

1

Abstract—This paper proposes a multi-agent technology-
based framework ICHO for supporting the self-organization of
service cooperation and virtual organizations. Based on the
model of IGTASC, ICHO can remove the so-called “trust”
crisis which occurs due to the inherent non-controllability of
business services across different management domains and be
integrated closely with real-life application software by
developing three mechanisms: Institution-governed,
Contract-ensured, and Hierarchical self-Organization.

Index Terms—contract-ensured; institution-governed; self-
organization; service cooperation

I. INTRODUCTION

Along with the development of Service-Oriented
Computing (SOC) and Service-Oriented Architecture (SOA),
constructing Virtual Organizations (VOs) by creating service
cooperation (i.e. service-oriented cooperation) has become
the mainstream approach for reforming the development of
application software systems in Internet computing
environments [1], [2]. Evidently, without the self-
organization of service cooperation, it is difficult to realize
the large-scale deployment of VOs. However, the inherent
non-controllability of business services across different
management domains has brought on the so-called “trust”
crisis that the success and benefit of cooperation cannot be
ensured. And it is this crisis that cumbers the
self-organization of cooperation, makes the organization of
cooperation have to depend on a great deal of manual
intervention.

Endowing services with autonomy and intelligence by
extending descriptive structures of web services can support
the self-organization of service cooperation in a certain
extent (as semantic grid community has advocated [3]). But,
the granularity for descriptive structures of web services is
too small to accommodate the mechanism for removing this
“trust” crisis.

We think that providing high-performance autonomy and
intelligence is the prominent advantage of Agent and
Multi-Agent System (AaMAS) technology, and the agent
cooperation-based VOs have been researched for a long time.
So it seems good to achieve the self-organization of service

Manuscript received March 18, 2010. This work was supported in part by

the National Science Foundation of China (Grant 60775029), the National
High-Technology Research and Development Program (863) of China
(Grant 2007AA01Z187) , the Priority Theme Emphases Project of Zhejiang
Province, China (Grant 2008C13074), and the Natural Science Finds of
Zhejiang Province, China (Grant Y107446).

 J. Gao is with the College of Information Science & Technology,
Zhejiang Shureng University, and also the College of Computer Science &
technology, Zhejiang University, Hangzhou, CO 310015 China (phone:
+86-571-8799-6934; e-mail: gaoji1@zju.edu.cn).

S. Ye is with the College of Information Science & Technology, Zhejiang
Shureng University, Hangzhou, CO 310015 China (e-mail: zjsruysp@
163.com).

cooperation depending on this technology. However, such
self-organization also suffers the same “trust” crisis when
agents participating dynamically in cooperation distribute in
different management domains. Another hindrance is that
this technology is disjoined with real-life application
software systems. Due to the complexity and heterogeneity of
traditional development environments and infrastructures for
those systems, integrating seamlessly the technology into
them is very difficult. Even though there are some successful
cases, the integration methods are special, and therefore lack
the value for generalization.

This paper proposes a framework for the self-organization
of service cooperation, called ICHO (Institution-governed
and Contract-ensured Hierarchical self-Organization), which
can support the institution-governed self-organization of
service cooperation and VOs effectively and remove the two
hindrances depending on the model of IGTASC [4] we have
established (see section Ⅱ). While contract-ensured
self-organization ensures, by signing role-enacting contracts
and service contracts (simply, service contracts), that service
cooperation-based VOs achieve appointed objectives and
benefits, hierarchical cooperation can simplify self-
organization and self-management of complex VOs by
creating multi-level architecture (nested VOs) based on the
fractal structure of agent local business activities.

This paper is organized as follows. The next section
introduces the foundation for achieving ICHO. Then, section
Ⅲ expatiates upon the framework of ICHO, including the
logical model of ICHO and the mechanisms for
implementing institution-governed and contract-ensured
hierarchical self-organization of service cooperation and
VOs. After the implementation description and application
analysis in section Ⅳ, the discussion and comparison of
relative work (in section Ⅴ) and the conclusions (in section
Ⅵ) are given.

II. REALIZATION FOUNDATION

In order to support the self-organization of service
cooperation and VOs, We have established the model of
IGTASC (Institution-Governed Trusted and Autonomic
Service Cooperation) to eliminate the two hindrances
mentioned in section Ⅰ. It is this model that creates the
foundation for achieving ICHO.

A. Towards the Resolution of “Trust” Crisis and
“Disjoined” Hindrance

Although current techniques of network and information
security and reputation management can enhance the
creditability for service provision, they are only
infrastructure-level techniques for solving “trust” crisis, and
unable to remove the origin of this crisis: the inherent
non-controllability of business services across different
management domains.

As a recent research hot-point of behavior theory of

Institution-Governed and Contract-Ensured Hierarchical
Self-Organization of Service Cooperation and VOs

Ji Gao and Shiping Ye

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

multi-agent systems, institution-governed cooperation (the
core mechanism for implementing normative multi-agent
systems) has facilitated the resolution of the “trust” crisis
greatly. This mechanism aims at establishing sound protocol
systems called e-institutions as the regulations for
constraining, in macro level, outside-visible social and
cooperation behaviors between members (agents)
dynamically participating in systems so that the behaviors
and their effects of members can be predicted and controlled
precisely as long as all of them conform to those regulations
[5]-[8].

However, how to ensure that all of cooperation behaviors
conform to those regulations is confronted with a real
challenge due to the non-controllability problem mentioned
above. In order to overcome this challenge, we have
established the model of IGTASC to reform the mechanism
of institution-governed cooperation by making it couple
closely with other two mechanisms: policy-driven
self-management and cooperation facilitation management
(see section Ⅱ.B).

Another reformation made by IGTASC is adopting the
“service-oriented” concept as a main line to transform the
mechanism of institution-governed cooperation and design
the mechanisms of policy-driven self-management and
cooperation facilitation management in order to remove the
“disjoined” hindrance mentioned above and to enable those
mechanisms and the AaMAS technology as their basis to
support seamlessly service cooperation-based VOs.

B. Brief Introduction of IGTASC

In order to support effectively the autonomic construction,
running, and evolution of VOs, IGTASC proposes a
three-level Virtual Society (VS) as the environment where
VOs live and work (Fig. 1). VS is defined as a 3-tuple:

VS = (AC, TV, RA)
• AC: the Agent Community for VOs and agents to live.
• TV: the set of TAVOs (Trusted and Autonomic VOs).
• RA: the set of rational agents registering in the

community.

Agent Community
Domain Service Contract Cooperation Facili- Cooperation Facili-

E-Institutions Templates tation E-Institution tation-Orieted Agents

 Contract-Ensured Contract-Performing Complying with

 Self-Organization Circumstance-driven

Institution- Self-Evolution Cooperation

Governed TAVOs Facilitation

Cooperation VO1 VO2 … VOm Management

 Policy-driven
 Self-Management

Rational Agents
 Ag1 Ag1 … Agn

Fig. 1 Three-level virtual society supported by three
 technologies constituting model IGTASC

IGTASC depends on three technologies to make service
cooperation both trusted and autonomic: institution-governed
cooperation, policy-driven self-management, and
cooperation facilitation management. The former formulates
domain e-institutions (electronic institutions) as social
regulations to govern service cooperation in macro level so
that it can be trusted that service cooperation created
dynamically will achieve required objectives as long as
cooperation behaviors all conform to relevant regulations
respectively. The middle aims at using management policies
to drive agents to make their own micro-level behaviors

comply rationally with relevant regulations while the latter
deploys the agents enacting cooperation facilitation-oriented
roles formulated in the agent community in order to facilitate
and force cooperation behaviors’ conformity to regulations.

A domain e-institution is composed of two parts: social
structure standards and coupling cooperation behavior norms.
The former, as the hard constraints cooperation participants
can not violate, aims at formulating business services
provided or consumed, business operation-oriented roles
which agents can enact in service cooperation, and the
distributed business process for multiple agents to cooperate.
In contrast, the latter is the soft constraints which the business
operation-oriented roles and distributed business process
should comply with, including obligations, forbiddances, and
rights (promises).

III. SELF-ORGANIZATION FRAMEWORK ICHO

ICHO restricts the organization of a TAVO to the most
familiar cooperation form in human society: an alliance
based on service providing-requiring relations, which is
sponsored and created by some physical organization to
satisfy a business requirement dynamically occurring (such
as making new products, solving complex problems,
searching for knowledge, purchasing merchandise, etc.). Of
course, every member of a VO should set up an agent as its
broker.

Such an alliance often concerns multiple binary
collaborations which are managed by the sponsor centrally,
but there are no interactions between other members.
Although there may be the requirement for direct interactions
between the providers of different services, these interactions
can be removed by partitioning business activities reasonably
and arranging the appropriate messages sent by the alliance
manager. Also, although there are other cooperation forms in
human society, alliance form is still the mainstream.

A. Logical Model of Self-Organization

According to the proposed organizational form of a TAVO,
the agent that requires reaching some local business goal by
cooperation becomes the sponsor organizing such a TAVO
while the local business process for reaching this goal is used
as the basis of organization. Thus, the logical model of ICHO
is defined as a multi-tuple:

ICHO = (m, g, lbp, bs-set, pvm-set, vm-set, matchmaker,
ie-set, contract-set, joint-intention, service-obeying,
recommending, nego-selecting, contract-signing), where

• m: the sponsor of a TAVO which organizes and manages
the VO centrally;

• g: m’ local business goal required to reach by
cooperation;

• lbp: the local business process for m to conform to in
reaching g; lbp is formulated by the owner of m and used as a
constituent representing desires in m’ mental model BDI;

• bs-set: the set of business services requiring to be acquired
from the outer, which are provided by partner agents and
used to reach g according to lbp; here, different services may
be specified in different domain e-institutions;

• pvm-set: the set of potential members relevant to the VO;
each pvm (pvm∈ -set) is a business operation-oriented agent
which is able to provide bs (bs∈ -set);

• vm-set: the set of members in the VO; here, vm-set =
{m} { ∪ pvm | bs bs∈ -set and pvm = nego-selecting (bs) }, m
and pvms, which are selected by m to provide the business

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

services in bs-set, constitute the VO dynamically;
• matchmaker: the agent aiming at recommending m with

proper providers of business services by performing the
cooperation facilitation service of partner-recommendation;

• ie-set: the set of domain e-institutions relevant to bs-set;
• contract-set: the set of service contracts; here, contract-set

= {sc | bs bs∈ -set, vm vm∈ -set\{m}, and sc=
contract-signing (bs, m, vm) };

• joint-intention, which is a joint commitment for VO
members to achieve service cooperation according to ie-set
and contract-set;

• service-obeying: bs-set → ie-set; here, for each bs
(bs∈ -set), both its provider and consumer should conform to
the service providing-requiring standards and cooperation
behavior norms formulated in the ie (ie∈ -set) relevant to bs;

• recommending: bs-set → 2pvm-set; here, matchmaker
recommends m pvms which can provide the business services
in bs-set and possess the capability matching applicability
requirement;

• nego-selecting: bs-set → pvm-set; here, for each business
service bs (bs∈ -set), m determines, by means of negotiation
and selection, the provider of bs from pvms recommended by
matchmaker;

• contract-signing: bs-set × {m} × pvm-set ↛ contract-set;

here, for each business service bs (bs∈ -set), m signs a
service contract with pvm (= nego-selecting (bs)).

Based on this logical model, three mechanisms for
achieving the self-organization of service cooperation and
VOs: institution-govern, Contract-ensured, and Hierarchical
self-Organization, are proposed in next subsections.

B. Institution-Governed Self-Organization

This mechanisms supports service cooperation
self-organization from three aspects:

 1) The social structure standards formulated in domain
e-institutions enable agents to participate in cooperation
dynamically and freely as long as they register relevant roles
to enact in agent community and are configured with the
skills for providing / consuming those services.

 2) The detailed partition of application domains enables
domain ontologies of e-institutions to support the precise
specification of service capability and applicability.

3) The service contract templates defined in domain
ontologies and the uniform ‘negotiation’ service defined in
the social facilitation e-institution oriented to agent
community support autonomic rational negotiation and
contract creation effectively.

Next, two methods are created to implement
institution-govern self-organization of service cooperation
and VOs: ACDP-based method for finding applicable service
providers and policy-driven 4-phase method for VO
self-organization.

a. Finding service providers based on ACDPs

The classification systems for domain services and
Applicability Circumstance Description Patterns (ACDPs)
form so-called service applicability circumstance ontology,
which is used as the uniform semantic foundation to describe
service applicability exactly, comprehensively, and facilely.

Definition 1 (Applicability Circumstance Description
Pattern ACDP): define the ACDP of business service bs
(bs∈ -set), denoted with ACDPbs, as the set of feature slots
fsi

bs such that ACDPbs ={fs1
bs, fs2

bs, …, fsn
bs}, fsi

bs = <fsni
bs,

tcsi
bs>; fsni

bs indicates the name of feature slot which must be
single in ACDPbs while tcsi

bs indicates the set of selectable
terms which can be filled as a slot value: tcsi

bs = {termi1
bs,

termi2
bs, …, termim

bs}.
Definition 2 (service Applicability Circumstance AC): let

AC(k) indicate the description of applicability circumstance
for providing (requiring) service k (as an instance of bs), then
AC (k) ={fs1

k, fs2
k, …, fsn

k }, fsi
k = < fsni

bs, tcsi
k>, tcsi

k ⊆
tcsi

bs.
Thus, let u indicate a service provided by some business

operation-oriented agent, v a service required by another
agent, and u and v are all the instances of bs. As long as let
applicability circumstance AC (u) as the index of u’
advertisement and AC (v) as the description of v, the
matchmaker can determine the applicability of u for v by
compatible match (the compatibility of slots and slot values).

As an example we have created, the e-institution of
DropShop defines the classification system of RetailBroker
service, which is expressed as a classification tree of for-sale
goods provided, and creates ACDPs for each bottom class of
goods. Two ACDPs for class “GoodsA”: GoodsAProperties
and GoodsAUseCondition are as following:

ACDP GoodsAProperties

Material: ("bowlder", "woodiness", "metal");

Colour: ("red", "blue", "green", "yellow", "black");

ColourMethod: ("natural", "dope", "paint");

ACDP GoodsAUseCondition

Humidity: ("dryness", "wetness", "none");

Temperature: ("low", "room", "none");
They enable the applicability circumstances specified

respectively by the provider and consumer of RetailBroker
service to comply with the same semantics. Suppose service
provider “pro” specifies the ACs for Properties and
UseCondition of GoodsA respectively as follows:

Material: ("woodiness", "metal"); Colour: ("red", "blue",

"green"); ColourMethod: ("natural", "dope", "paint");

Humidity: (("dryness", "wetness"); Temperature: ("room",

"none").
And service consumer “req” specifies them as follows:

M a ter ial: ("b ow ld er ", " woo dine ss") ; C olo ur: ("b lue ",
"gr e en ", "ye llow ") ; C olo urM etho d: ("na tur al") ;

Hu m idity: ("dr yne ss") ; Te m pe ra ture : ("n one ").
Then pro just is the service provider satisfying the

applicability circumstance of req due to the intersection of all
relevant feature slots.

By the detailed partition of application domains, we can
design the service applicability circumstance ontology
according exactly with domain features from the angles of
service performance, quality assurance, application condition,
service maintenance, etc. therefore make the method for
finding applicable service providers possess excellent
performance.

b. Policy-driven 4-phase VO self-organization

The dynamical creation of a VO can be viewed as the
process for m and potential VO members to create joint
intention. This process is partitioned into four phases:
Determine service cooperation requirement, Request
recommending cooperation partners, Select service
cooperation partners, Form contract-based joint intention.

In these phases, all of local behaviors of m and pvms are
policy-driven. Every policy for managing local behaviors is
represented as a 6-tuple:

policy = (name, type, processing, target, trigger, update),
which aims at specifying the name, type (Authorization or
Obligation), processing activities, target (work module for
performing this policy), trigger (policy activating condition),

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

and update (last update date) of a policy. Therein, processing
activities are expressed as the sequence of operations, rules
and rule groups. A policy for transferring outer messages
received by m to its work modules is as following:
Policy

 Name: “OuterMessageTransfer”;

PolicyType: “Obligation”; //“Obligation” type policy

Processing: (ruleGroup MessageTransferProcessing);

Target: (@Service “MainControl” “GS”);

// “MainControl” is a work module obligated to perform this policy

Trigger: (@Message Type:?s PartyID:?x Service:?y Action:?z

ConversationId:?w CooperationRole:?v MessagePayload:?u);

//This policy is activated by a message current agent receives

Update: 2009-3-21; //Last update date of this policy

End Policy

ruleGroup MessageTransferProcessing
 mode: p; //Production rules
 select： first; //Use the first activated rule
 ruleList：

( ($= ?s “WebRequest”) ($SendMessage “MainControl” ?u));

 //If the message is from Web browser of user, send the binding value

 of ?u to work module “MainControl”

( (($= ?s “ServiceReturn”) ($= ?y “PurchaseNegoutiation”))

($SendMessage “Negotiation” ($CreateConceptInstance

 “CooperationProposal” ($TakePartyID) ?x ?y ?w “provider”

 “opponent” ?u *))

//If the message is the purchase proposal from service provider, send

the binding value of ?u (i.e. the proposal) to work module “Negotiation”

 …

End ebXMLMessageForwardProcessing

All work modules of an agent, including MainControl, the
modules for supporting VO self-organization (Service
Scheduling, Cooperation, and Negotiation), and the modules
for VO running, are configured with a number of behavior
management policies respectively. It is those policies that
drive m and potential VO members to make their own
behaviors in VO self-organization conform to cooperation
behavior norms formulated in e-institutions and the business
instructions sent over by agents’ owners. Also, the mapping
functions included in ICHO multi-tuple (see section Ⅲ.A) are
all implemented by activating one or more policies.

(1) Determine service cooperation requirement

Whenever a local business goal (g) requiring to be reached
by cooperation occurs, m determines the business services
requiring to be provided from the outer according to the local
business process (lbp) for reaching g (Fig. 2). Here, lbp
describes the parameterized business process formulated by
m’ owner and represents the business activity for reaching g
(g-activity) by composting the next-level business activities
(n-activities). Some of those activities will be completed by
invoking the business services provided by outer agents, and
the standards (hard constraints) and norms for providing /
consuming these services are formulated in relevant
e-institutions. The BNF definition of lbp is defined as
follows:

<g-activity> := {<Steps> | (loop <Steps>)}+

<Steps> := { ( {return | <n-activity> | <activitySet>} [<condition>]) |

(or {（ {<n-activity> | <activitySet>} [<condition>]） }+ ）}+

<n-activity> := l-activity | o-activity //“l” and “o” indicates the business

// activities executed by invoking the services provided from the local

or the outer respectively; “return” indicates exiting from loop or lbp.

<activitySet> := ({sequence | concurrency} {( <n-activity> [<condition>])}+)

Fig. 2 A possible lbp of m, where some of n-activities (node

1-4) need to be completed by invoking services from the outer.

(2) Request recommending cooperation partners

Once determining the services requiring to be provided
from the outer, m requests the matchmaker in Agent

Community to recommend applicable partners for providing
these services. Before making this request, m asks its owner
to formulate the strategies for finding applicable providers of
each service.

Every strategy is represented as a 7-tuple:
ServiceFindingStrategy = (StrategyID, ServiceName,

SearchMethod, Constraints, MatchNumber,
NegotiationAttitude, MaxNegotiationTimes),

where SearchMethod denotes the method for searching
applicable service providers (e.g. Invite, Negotiation,
Auction, etc.), Constraints the applicability conditions for
service providers, MatchNumber the number of desired
candidate service providers, NegotiationAttitude the attitude
for m to adopt in negotiation of service cooperation (e.g.
Anxious, Smooth, Cool, Resistant, etc.).

“Contraints” itself is expressed as a 3-tuple:
 Constraints = (NecessaryConstraint,

AttachedConstraints, ConstraintItems),
where NecessaryConstraint and AttachedConstraints denote
the necessary and attached conditions for service providers to
satisfy respectively. If there is more than one provider
satisfying NecessaryConstraint, the providers satisfying
more Attached Constraints are better. ConstraintItems are
used to specify the constraints of negotiable items, including
the initial, desired, and affordable extreme values and
weights.

Note that each service required to create a
providing-requiring contract should be configured with a
contract-signing operator, and the parameters of this operator
are defined as some concepts in domain ontology. It is those
concepts and their slots that become the basis for formulating
“Constraints” of service provider applicability.

Return to the RetailBroker service mentioned in section
Ⅲ.B.a, the strategy for finding applicable providers of this
service is formulated by m’owner as follows:
(@ServiceFindingStrategy PolicyID: ”001” ServiceName: “RetailBroker”

SearchMethod: “Negotiation” Constraint: (@ServiceConstraintType

NecessaryConstraint: (@PurchaseOrder OrderHeader: <…> Items: (

(@ServiceItem Classification: <…> Classificationsystem: <URL of classification

system>) Item: (@GoodsA UnitCost: ?x1 Number: 1000 Deposit: ?y1

Currency: “$” GoodsAProperties: <…> GoodsAUseCondition: <…>))

(@ServiceItem Classification: <…> Classificationsystem: <URL of classification

system>) Item: (@GoodsB UnitCost: ?x2 Number: 1000 Deposit: ?y2

Currency: “$” GoodsBProperties: <…> GoodsBUseCondition: <…>)))

OrderSummary: <…>) ($< ?x1 120) ($< ?y1 12000) ($< ?x2 200)

($< 20000) ConstraintItems: (

(@ConstraintItem ItemName: ?x1 BottomSlotPath: <…> InitialValueInNegotiation:

50 esiredValue: 70 AffordableExtremeValue: 100 ItemWeight: 10)

(@ConstraintItem ItemName: ?y1 BottomSlotPath: <…> InitialValueInNegotiation:

5000 DesiredValue: 7000 AffordableExtremeValue: 10000 ItemWeight: 2)

(@ConstraintItem …) (@ConstraintItem …)))

MatcherNumber: 5 NegotiationAttitude: “Smooth” MaxNegotiationTimes: 5)
Here, concept “PurchaseOrder” is the single DBI

(Definition of Basic Information) parameter of
contract-signing operator for RetailBroker service (but
defining more than one parameter is promised), prefix “@”
denotes a concept instance pattern, and prefix “$” a relation
expression or truth function expression. It is using such
parameters as basis that enables general methods for
formulating service finding / providing strategies,
recommending applicable service providers, and supporting
service cooperation negotiation to adapt to a variety of
specific application domains.

This strategy indicates: two kinds of goods are required:
GoodsA and GoodsB; purchase condition of GoodsA is

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

UnitCost (?x1) < $120, Deposit (?y1) < $12000, and
GoodsAProperties and GoodsAUseCondition must be
satisfied according to ACs (Applicability Circumstance)
specified in the service consumer “req” mentioned in section
Ⅲ.B.a; the initial, desired, and affordable extreme values of
GoodsA’ UnitCost (?x1) are $50, $70, $100 respectively; its
ItemWeight is 10; etc. Besides, this strategy also indicates:
SearchMethod, MatchNumber, NegotiationAttitude, and
MaxNegotiationTimes are “Negotiation”, 5, “Smooth”, and 5
respectively.

Framework ICHO also requires the service providers to
send the matchmaker their advertisements and specify the
service provision strategies in similar mode (but the direction
of constraints may be opposite). Since service finding and
provision strategies are formulated on the same basis, the
matchmaker can accurately find and recommend the service
providers satisfying constraints.

(3) Select service cooperation partners

The mode for selecting service cooperation partners
depends on the SearchMethod indicated in ServiceFinding
Strategy. Here, we only consider the negotiation mode.

ICHO normalizes the negotiation process into the one for
business service consumers to continually invoke
cooperation facilitation service ‘negotiation’ provided by
candidate business service providers and acquire returned
responses. Although ‘negotiation’ service is defined in
E-InstitutionF (the social facilitation-oriented e-institution),
this service itself must be configured into agents providing
business services, and specialized into adapting to special
business services by embedding the instantiations of service
contract templates (see section Ⅲ.C) into input / output
parameters of ‘negotiation’ service.

The process negotiating with a service provider, denoted as
ServiceNegotiation, is sponsored by m, and expressed as a
7-tuple:

ServiceNegotiation = (bs, m, can-pro, Proposal, Neg-Status
Neg-Policy, neg-service)

• bs: the business service requiring to create a service
contract by negotiation

• m: the consumer of bs, which sponsors the negotiation
process for creating this contract.

• can-pro: the current candidate provider of bs, m’
negotiation opponent.

• Proposal: the proposal set of this contract, including an
initial proposal and a number of reverse proposals. Each
proposal is created by instantiating input parameters of
contract-signing operator of bs, and included in the
instantiation of input / output parameter of negotiation
service (exactly, its negotiation operator).

• Neg-Status: the possible negotiation statuses; a status is
represented with the current negotiation circumstance (e.g.
the number of candidate providers for bs, the number of done
negotiation turns, the score of current proposal received, etc.)
and the negotiation strategy specified in ServiceFinding
Strategy (e.g. ConstraintItems, NegotiationAttitude, Max
NegotiationTimes, etc.).

• Neg-Policies: the policy set for driving the negotiation
process and guiding the creation of proposals.

• neg-service: Proposal × Neg-Status → Proposal; here, m
or can-pro receives a proposal, and then creating a reverse
proposal based on the current negotiation status and the
negotiation policies set up for them. Note, the approval or

rejection of received proposals is regarded as an especial kind
of reverse proposals.

m sponsors the negotiation process by invoking neg-service
(the negotiation service defined in E-InstitutionF and
configured into can-pro) to transmit an initial proposal,
whereas can-pro transmits a reverse proposal by returning
the output parameter of the negotiation service. By
transmitting reverse proposals, the cooperation contract is
revised continually, and thereby the negotiation process is
pushed forwards until the contract is accepted by both m and
can-pro or rejected by one of them.

ICHO creates three negotiation policies for m and can-pro
respectively: NegotiationEvaluation, NegotiationStrategy,
and NegotiationTactic, which decide the content of proposals
in three levels: evaluation, strategy, and tactic (referring to
the method proposed by Jennings [9]). While
ConstraintItems specified in ServiceFindingStrategy indicate
negotiable items, NegotiationAttitude, and
MaxNegotiationTimes affect the choice of negotiation
strategies and tactics.

Based on such negotiation process, m can select, from
several can-pros, the provider of a service who approves the
contract proposal corresponding to the highest score (in
concurrent negotiation mode) or satisfying m (in sequential
mode).

 (4) Form contract-based joint intention

Once the cooperation partners providing business services
from the outer are all selected and determined, m signs
service contracts with these partners respectively by invoking
the contract-signing operators provided in business services.
Here, signing a contract means that both m and the provider
validate this contract, including rights and obligations, and
the relevant negotiation process finishes successfully. These
signed contracts form the joint intention for them to reach
cooperatively m’ local business goal, and therefore result in
the creation of a TAVO.

C. Contract-Ensured Self-Organization

Based on model IGTASC, framework ICHO creates two
kinds of cooperation contracts: role-enacting, service
providing-requiring, to ensure that the self-organization of
service cooperation and VOs is trusted.

• Role-enacting contracts: ICHO requires every agent
desiring to participate in service cooperation must register
itself in the agent community. Then, once the registration for
requesting to enact some business operation-oriented role in
an e-institution is approved, a role-enacting contract is
created and conserved in the community.

• Service contracts (service providing-requiring contracts):
the cooperation contracts between the provider and consumer
of a business service. Due to the proposed organization form
of TAVOs mentioned in the beginning of section Ⅲ, only
such two-party contracts are adopted.

The two kinds of contracts constrain agent cooperation
behaviors in macro-level and micro-level respectively in
order to implement contract-ensured self-organization of
service cooperation and VOs. The former means that agents
promise to make their own macro-level behaviors comply
with the relevant soft constraints formulated in domain
e-institutions, including the behavior norms for their roles
and the ones for services provided / consumed by them.
Norms can be domain-independent or domain-dependent.

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

For example, a domain-independent norm may stipulate
when the provider of a service receives a proposal for
requiring the service sent by a registered agent, this provider
is obligated to return a reply (reverse proposal, agree, or
rejection)，whereas a domain-dependent norm may specify
that providing some service must comply with a special
environment protection law. It is such contracts that enable
the creation and running process of service cooperation and
VOs to be predicted exactly.

The latter constrains the micro-level behaviors for
executing service cooperation, and it is those contracts that
enable detailed service providing / consuming behaviors to
be predicted exactly. Different from the behavior norms
formulated statically in domain e-institutions, service
contracts must be formulated dynamically. In order to avoid
the difficulty for dynamically creating service contracts from
scratch, ICHO allows for creating them by instantiating
parameterized service-specific contract templates. Evidently,
the templates created by human society in a variety of
application domains (such as insurance and finance) can be
used as samples.

A service contract template for business service bs in
domain D, denoted by CTD

bs, is expressed as a 3-tuple:
 CTD

bs = (DBI, QoSGT, CPPT)
• DBI: the Definition of Basic Information of service

cooperation, which is used to specify the identity of both
parties, the business transaction roles enacted by both parties,
period of validity for this contract, service content (e.g. the
operations or product items, price, number, and deadline),
payment mode of requiring party, etc.

• QoSGT: the QoS (Quality of Service) Guarantee
Template, which defines quality parameters and their
measurement, and stipulates service level objectives (SLOs)
based on those definition. Note, QoSGT includes some
variables which need to be instantiated.

• CPPT: the Contract Performing Protocol, which is
designed as a partial-order set composed of protocol entries
represented as contract-performing norms. Also, CPPT
includes some variables which need to be instantiated.

The instances of a SLO and a contract-performing norm for
DataMining domain is given as following:

(eio:SLO

SLOName:”SLOOfMining”; //Denote the SLO of operator “Mining”

Operator:”Mining”; //This operator belonging to service “DataMining”

 SatifactionCondition:(@eio:ParameterValue ParName:”ResponseTime”

MeteringUnit:”Second” Value:?x) ($< ?x ($+

MaximumCommunicationTime MaximumExecutionTime))

 EvaluationPeriodUnit: ”on-demand”; //evaluated once invoked

 EvaluationParty: “RespondingRole”; //evaluated by the provider)
(eio:Norm //A simplified norm for ensuring operator quality

NormNo: 21; //Norm 21 in contract performing protocol
Performer:“RespondingRole” ; //The norm should be executed by provider
Trigger: (@eio:OperationCall Operator:“Mining” CallTime:?x);

//Triggered by an operator invacation event “(@eio:OperationCall

Operator:“Mining ” CallTime <...>)”
Deadline: (@eio:dateTimePeriod BeginTime:?x Period:?nego_03);

//The deadline completing the norm execution is ?nego_03 which begins
//from ?x. Herer, the value of ?x come from unification examination
//when this norm is triggered , and the value of ?nego_03 depends on the
//nigotiation between providing and requring parties.

Postcondition:(@eio:SLOSatisfactionStatus SLOName:“SLOOfMining”
Operator:“Mining” Status:“True”);)

Here, the SLO requires that ResponseTime (?x) for invoking
service operator “Mining” is less than the sum of stipulated
values of parameters “MaximumCommunicationTime” and
“MaximumExecutionTime”, whereas the norm checks up

whether this SLO is satisfied when the operator “Mining” is
invoked.

However, such contract templates are domain-specific. In
order to make them adapted to the general process of service
cooperation self-organization, two definitions are given first:

Definition 3 (Contract Signing Operator CSO): define the
CSO of business service bs, denoted by CSObs, as the
operator for the providing and requiring parties to sign its
input (denoted by CSOi

bs) and output (denoted by CSOo
bs)

respectively.
Definition 4 (Signed Contract SC): define the SC of

business service bs, denoted by SCbs, as the Signreq(CSOi
bs)

∪ Signpro (CSOo
bs), where Signreq(CSOi

bs) indicates that the
requiring party of bs signs on CSOi

bs, which is the
instantiation of service contract template CTD

bs; and
Signpro(CSOo

bs) indicates that the providing party of bs signs
on CSOo

bs, which is a single parameter denoting the approval
or rejection of CSOi

bs.
Depending on the two definitions above, domain-specific

contract templates enable the general process of
contract-ensured self-organization to be specialized to suit a
variety of application domains. Especially, such
specialization can support last 3 phrases in the 4-phase
method for VO self-organization efficiently.

• In phrase 2 (request recommending cooperation partners),
CTD

bs constitutes the common basis for both requiring and
providing parties to formulating service finding / provision
constraints. For instance, for RetailBroker service mentioned
above, let CTD

RetailBroker = (PurchaseOrder, QoSGuarantee,
ContractPerformingProtocol). The three components of
CTD

RetailBroker not only constitute the input of CSOi
RetailBroker,

but also become the basis for formulating those constraints
(see the example of ServiceFindingStrategy and its finding
constraints for RetailBroker service in section .Ⅲ B.b.(2)).

• In phrase 3 (select service cooperation partners), the
advance of negotiation process depends on contract proposal
and reverse proposals. It is the instantiation of CSOi

bs that
constitutes those proposals. More important is
ConstraintItems defined in ServiceFindingStrategy and
ServiceProvisionStrategy. Those items specify the
constraints of negotiable items in proposals, and therefore
become the basis for negotiation policies to decide
negotiation behaviors and proposal content. ConstraintItems
for requiring party of RetailBroker service has also given in
section .Ⅲ B.b.(2).

• In phase 4 (Form contract-based joint intention), bs’
requiring party invokes CSObs and sends Signreq(CSOi

bs); and
then bs’ provider return Signpro(CSOo

bs) (signing CSOi
bs and

CSOo
bs is completed by the communication modules of

relevant parties). When Signpro(CSOo
bs) is created by bs’

provider and received by bs’ requiring party, both parties
send SCbs (i.e. Signreq(CSOi

bs) ∪ Signpro (CSOo
bs)) to the

agent community to make a notarization. It is the notarization
that makes SCbs inure and enables the performance of SCbs to
accept the government of community regulating mechanism
for forcing the conformity to cooperation contracts.

D. Hierarchical Self-Organization

The business activity for reaching m’ local business goal g
may have a fractal structure: the top-level business activity is
completed by performing the local business process (lbp)
composed of next-level business activities, and some
next-level business activities are also completed by

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

performing the lbps composed of next-next-level business
activities; thus, the structure extends down until bottom-level
business activities which can be performed by invoking basic
service operators. It is the fractal structure that supports the
implementation of hierarchical cooperation self-organization
and the dynamical creation of nested VOs (Fig. 3).

Since VOs in different levels are controlled centrally by
relevant (often different) agents, the nested VOs result in
distributed central controls created dynamically, and thereby
integrate the advantages of central and distributed control
and avoid their deficiencies.

Fig. 3 The fractal structure of business activities results
in the creation of a nested VO (Note: node 1-4 denote

 the activities requiring to be performed by partner 1-4)

IV. IMPLEMENTATION AND APPLICATION ANALYSIS

A. Implementation of ICHO

Depending on IGTASC-based TAVO development
framework DFTAVO [4], we have implemented the
framework for supporting service cooperation self-
organization ICHO, including the three mechanisms for
achieving the self-organization of service cooperation and
VOs: institution-govern, Contract-ensured, and Hierarchical
self-Organization. The key techniques for achieving those
mechanisms are summed up as following:

 • formulating the management policies for driving VO
self-organization process, including policies oriented to main
control, cooperation, lbp scheduling, and negotiation
behaviors of an agent;

 • defining the method for describing ACDPs
(Applicability Circumstance Description Patterns), and the
ACDP-based compatible match algorithm for finding
applicable service providers;

 • defining the method for specifying, based on service
contract templates, ServiceFindingStrategy and Service
ProvisionStrategy and the algorithm for examining matching
and matching-degree between the two strategies;

 • creating the negotiation service general in agent
community and configured into business operation-oriented
agents, and providing the method for being specialized into
adapting to a variety of domain-specific business services;

 • creating negotiation policies and the method for
adopting those policies to drive negotiation process
according to ConstraintItems, NegotiationAttitude, and
MaxNegotiation Times specified in ServiceFindingStrategy;

 • providing the method for creating Role-enacting
contracts in macro level and Service contracts in micro level
to realize contract-ensured self-organization of service
cooperation and VOs

• defining the method for formulating service contract
templates and the method for making those domain-specific
templates adapt to the general process for service cooperation
self-organization (especially, the last 3 phrases in the 4-phase
method for VO self-organization);

• creating the method for dynamically establishing nested

VOs by designing the fractal structure of business activities
and lbps in order to achieve dynamically-formed distributed
central controls of service cooperation and VOs.

B. Application Analysis

We have used ICHO to establish several experimental
TAVOs, such as small meeting arrangement, knowledge
provision, data mining, multi-part device cooperation
production, and multi-department crisis cooperation
transaction. The experimental results indicate that ICHO can
support the creation of service cooperation and VOs
effectively in very different application domains.

Next, we adopt a supposed application of data mining to
analyze the VO self-organization process based on ICHO. In
order to complete a data mining task delegated by some
enterprise, m, as a broker of the company accepting this task,
will firstly choice a suitable lbp based on the analysis of task
situation (e.g. the lbp displayed in the upside of Fig. 3),
determine the next-level business activities which should be
executed by invoking outside services (e.g. activity 1-4), and
accept the instructions of ServiceFindingStrategy, including
service applicability constraints, from the company (and the
enterprise).

Because e-institution DataMining has formulated the
social structure standards for Data Mining (DM) domain,
including B-ServiceDM (Business Service set), B-O-RoleDM
(Business Operation Role set), DBPDM (Distributed Business
Process), and suppose there are a certain number of
companies for providing each of those services and the
agents as the brokers of those companies have registered for
enacting relevant bors (B∈ -O-RoleDM) formulated in this
e-institution, so m can requests the matchmaker agent (i.e. the
agent enacting cooperation facilitation role
“Service-matchmaker”) to recommend the outside service
providers.

Since the applicability constraints from m and service
providers are both proposed based on the same syntax and
semantics (see section .Ⅲ B.b.(2)), plus ACDP-based
compatible match examination (see section .Ⅲ B.a), the
matchmaker can accurately find the service providers
satisfying applicability constraints.

Note, m is also the organizer of service cooperation and VO,
which invokes the negotiation services to carry through the
policy-driven negotiation for acquiring the outer services
completing activity 1-4, and signs two-party service contracts
with chosen service providers by invoking contract-signing
operators belonging to those services. Thus, the TAVO
completes its self-organization and m becomes the manager
of this TAVO.

Suppose the providers of services completing activity 1 and
4 need to complete the provision of those services by creating
TAVOs in the next level (as illustrated in Fig. 3), therefore
the hierarchical cooperation in form of nested TAVOs can be
formed. It is this form that enables even more complex
service cooperation to be created conveniently and smartly
and controlled efficiently.

Because of the creation of role-enacting contracts and
service contracts, plus the policy-driven activities for
conforming to service norms (see section .Ⅲ B.b) and the
community regulating mechanism for forcing the conformity
to cooperation contracts, m trusts the partners selected for
providing outside services and believes their cooperation
behaviors are both predictable and controllable.

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

V. RELATIVE WORK

The research of cooperation self-organization can be traces
up to the study of distributed artificial intelligence in the
eighties of last century. The growing-up of AaMAS
technology in nineties impelled this research greatly,
facilitating the deployment of AaMAS in VOs (virtual
organizations), supply chain management and
inter-enterprise interoperability provisioning [10], [11].
However, Due to suffering the two hindrances mentioned in
section Ⅰ, there is no any commercially successful
application to be reported in this area [12].

Recent research work of normative multi-agent systems,
especially institution-governed cooperation, has facilitated
the resolution of the “trust” crisis greatly, but is still
confronted with two challenging problems: how to ensure
that all of cooperation behaviors conform to the regulations
formulated in e-institutions, and how to couple with real-life
application software systems. The model of IGTASC we
have established overcomes the two challenging problems,
and hence creates the basis for developing the framework
ICHO (see section Ⅱ).

The communities for researching semantic web [13],
semantic grid[14], [15], autonomic computing [16] have also
made some research work for achieving the self-organization
of service cooperation and VOs, but the attention of most
research projects has only focused on parts of
self-organization process, no real-life sound frameworks for
supporting whole process have been reported. We think that
the root cause resulting in such a status is just the “trust”
crisis brought on due to the inherent non-controllability of
business services across different management domains.

Along with the hindrances and challenging problems were
removed, based on IGTASC, ICHO has been constructed as
the feasible framework for supporting the whole
self-organization process. By developing the mechanisms of
institution-govern, Contract-ensured, and Hierarchical
self-Organization and the key techniques for achieving those
mechanisms, ICHO can support effectively each phrase in
the 4-phrase process of self-organization of service
providing-requiring cooperation and VOs, find accurately
applicable service providers by executing the ACDP-based
method, achieving contract-ensured self-organization by
creating role-enacting and service contracts, and reduce the
complexity of large-scale VO creation by implementing
hierarchical cooperation self-organization. In the same time,
by executing policy-driven self-management, agents can
make their own behaviors in VO self-organization always
conform to cooperation behavior norms formulated in
e-institutions and the business instructions sent over by
agents’ owners.

In contrast, it is the above two challenging problems that
make the traditional research of institution-governed
cooperation focused only on the abstract level disjoining with
real-life application software systems, in terms of objective,
sub-objective, scene, scene transition, landmark (sub-
objective in a cooperation process), etc[5]-[8]. Thereby, there
are only few successful real-life application cases to be report
so far, let alone the cases for supporting service-based ones.

VI. CONCLUSIONS

Constructing Virtual Organizations (VOs) by creating
service cooperation (i.e. service-oriented cooperation) has

become the mainstream approach for reforming the
development of application software systems in Internet
computing environments. However, the inherent
non-controllability of business services across different
management domains has brought on the so-called “trust”
crisis, which cumbers the self-organization of cooperation,
and makes the organization of cooperation have to depend on
a great deal of manual intervention.

This paper proposes a multi-agent technology-based
framework ICHO, which, based on the model of IGTASC,
can support the self-organization of service cooperation
effectively by developing three mechanisms:
Institution-governed, Contract-ensured, and Hierarchical
self-Organization, and remove the “trust” crisis and be
integrated closely with real-life application software systems.

The future work will be the formalization of the three
mechanisms and the development of real-life application
systems based on ICHO.

REFERENCES
[1] M. P. Papazoglou, P. Traverso, S. Dustdar and F. Leymann. 2007.

Service-oriented computing: state of the art and research challenges.
IEEE Computer, 40(11): 64-71.

[2] M. Stal. 2006. Using architectural patterns and blueprints for
service-oriented architecture. IEEE Softw, 23(2): 54-61.

[3] D. De Roure, N. R. Jennings and N. R. Shadbolt. 2005. The semantic
grid: past, present and future, Proceedings of the IEEE, 93(3): 669-681.

[4] J. Gao, H. Lü, H. Guo, F. Zhang, Y. Cheng, C. Fu and C. Wang. 2009.
Trusted autonomic service cooperation model and application
development framework. Science in China Series F: Information
Sciences, 52 (9): 1550-1577.

[5] G. Boella, L. van der Torre and H. Verhagen. 2008. Introduction to the
special issue on normative multiagent systems. Auton Agent
Multi-Agent Syst, 17:1-10.

[6] A. Garcia-Camino, J. A. Rodriguez-Aguilar, C. Sierra and W.
Vasconcelos. 2006. A distributed architecture for norm-aware agent
societies. Proceedings of the third International Workshop on
Declarative Agent Languages & Technologies (DALT 2005), LNAI
3904, 89-105.

[7] H. Aldewereld, F. Dignum and J.-J. Ch. Meyer. 2007. Designing
protocols for agent institutions. Proceedings of AAMAS'07, Honolulu,
Hawaii, US, May, 138-140.

[8] V. Dignum, J. Vázquez-Salceda and F. Dignum. 2005. OMNI:
Introducing social structure, norms and ontologies into agent
organizations. Proceedings of the Second International Workshop on
Programming Multi-Agent Systems (ProMAS 2004), Selected Revised
and Invited Papers, LNAI 3346, 181-198.

[9] N. R. Jennings, T. J. Norman, P. Faratin, P. O'Brien and B. Odgers.
2000. Autonomous agents for business process management. Journal of
Applied Artificial Intelligence, 14 (2): 145—189

[10] [10] P. Giorgini, J. P. Müller and J. Odell. 2003. Agent-oriented
software engineering Ⅳ. In LNCS No. 2935, Heidelberg: Springer.

[11] [11] G. D. M. Serugendo, M. P. Gleizes, A. Karageorgos. 2005.
Self-organization in multi-agent systems, The Knowledge Engineering
Review, 20 (2), 165-189.

[12] M. Pěchouček, V. Mařík. 2008. Industrial deployment of multi-agent
technologies: review and selected case studies. Auton Agent
Multi-Agent Syst (2008) 17:397–431.

[13] S. Ferndriger, A. Bernstein, J. S. Dong, Y. Feng, Y Li and J. Hunter.
2009. Enhancing Semantic Web Services with Inheritance. Lecture
Notes in Computer Science, 5318, 62-177.

[14] O. Corcho, P. Alper, I. Kotsiopoulos, P. Missier, S. Bechhofer, C.
Goble. 2006. An overview of S-OGSA: A reference semantic grid
architecture, Web Semantics: Science, Services and Agents on the
World Wide Web 4(2): 102-115.

[15] M. Salvadores, P. Herrero, J. Bosque and M. S. Peréz. 2010. A
semantic collaborative awareness model to deal with resource sharing
in grids. Future Generation Computer Systems, 26 (2): 276-280.

[16] Xu J, Zhao M and Fortes J. 2009. Cooperative autonomic management
in dynamic distributed systems. Lecture Notes in Computer Science
5873, Springer Berlin / Heidelberg, 756-770.

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

