YBa₂Cu₃O_{7-x} /Nb Josephson Junctions for Superconducting Electronics

B. Chesca, H. J. H. Smilde, H. Hilgenkamp

Abstract— Josephson junctions are excellent candidates as building blocks for both quantum computation and digital circuits using low-dissipative superconducting elements. Traditionally Josephson junctions were produced at the interface between two identical low transition temperature $(low-T_c)$ superconductors, with the Nb/Al-AlO_x/Nb technology being the most successful so far. Recently, however, a new technology has been developed that allowed fabrication of so-called hybrid Josephson junctions formed between a low-T_c (Nb with $T_c=9.2K$) superconductor and a high-T_c superconductor (YBa₂Cu₃O_{7-x} with T_c=92K). Such $YBa_{2}Cu_{3}O_{7\text{-}x}\!/Nb \hspace{0.1in} Josephson \hspace{0.1in} junctions \hspace{0.1in} have \hspace{0.1in} quite \hspace{0.1in} unique$ properties when compared with the traditional ones (i.e., the Nb/Al-AlO_x/Nb junctions) which make them very attractive for applications. Here we report on an experimental investigation of both the dc and the ac Josephson effects in such hybrid systems.

Index Terms— Josephson junctions, superconducting digital circuits.

I. INTRODUCTION

The Josephson effect [1] is one of the most important effects of superconductivity. In the superconducting state, electrons form bound pairs, called Cooper pairs. The Josephson effect occurs when these pairs of electrons tunnel through a thin insulating barrier placed between two superconductors, a system called Josephson junction. If no voltage is applied to a Josephson junction, a direct current - a current of Cooper pairs J_{1} - flows through the junction up to a critical value J_c , which depends on the geometry, temperature and magnetic field. This phenomenon is known as the dcJosephson effect. On the other hand, if a dc voltage is applied to such a Josephson junction, the Cooper pairs current crossing the junction oscillates at a frequency f which depends solely on the applied voltage V and fundamental constants (the electron charge *e* and the Planck constant, *h*): f=2eV/h. This phenomenon is known as the *ac* Josephson effect. On this basis Josephson junctions may be seen as natural microwave generators. Conversely, if an ac voltage of frequency f_a is applied to the junction terminals by microwave irradiation, the current of Cooper pairs tends to

Manuscript received March 5, 2010.

B. Chesca is with the Department of Physics, Loughborough University, Loughborough LE11 3TU, UK (Corresponding author; phone: +44 1509 223985; fax: +44 1509 2239856; e-mail: B.Chesca@lboro.ac.uk).

H. J. H. Smilde was with the Faculty of Science and Technology and $Mesa^+$ Research Institute, University of Twente P.O. Box 217, 7500 AE Enschede, The Netherlands.

H. Hilgenkamp is with the Faculty of Science and Technology and $Mesa^+$ Research Institute, University of Twente P.O. Box 217, 7500 AE Enschede, The Netherlands.

synchronize with this frequency (and its harmonics) and a direct voltage appears at the junction terminals. This synchronization is revealed in the current-voltage characteristics by the appearance of voltage steps at integer multiples of the value $V = (h/2e) f_a$. These are called Shapiro steps. The stability and precision of the voltage-frequency relation V = (h/2e) f and its independence from external conditions (temperature, current bias, superconducting material, or Josephson junction's properties) have been tested on many occasions with an uncertainty level of up to 10^{-16} . A Josephson junction therefore acts as a fundamentally accurate voltage-frequency converter. This is why the Josephson effect is now used for the representation of the volt.

Traditionally Josephson junctions were produced at the interface between two identical low transition temperature $(low-T_c)$ superconductors, with the Nb/Al-AlO_x/Nb technology being the most successful so far. Recently, however, a new technology has been developed that allowed fabrication of so called hybrid Josephson junctions formed between a low- T_c superconductor (Nb with $T_c=9.2$ K) and a high-T_c superconductor (YBa₂Cu₃O_{7-x} with T_c=92 K). Such YBa₂Cu₃O_{7-x}/Nb Josephson junctions (see Fig.1a and 1b) have quite unique properties when compared with the traditional ones (i.e., the Nb/Al-AlO_x/Nb junctions) which make them very attractive for applications. Indeed, the Josephson current J is highly anisotropic as we change the tunneling orientation in the *ab* plane reaching its minimum for tunneling close to [110] direction and its maximum for [100] or [010] directions. This is important as it gives us the opportunity to fabricate so-called π -interferometers, a system of two Josephson junctions connected in parallel in a superconducting loop that carries an intrinsic phase shift of π . Such π -interferometers have a highly unusual critical current I_c versus magnetic field B characteristic with a minimum at B = 0. This is in high contrast to standard interferometers which have a maximum I_c at B = 0. π -interferometers represent a practical realization of the complementary junction proposed for the implementation technology of low-dissipative, fast, digital circuits based on superconducting devices [2, 3]. They are also excellent candidates for the implementation of superconducting qubits in quantum computation [4]. Apart from their appeal for applications investigation of basic properties in such hybrid junctions is essential in a much broader perspective in condensed matter physics as we electrically connect two completely different classes of superconductors, a low-T_c metallic material with a high-T_c, ceramic doped Mott compound. In this paper we report on an experimental investigation of both the dc and the ac Josephson effects in YBa₂Cu₃O_{7-x}/Nb Josephson hybrid junctions.

Fig. 1: Untwinned YBa₂Cu₃O_{7-x}/Au/Nb ramp-type junction layout. a) Schematic sideview; b) Topview photograph in the *ab* plane. The YBCO base electrode (in black) is contacted by a Au barrier (not shown) and a Nb counterelectrode (light-gray). 72 Josephson junctions 4 μ m wide are patterned this way so that tunneling is tested in all 72 different directions in the *ab* plane. The arrows indicate some of those tunneling directions.

The physics of YBa₂Cu₃O_{7-x}/Nb Josephson junctions, is not fully understood at present. Thus, a key element, namely the knowledge of the current-phase relation (CPR) of the Josephson current remains unsettled [5]. It has been predicted [6-10] that a significant second harmonic Josephson current J_2 in the CPR should be observed in such junctions. J_2 is an important parameter, as a superconducting qubit based on J_2 will have an operating point intrinsically stable and protected against the environmental noise, which will reduce decoherence [11]. In this paper (a more detailed description is published elsewhere [12]) we report on an extensive experimental investigation of J_2 . J_2 is expected [4-8] to be highly anisotropic as we change the tunneling orientation in the ab plane reaching its maximum for tunneling close to [110] direction and its minimum for [100] or [010] directions. As mentioned already, J_1 is known to be highly anisotropic as well, as we change the tunneling orientation in the *ab* plane. However, in sharp contrast to J_2 , J_1 vanishes for tunneling close to [110] direction and reaches its maximum for [100] or [010] directions.

 J_2 is expected [6-10] to produce a significant deviation from the standard sinusoidal CPR of the Josephson current density J:

$$J(\phi) = J_1 + J_2 = Jc_1 \sin(\phi) + Jc_2 \sin(2\phi)$$
(1).

Here φ is the phase difference across the junction. For a purely *d*-wave order parameter as we increase θ (the angle in the *ab* plane between the normal to the junction interface and the [100] crystal axis) starting from 0, J_2 is expected [12] to increase monotonically up to $\theta = 45^\circ$ which corresponds to tunneling into the [110] direction. It then should decrease

monotonically as we further increase θ from 45° to 90°, corresponding to tunneling into the [010] direction. In particular, for tunneling close to the [110] direction, where J_1 vanishes due to the unconventional nature of superconductivity in this material, J_2 will dominate the CPR.

II. JOSEPHSON JUNCTION'S RESPONSE TO MICROWAVE RADIATION

We prepared thin film ramp-edge junctions between 170-nm untwinned YBa2Cu3O7-x and 150-nm Nb using a 30-nm Au barrier on a SrTiO₃ substrate (see Fig. 1a). The use of untwinned YBa2Cu3O7-x thin films is especially important because otherwise J_2 may be strongly suppressed due to excessive diffusive scattering [11] at the crystallographic twin boundaries. Also, J_2 may be averaged out for a badly defined nodal orientation in a twinned film. The junctions are fabricated on the same chip, and the angle θ with the YBa₂Cu₃O_{7-x} crystal *b*-axis is varied in units of 5 degrees, so that tunneling can be probed in $360^{\circ}/5^{\circ} = 72$ different directions in the *ab* plane (see Fig. 1b). The growth of untwinned YBa₂Cu₃O_{7-x} films [13], as well as detailed order parameter studies [14], and quasiparticle tunneling [15] in these particular junctions are reported elsewhere. All 72 junctions are 4 µm wide.

To identify J_2 we searched for half-integer Shapiro steps. It is well known that if the CPR is pure sinusoidal ($Jc_2 = 0$ in Eq. (1)) microwave radiation of frequency f will induce Shapiro steps at *integer* n multiples of the voltage V_0 , satisfying the Josephson voltage-frequency relation $f/V_0=0.486$ GHz/ μ V. If Jc_2 is finite also half-integer Shapiro steps should appear at multiples of V₀/2 [16-18]. If half-integer Shapiro steps are not observed then the presence of a significant J_2 in the CPR can be ruled out. We performed a very detailed search in the entire frequency range where integer Shapiro steps could be observed, carefully examining every 10 MHz frequency interval within the 1-20 GHz region. We repeated this approach for all junctions investigated. Typical sets of current-voltage characteristics are shown in Figs.2a-2c for three junctions: [100], [110] and [110]-5°. Well-defined integer Shapiro steps in accordance with the theoretical expectations are clearly visible. We detected pronounced integer Shapiro steps up to n=21 (as in Fig.2(a)) or even higher in some cases. We also measured the amplitude of the integer Shapiro steps as a function of the microwave current amplitude. Some typical examples are shown in Figs.2(d)-2(f) for three junctions: $[110], [110]\pm 5^{\circ}$. We found no trace of half-integer Shapiro steps in any of the junctions, although we paid particular attention to those microwave amplitudes where the integer Shapiro steps or the I_c vanishes and consequently the half-integer Shapiro steps are expected to be most pronounced. In particular, as can be inferred from Figs.2d-2f, increasing the microwave power first fully suppresses I_c and thereafter the first integer Shapiro step. However, no signature of the first half-integer Shapiro step is observed. Moreover, the fact that I_c is fully suppressed by microwaves (see Figs.2(d)-2(f))) is a further confirmation that J_2 is insignificantly small as non-zero minima are expected for I_c in case J_2 has considerable amplitude [16-18]. Taking into account our finite resolution in detecting the Shapiro steps an upper bound on J_2 of about 1% from J_1 is found, where both J_1 and J_2 are being measured for the same crystal orientation.

Fig.2: (a-c) Integer Shapiro steps (indicated by vertical arrows) at 4.2 K of [010], [110], and [110] -5° -oriented junctions at different microwave amplitudes. For clarity, the current-voltage characteristics in (b) are shifted in diagonal direction shown by the gray line. (d-f) Amplitude of the first three integer Shapiro steps and of the critical current versus the normalized microwave-current amplitude for a [110], [110] -5° , and [110] $+5^{\circ}$ junction.

III. CONCLUSION

In summary, the microwave response in the 1-20 GHz range of YBa₂Cu₃O_{7-x}/Nb Josephson junctions reveals no trace of half-integer Shapiro steps on the current-voltage characteristics. That strongly suggests that the second harmonic Josephson current J_2 is negligible small in comparison to the first harmonic J_1 . Consequently, YBa₂Cu₃O_{7-x}/Nb junctions have a purely sinusoidal current-phase relation which is essential to take into consideration for their implementation as qubits [4, 11] or π -phase shifts in digital circuits [2, 3].

REFERENCES

- [1] B. D. Josephson, Phys. Lett., vol. 1, 1962, pp 251-253.
- [2] T. Ortlepp, Ariando, O. Mielke, C. J. M. Verwijs, K. F. K., Foo, H. Rogalla, F. H. Uhlmann, and H. Hilgenkamp, *Science*, vol. 312, 2006,
- pp. 1495-1497.
 [3] E. Terzioglu and M. R. Beasley, *IEEE Trans. Appl. Supercond.*, vol. 8, 1998, pp. 48.
- [4] L.B. Ioffe, V. B. Geshkenbein, M. V. Feigel'man, A. L. Fauchere, and G. Blatter, *Nature*, vol. 398, 1999, pp.679-681.
- [5] A. A. Golubov, M. Yu. Kupriyanov, and E. Il'ichev, *Rev. Mod. Phys.* vol. 76, 2004, pp.411-469.
- [6] Y. Tanaka and S. Kashiwaya *Phys. Rev. B*, vol. 53, 1996, pp. R11957-R11960.

- [7] Yu., S. Barash, S.H. Burkhardt, and D. Rainer, *Phys. Rev. Lett.*, vol. 77, 1996, pp. 4070-4073.
- [8] S. Samanta and S. Datta, *Phys. Rev. B*, vol. 55, 1997, pp. R8689-R8692.
- [9] Y. Tanaka and S. Kashiwaya, Phys. Rev. B, vol. 56, 1997, pp. 892-912.
- [10] R. A. Riedel and P. F. Bagwell, *Phys. Rev. B*, vol. 57, 1998, pp. 6084-6089.
- [11] M. H. S. Amin, A. Yu. Smirnov, A. M. Zagoskin, T. Lindström, S. A. Charlebois, T. Claeson, and A. Ya. Tzalenchuk, *Phys. Rev. B*, vol. 71, 2005, pp. 064516.
- [12] B. Chesca, H. J. H. Smilde, H. Hilgenkamp, *Phys. Rev. B*, vol. 77, 2008, pp. 184510.
- [13] J. M. Dekkers, G. Rijnders, S. Harkema, H. J. H. Smilde, H. Hilgenkamp, H. Rogalla, and D. H. A. Blank, *Appl. Phys. Lett.*, vol. 83, 2003, pp. 5199-5201.
- [14] H. J. H. Smilde, A. A. Golubov, Ariando, G. Rijnders, J. M. Dekkers, S. Harkema, D. H. Blank, H. Rogalla, and H. Hilgenkamp, *Phys. Rev. Lett.*, vol. 95, 2005, pp. 257001.
- [15] B. Chesca, D. Dönitz, T. Dahm, R. Huebener, D. Koelle, R. Kleiner, Ariando, and H. Hilgenkamp, *Phys. Rev. B*, vol. 73, 2006, pp.014529.
- [16] L. E. Hasselberg, M. T. Levinsen, and M. R. Samuelsen, J. Low Temp. Phys., vol. 21, 1975, pp. 567-587;
- [17] K. H. Gundlach and J. Kadlec J, Phys.Lett., vol. 63A, 1997, pp. 149-150;
- [18] R. Kleiner, A. S. Katz, A. G. Sun, R. Summer, D. A. Gajewski, S. H. Han, S. I. Woods, E. Dantsker, B. Chen, K. Char, M. B. Maple, R. C. Dynes, and J. Clarke, *Phys.Rev.Lett.*, vol. 76, 1996, pp. 2161-2164.