies the computation of the general 

solution )(tx . Using the Euler numerical integration method, 
one obtains [4]: 
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The sequentially computation of the state vector implies 

the priory construction of the matrix E, according to eq. (6) 
and (9). This action requires analyzing an auxiliary circuit 
obtained by setting all independent sources to zero in the 
given circuit.  

Starting from eq. (9), the expression 
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allows the punctual computation of the state vector. 

 

B. Circuits with excess elements 
The excess capacitor voltages [6,7,10], assembled in the 

vector  CU , as well as the excess inductor currents [4,6,7], 

assembled in the vector LI , can be expressed in terms of the 
state variables and excitation quantities, at the moment 

nht = : 
 

nn
n
L

n
C u

K
K

x
K

K
I

U








+








=













'
'

2

1

2

1

0
0

0
0

, (11) 

 
where the matrices ', 11 KK  and ', 22 KK  contain voltage 
and current ratios respectively. 

Using the table 1, the companion diagram associated to the 
analyzed circuit can be obtained, whence the complementary 
quantities are given by:  
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the matrices 1, EE  and F  containing transmittance 
coefficients. 

Considering eq. (11) and (12), the recurrence expression is 
obtained from (5), allowing the sequential computation of the 
state vector: 
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If px  is a particular solution of the state equation, the 

following identity is obtained:  
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that allows converting (13) in the form (9), as common 
expression for any circuit (with or without excess elements). 

IV. EXAMPLE 
In order to exemplify the above described algorithm, let us 

consider the transient response of the circuit shown in fig. 1, 
caused by turning on the switch. The circuit parameters are: 
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Fig. 1. Circuit example. 
 
The time-response of capacitor voltage and inductor 

current will be computed for the time interval ms]5,0[∈t .  
These quantities are the state variables too. The 
corresponding discretized Euler companion diagram is 
shown in fig. 2. 
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Fig. 2. Discretized diagram. 
 
According to the notations used in section II, we have: 
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The computation way of the matrices E and F arises from 

the particular form of the expression (4): 
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from where: 
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Using the diagram of fig. 2, the elements of the matrices E 

and F were computed, assuming a constant time step 
ms1.0=h : 
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The matrices M and N given by eq. (6), (7) are: 
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Starting from the obvious initial condition 
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the solutions were computed using (8) and represented in fig. 
3 with solid line. 

The calculus was repeated in the same manner for a longer 
time step, ms5,05/ == hh , the solution being shown in the 
same figure. Both computed solutions are referred to the 
exact solution represented with thin dashed line. 

V. CONCLUSION 
The proposed analysis strategy and computation formulae 

allow not only the punctual computation of the state vector, 
but also allow crossing the integration subdomains with 
variable time step. The proposed method harmonizes 
naturally with any procedure based on discrete models of 
analog circuits, including the methods for iterative 
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computation of nonlinear dynamic networks. 
The versatility of the method has already allowed an 

extension, in connection to the modified nodal approach.  
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Fig. 3. Circuit response. 
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