
 
 

 

  

Abstract—An enhanced genetic algorithm (EGA) for the 

solution of the optimal power flow (OPF) with use of 

controllable FACTS devices is studied. Two types of 

FACTS devices, thyristor-controlled series compensator 

(TCSC) and thyristor-controlled phase shifter (TCPS) 

are considered in this method. The specified power flow 

control constraints due to the use of FACTS devices are 

included in the OPF problem in addition to normal 

conventional constraints. The sensitivity analysis is 

carried out for the location of FACTS. This method can 

provide an enhanced economic solution with the use of 

controllable FACTS devices. Advanced and 

problem-specific operators are introduced in order to 

enhance the algorithm’s efficiency and accuracy. IEEE 

standard 30-bus system is taken and results are presented 

to show the feasibility and potential of this approach. 

 

Index Terms— Computational intelligence, FACTs, 

Genetic Algorithm, Power flow.  

 

I. INTRODUCTION 

 Deregulation of the electricity supply system becomes an 
important issue in many countries. Flexible AC Transmission 
System (FACTS) devices become more commonly used as 

the power market becomes more competitive. They may be 
used to improve the transient responses of power system and 
can also control the power flow (both active and reactive 
power). The main advantages of FACTS are the ability in 
enhancing system flexibility and increasing the loadability 
[1]. 

One of the current researches on FACTS devices is on the 
power flow control and economic operation such as optimal 

power flow (OPF). OPF is part of the standard tools of the 
supervisory, control and data acquisition (SCADA) and 
energy management system (EMS). It schedules power 
system controls to optimize an objective function while 
satisfying non-linear equality and linear equality constraints.  
In steady state operation of power system, unwanted loop 
flow and parallel power flow between utilities are problems in 
heavily loaded interconnected power systems. These two 
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power flow problems are sometimes beyond the control of 
generators or it may cost too much with generator regulations. 
However, with the FACTS controllers, the unwanted power 
flow can be easily regulated [2]. 

In OPF, the main objective is to minimize the costs of 
meeting the load demand for the power system while 

satisfying all the security constraints. Since OPF is a 
non-linear problem, decouple of the control parameter of the 
FACTS device is a highly nonlinear problem so that GA is 
used as a methodology to solve. In this context, more control 
facilities may complicate the system operation. As control 
facilities influence each other, a good coordination is required 
in order to bring all devices to work together, without 
interfering with each other. Therefore, it becomes necessary 

to extend available system analysis tools, such as optimal 
power flow to represent FACTS controls. It has also been 
noted that the OPF problem with series compensation may be 
a non-convex and non-linear problem, which will lead the 
conventional optimization method stuck into local minimum. 
The GA-OPF approaches overcome the limitations of the 
conventional approaches in the modeling of non-convex cost 
functions, discrete control variables, and prohibited 
unit-operating zones. However, they do not scale easily to 

larger problems, since the solution deteriorates with the 
increase of the chromosome length. 

In this work, the conventional OPF problem is solved with 
simple GA (SGA) and enhanced GA (EGA) approaches along 
with two powers flow constraints [3][4]. The probabilities of 
crossover and mutation are varied by adaptive genetic 
algorithm [5][6]. In addition to the basic genetic operators of 
the SGA used in [7] and the advanced ones used in [8] 

problem-specific operators, inspired by the nature of the OPF 
problem, have been incorporated in the proposed EGA. With 
the incorporation of the problem-specific operators, the EGA 
can solve larger OPF problems. 

The approach minimize total cost as well as iteratively 

evaluates the control settings of TCSC and TCPS that are 

needed to maintain specified line flows. The sensitivity 

analysis is carried to position the TCSC and TCPS in test 

system [9][10]. The results obtained shows that EGA is 

superior in convergence compared to SGA. Here EGA is used 

to obtain economic dispatch of generators such that these 

generations give minimum cost as well as does not result in 

line flow violation. 

II. PROBLEM FORMULATION 

In this study, the optimal power flow problem has the 
objective of minimizing the total cost of operating the 
spatially separated generating units subject to the set of 
equations that characterize the flow of power through the 
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system and all operational and security constraints [3]. The 
TCSC reactance and TCPS phase shift parameters constraints 
are included in the OPF problem. The optimal power flow 

problem in flexible AC transmission systems is therefore 
expressed as follows. 
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A. Enhanced Genetic Algorithm 

In the EGA, shown in Fig. 1, after the application of the 

basic genetic operators (parent selection, crossover, and 
mutation) the advanced and problem-specific operators are 
applied to produce the new generation. All chromosomes in 
the initial population are created at random (every bit in the 
chromosome has equal probability of being switched ON or 
OFF). 

 

 
 

Fig. 1 Enhanced genetic algorithm 

Due to the decoding process selection, the corresponding 
control variables of the initial population satisfy their 
upper–lower bound or discrete value constraints. Population 

statistics are then used to adaptively change the crossover and 
mutation probabilities [6]. If premature convergence is 
detected the mutation probability is increased and the 
crossover probability is decreased. The contrary happens in 
the case of high population diversity. 

B. Advanced and Problem-Specific Genetic Operators 

One of the most important issues in the genetic evolution is 
the effective rearrangement of the genotype information. In 
the SGA, crossover is the main genetic operator responsible 
or the exploitation of information while mutation brings new 
nonexistent bit structures. It is widely recognized that the 
SGA scheme is capable of locating the neighborhood of the 
optimal or near-optimal solutions, but in general, requires a 

large number of generations to converge. This problem 
becomes more intense for large-scale optimization problems 
with difficult search spaces and lengthy chromosomes, where 
the possibility for the SGA to get trapped in local optimal 
increases and the convergence speed of the SGA decreases.  

At this point, a suitable combination of the basic, advanced, 
and problem-specific genetic operators must be introduced in 
order to enhance the performance of the GA. Advanced and 

problem-specific genetic operators usually combine local 
search techniques and expertise derived from the nature of the 
problem. A set of advanced and problem-specific genetic 
operators has been added to the SGA in order to increase its 
convergence speed and improve the quality of solutions. Here 
the interest is focused on constructing simple yet powerful 
enhanced genetic operators that effectively explore the 
problem search space.  

Hill Climbing: In order to increase the GA search speed at 

smooth areas of the search space a hill-climbing operator is 
introduced, which perturbs a randomly selected control 
variable. The modified chromosome is accepted if there is an 
increase in FF value; otherwise, the old chromosome remains 
unchanged. This operator is applied only to the best 
chromosome (elite) of every generation [5].  

Gene Swap Operator (GSO): This operator randomly selects 
two genes in a chromosome and swaps their values as shown 
in Fig. 2. This operator swaps the active power output of two 

units, the voltage magnitude of two-generation buses, etc. 
Swapping among different types of control variables is not 
allowed. 

Gene Cross-Swap Operator (GCSO): The GCSO is a variant 
of the GSO. It randomly selects two different chromosomes 
from the population and two genes, one from every selected 
chromosome, and swaps their values as shown in Fig. 3. 
While crossover exchanges information between high-fit 
chromosomes, the GCSO searches for alternative alleles, 

exploiting information stored even in low-fit strings. 

Gene Copy Operator (GCO):  This operator randomly selects 
one gene in a chromosome and with equal probability copies 
its value to the predecessor or the successor gene of the same 
control type as shown in Fig. 4. This operator has been 
introduced in order to force consecutive controls (e.g., 
identical units on the same bus) to operate at the same output 
level. 
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1st control 2nd control ……………….. Nth control 

0 1 1 0 1 1 0 1     0 1 1 0 

 

 

 

1st control 2nd control ……………….. Nth control 

0 1 1 0 1 1 0 1     0 1 1 0 

   
 
Fig. 2 Gene swap operator 
 

1st control 2nd control ……………….. Nth control 

0 1 1 0 1 1 0 1     0 1 1 0 

    
 

 
 

Fig. 3 Gene cross swap operator 
 

 (N-1)th control Nth control (N+1)th control  

0 1 1 0 1 1 0 1 1 0 0 1 0 1 1 0 

 
 

Fig. 4 Gene copy operator 
 

1st control 2nd control ……………….. Nth control 

0 1 1 0 1 1 0 1     0 1 1 0 

 
 

 
Fig. 5 Gene inverse operator 

 
 
 

1st control 2nd control ……………….. Nth control 

0 1 1 0 1 1 0 1     0 1 1 0 

 
 
 
 

Fig. 6 Gene max-min operator 

 

Gene Inverse Operator (GIO): This operator acts like a 

sophisticated mutation operator. It randomly selects one gene 

in a chromosome and inverses its bit-values from one to zero 

and vice versa as shown in Fig. 5. The GIO searches for bit- 

structures of improved performance, exploits new areas of the 

search space far away from the current solution, and retains 

the diversity of the population. 

Gene Max-Min Operator (GMMO): The GMMO tries to 
identify binding control variable upper/lower limit 
constraints.  It selects a random gene in a chromosome and, 
with the same probability (0.5), fills its area with 1s or 0s as 
shown in Fig. 6. 

III. CASE STUDIES 

In this work, the standard IEEE 30-bus test system has been 

used to test the effectiveness of the proposed method. It has a 

total of 8 control variables as follows: six unit active power 

outputs, TCSC constraints and TCPS constraints. The gene 

length for unit power output is 12 bits and for other parameter 

is 6 bits. They are both treated as continuous controls. 

The reactance of the TCSC is between 0 and 0.20 (p.u), 

while the voltage shift angle limit of TCPS are between 0 and 

0.07 (radian). The GA population size is taken equal to 20; the 

maximum number of generations is 75. In this problem the 

probabilities of crossover and mutation are varied depending 

on the fitness values of the solutions in the evolution process 

to prevent premature convergence and refine the convergence 

performance of genetic algorithm. 

Three cases have been studied; Case 1 is the conventional 

OPF without FACTS devices and (N-I) security constraints 

using SGA. Case 2 is the conventional OPF with FACTS 

devices using SGA. Case 3 is the conventional OPF with 

FACTS devices using EGA. The main optimization results 

are listed in Table I. 

Without FACTS devices the cost of OPF is 805.0132 and 

cost of OPF with FACTS using SGA and EGA is 807.4227 

and 805.3789 respectively. The results show that the 

generation cost increase with FACTS device since the 

1 0 1 0 0 1 1 1     0 0 1 0 

1 0 1 0 0 0 1 0     0 0 1 0 

1 0 1 0 0 0 0 0     0 0 1 0 

1 0 1 0 1 1 1 1     0 0 1 0 
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parameter constraint of TCSC and TCPS are included. 

However, FACTS can change the power distribution 

effectively and reduce the system losses. 

 
TABLE I 

IEEE 30-BUS SYSTEM CASE STUDY RESULTS 
 

PGi (MW) Case 1 Case 2 Case 3 

PG1 (MW) 183.1800 192.5400 189.8200 

PG2 (MW) 43.9700 48.6200 47.4100 

PG5 (MW) 18.4400 19.5200 20.6200 

PG8 (MW) 25.6200 11.7500 12.5500 

PG11 (MW) 10.4300 10.2000 11.7400 

PG13 (MW) 12.0000 12.1100 12.2100 

∑PGi(MW) 293.6400 294.7400 294.3500 

∑cost($/hr) 805.0132 807.4227 805.3789 

 

Two set of test runs are performed, the first (SGA) one is 

with only the basic GA operators and the second (EGA) one is 

with all operators, including advanced and problem-specific 

operators. The FF evolution of the best of these runs is shown 

in Fig. 7. The operating costs of the SGA and EGA solutions 

are 807.4227 $/h and 805.3789 $/h, respectively. The 

operating cost of all EGA-OPF solutions is slightly less than 

the SGA. Fig. 7 demonstrates the improvement achieved with 

the inclusion of the advanced and problem-specific operators. 

It is found that the real power flows in lines are within the 

rating limit.  
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Fig. 7   FF comparison for IEEE 30-bus system 
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Fig. 8 Modified IEEE 30 bus system with TCSC value in 
case2 
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Fig. 9 Modified IEEE 30 bus system with TCSC value in 
case3 
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Fig. 10 Modified IEEE 30 bus system with TCPS value in 
case 2 
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Fig. 11 Modified IEEE 30 bus system with TCPS value in 
case 3 

Along with the conventional OPF, the power through line 
numbers 6 and 28 has been taken as additional constraints. 

The specified values of power are to be achieved by placing 
TCSC in line 6 and TCPS in line 28. Now the next step is to 
find the value of TCSC reactance and TCPS phase shift that 
are needed to maintain the specified power flow. These values 
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are found by SGA and EGA method, with their convergence 
is shown in Fig. 8 through Fig. 11.  The corresponding power 
flows found iteratively for SGA and EGA have been shown 

on Fig. 12 and Fig. 13 respectively. 
With the SGA being optimization method used, the power 

flow through line 6 converge to the required value of 0.33 p.u 
approximately after 11 iterations, where as the power flow 
through line 28 converge to the required value of 0.18 p.u 
approximately after 8 iterations. With the EGA being 
optimization method used, the power in the line 6 and 28 are 
converged very fast than SGA and the results show that the 
proposed approach is effective. This improvement is achieved 

with the inclusion of the advanced and problem specific 
operators.  

If the power flow control constraints are not some specified 
values but some ranges, it is possible to use appropriate 
convergent threshold to achieve this.  For example, suppose 
the power flow control value of one branch is between 0.5 and 
0.6 p.u, it can be set the specified branch flow at 0.55 and set 
the convergent threshold at 0.05 p.u. Thus, when the problem 

converges, this branch power flow is between 0.5 and 0.6 p.u 
using this method, and fulfills different power flow control 
needs. 
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Fig. 12 Modified IEEE 30 bus system with specified line 
flows in case 2 
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Fig. 13 Modified IEEE 30 bus system with specified line 

flows in case 3 

IV. CONCLUSIONS 

An enhanced genetic algorithm method was presented to 

solve the optimal power flow problem of power system with 

FACTS devices. The proposed method introduces the 

injected power model of FACTS devices into a conventional 

AC optimal power flow problem to exploit the new 

characteristic of FACTS devices. Case studies on modified 

IEEE test system show the potential for application of EGA to 

determine the control parameter of the power flow controls 

with FACTS. It can be shown that the FACTS device cannot 

reduce the generation cost (i.e. it is not a cost saving device) 

compared with normal system OPF. However, it can increase 

the controllability and feasibility of the system and provide 

wider operating margin and higher voltage stability with 

higher reserve capacity. In this method, EGA effectively finds 

the optimal setting of the control parameters using the 

conventional OPF method. It also shows that the EGA was 

suitable to deal with non-smooth, non-continuous, 

non-differentiable and non-convex problem, such as the 

optimal power flow problem with FACTS devices.  
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