
 

 

 Abstract—Information security using minimal hardware and 

software resources is very indispensable in mission and safety 

critical applications. Currently, various methodologies have 

been proposed in which hardware exhibits parallelism either 

implicitly or explicitly. In this paper, we report an 

enhancement in DLX processor and PicoJavaII processor 

instruction set for efficient implementation of modified AES 

algorithm. We create a custom permutation instruction, 

WUHPERM, in CPUSIM simulator on RISC based 

architecture. In addition, we implement the same instruction 

on Mic-1 simulator which is based on IJVM micro 

architecture. The results show substantial improvements in 

the execution time of approximately six times when the new 

instruction is implemented in RISC architecture and eight 

times for stack architecture. 

Index Terms— Micro architecture, Cryptography, RISC 

architecture, Stack architecture, Permutations algorithms. 

I. INTRODUCTION 

ryptography plays a vital role in establishing secure 

links in modern telecommunication networks. 

Information is transformed and transmitted in such a way 

that a third party can not extract valuable and pertinent 

data from a secure communication link. Many 

cryptographic algorithms have been proposed such as AES 

[5], DES [15], Twofish [16], and Serpent [17], etc. 

 These cryptographic algorithms use permutation 

operations to make the information more secure. For 

example, there are six different permutation operations 

used in DES, two permutation operations in Twofish, and 

two permutations in Serpent. The efficient computer 

implementation of permutation algorithms has always been 

a challenging, interesting, and attractive problem for 

researchers. During the past twenty years, more than twenty 

permutations of N elements [9]. The practical importance 

of permutation generation and its use in solving problems 

was described by Tompkins [10]. 
   

Manuscript received February 05, 2011. This work was supported in part by 

the Higher Education Commission (HEC) Grant No. 1-

308/ILPUFU/HEC/2009-609. 

 W. Ahmed is a graduate student at Department of Electronics, Quaid-i-

Azam University, Pakistan (e-mail: waqasat@ele.qau.edu.pk). 

H. Mahmood is with the Department of Electronics, Quaid-i-Azam 

University, Islamabad, Pakistan (e-mail: hasan@qau.edu.pk). 

 U. Siddique is a graduate student at Research Center for Modeling and 

Simulation, National University of Sciences and Technology (NUST), 

Islamabad, Pakistan (e-mail: umair.siddique@rcms.nust.edu.pk).  

.  

 
 

TABLE I  

APPROXIMATE TIME NEEDED TO COMPUTE PERMUTATION OF N 

(1µ SECOND PER PERMUTATION) [9] 

N N! Time 

1 1  

2 2  

3 6  

4 24  

5 120  

6 720  

7 5040  

8 40320  

9 362880  

10 3628800 3 seconds 

11 39916800 40 seconds 

12 479001600 8 minutes 

13 6227020800 2 hours 

14 87178291200 1 day 

15 1307674368000 2 weeks 

16 20922789888000 8 months 

17 355689428096000 10 years 

 

If we assume that the time taken for one permutation is 

1µ sec, then Table I shows the time required to complete 

the permutation from N=1 to N=17. For N>25; the required 

time is far greater than the age of the earth. Therefore, it is 

very important to implement the permutation operation in 

the most efficient manner. 

We modify the DLX [1] and PicoJavaII [3] by adding a 

new custom permutation instruction WUHPERM in their 

instruction set. The performance of the new instruction is 

analyzed for execution time. We create and implement the 

new permutation instruction in CPUSIM 3.6.8 [11] and 

MIC-1 simulator [3] respectively.  

The paper is organized as follows: Section II presents the 

modified AES algorithm, which is an enhanced version of 

the original AES algorithm and utilizes the permutation 

operation more intensively as compared to other 

algorithms. Section III presents the details of the 

architecture of DLX processor, the simulators used in this 

paper, and the new permutation instruction. Section IV 

presents the comparison for different implementations of 

the permutation instruction. We discuss the related work in 

Section V, and finally the conclusions are presented in 

Section VI. 

II. MODIFIED AES ALGORITHM 

The modified AES algorithm is an improvement in the 

original AES cryptographic method presented in [4]. AES 
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is the first algorithm proposed by National Institute of 

Standards and Technology (NIST) in October 2000 and 

published it as FIPS 197[4]. Currently, it is known as one 

of the most secure and popular symmetric key algorithm 

[5]. 

S-box plays a vital role in the AES algorithm, as it is 

widely used in the process of encryption and provides the 

confusion ability. Many cryptanalysts have studied the 

structural properties of AES. A simple algebraic structure 

within AES and its S-box was presented by Gerguson et al. 

[6]. The most important and essential algebraic structure 

within AES was further analyzed in [7] and a polynomial 

description of AES was introduced in [8]. 

A new S8 S-box is obtained by using the action of 

symmetric group S8 on AES S-box [4], and these new S-

boxes are used to construct 4032040320 secret keys [2]. The 

creation of the encryption keys with the permutations of the 

existing S-boxes results in 40320 new S-boxes, which in 

turn, enhances the security and makes the system more safe 

and reliable. As a result, the information can be transmitted 

more securely over an unsecure and open access channel.  

The introduction of additional complexity to the existing 

AES algorithm increases the computation time in 

implementing the encryption algorithm, therefore, it is 

desirable to execute this algorithm in an efficient manner. 

We present a new instruction which facilitates the efficient 

execution of the modified and more complex AES method.  

III. ARCHITECTURE OF DLX 

The DLX architecture provides 32 general-purpose 

registers of 32 bits each which are named R0-R31. These 

registers have special roles. The value of register R0 is 

always zero. Branch instructions to subroutines implicitly 

use register R31 to store the return address. Memory is 

divided into words of 32 bits and is byte addressable. The 

detailed data path can be seen in [1]. 

A. DLX microarchitecture 

In this paper, we use the micro programming technique 

to create new instructions. The detailed examples of some 

important DLX instructions, used in the WUHPERM, with 

their corresponding micro instructions are presented in 

Table II. The DLX micro architecture is shown in Fig. 1. 

B. Simulators 

We use CPUSIM 3.6.8 [11] and MIC-1 [3] simulators to 

create and test new instructions. These simulators have the 

ability to create custom instructions. Instructions are 

created by implementing the microprogramming code for 

each individual instruction. Some important features of 

these simulators are described in the subsequent 

subsections.  

C. CPUSIM 3.6.8 Simulator 

The CPUSIM 3.6.8 simulator is created by Dale Skrien 

and is presented in [11]. This simulator has the ability to 

test and simulate RISC based custom designed instructions, 

therefore in this work, we use the CPUSIM 3.6.8 simulator 

to create the proposed permutation instructions for DLX 

microprocessor. In TABLE II, the microcode for some basic 

instruction of DLX processor is shown. Using these basic 

micro instructions, we can create new custom instructions.  

 
Fig  1. DLX Microarchitecture 

D. MIC-1 Simulator 

 The MIC-1 simulator is proposed by Andrew S. 

Tanenbaum in his book “Structured Computer 

Organization” [3]. MIC-1 simulator is a JAVA based 

simulator which implements stack architecture and 

simulates the PicoJavaII custom instructions. The basic 

MIC-1 micro architecture is presented in [3]. It contains 32 

registers, named PC, SP and MDR, etc. With the use of 

micro programming, we can access these dedicated internal 

registers. A micro program memory known as control store, 

which contains 512 words, is used to keep the micro 

program and is relatively faster than main memory. 

Control store is similar to ROM and has dedicated 

memory address register and memory data register. The 

memory instruction register is called MIR, 

(Microinstruction Register). Its function is to hold the 

current micro instruction, whose bits drive the control 

signals that operate the data path. MIC-1 instructions and 

their micro instructions are presented in [3]. Using the 

available micro instructions we can also create custom 

instructions in MIC-1 simulator. 

E. Permutation Instruction 

Many permutation algorithms have been proposed such 

as Heap Method, Johnson-Trotter Method, Loopless 

Johnson Trotter Method, Ives Method, Alternate Ives 

Method, Langdon Method, and Fischer-Krause Method, 

etc. The heap method runs faster and is simpler than other 

methods as presented in [9]. A ladder diagram for heap 

algorithm is depicted in Fig. 2. 

In this paper, we create custom permutation instructions 

based on this heap algorithm. The efficient implementation 

of the permutation operation for S8 S-box to construct 

secure keys can be achieved by using these instructions as 

presented in [2]. 

The permutation operation in [2] is performed on 32-bit 

data. We divide these 32-bits into 8 groups of 4-bit nibbles. 

In this paper, we demonstrate the method used to create the 

permutation instructions for 4-bit nibbles and this technique 

can be further enhanced to 32-bit data. The heap algorithm 

for 4-bit data is shown in Fig. 2. It is apparent that we need 

four instructions to implement this algorithm. These 
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instructions swap these 4-bits in the order as this ladder 

descends. At the end, we have 24 unique set of different 

permutations.  

 
Fig  2. Ladder for Heap Algorithm 

  

Therefore, we create four WUHPERM1, WUHPERM2, 

WUHPERM3 and WUHPERM4 instructions which initially 

swap the first and second location bit, second and third 

location bit, third and fourth location bit, and fourth and 

first location bit, respectively. 

The number of instructions used to calculate the 

permutation of a given data is given as 

N (I) =Log2 (N) 

 

  Where, N (I) is the number of instruction required and 

N is the number of bits in data. 

IV. COMPARISON 

The assembly language program is written for CPUSIM 

3.6.8 and MIC-1 simulators in order to compare the 

performance. It is seen that the number of microinstructions 

for assembly code is greater than the microinstructions 

required to create the custom instruction. 

TABLE III and TABLE IV show the comparison for an 

assembly language program which performs the 

permutation function, and the entire program when 

replaced by a custom permutation instruction, which swaps 

any two bits. In Table III, statistics are shown for the 

CPUSIM simulator program. It is seen that the time 

consumed by assembly language program is greater when 

compared to the system that implements the custom 

instruction in its algorithm. In Table IV, analysis for MIC-1 

simulator is presented. Here we can see that the 

performance of programs, which use custom instruction, 

has less execution time as compared to simple assembly 

language program. The performance is further enhanced if 

we compare these results with CPUSIM simulator output.   

This comparison can also be extended to all N! unique 

permutations. In the case when N is increased, it is seen 

that performance substantially improves by using the 

custom instructions. It can be observed from Fig. 3 and Fig. 

4, that performance improvement rate on stack based 

architecture (MIC-1 simulator) is greater as we increase the 

number of data bits. This increase is due to the redundancy 

in the assembly language program for this architecture, i.e., 

we must transfer the data into the stack in order to execute 

arithmetic operations.  

 
TABLE II 

DLX INSTRUCTION AND THEIR MICROCODE 

 

DLX  Instruction Microinstruction 

LD R4,100(R1) Ir(8-15)->mar 

Main[mar]->mdr 

Mdr->Ir(5-7) 

End 

SW R4,100(R1) Ir(8-15)->mar 

Ir(5-7)->mdr 

Mdr->Main[mar] 

End 

AND R1,R2,R3 Ir(8-10) ->B 

Ir(11-13) ->A 

Acc<- A & B 

Acc ->Ir(5-7) 

End 

SRL R1,R2,R3 Ir(8-10) ->B 

Ir(11-13) ->A 

Acc <- A  << B 

Acc->Ir(5-7) 

End 

 

The number of microinstruction used in MIC-1 simulator 

is greater than the instructions required for CPUSIM 3.6.8 

simulator. This is because of the inherent property of RISC 

architecture, which takes less execution time in performing 

the same amount of work than stack implementation for 

any processor.  

V. RELATED WORK 

 Various methodologies have been proposed to 

implement permutation operation using software and 

hardware. In software implementations, the permutation 

operation is achieved by EXTRACT and DEPOSIT 

instructions [12][13]. These instructions extract the bits 

individually by using AND mask and place the bits in a 

different order to produce permutation operation. In this 

paper, we use only one instruction to perform the tasks of 

EXTRACT and DEPOSIT operations. A new instruction 
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(WUHPERM) is added to achieve the permutation 

operation. This reduces the complexity in the code and 

allows easy implementation. Also, the number of additional 

fetch instructions is reduced by replacing multiple 

instructions with a single instruction. 

Hardware designs are also proposed to implement the 

permutation operation in an efficient way. A popular 

approach to achieve permutation is presented by Zhijie Shi 

[14]. In the hardware approach, the cost of hardware 

increases and the data path becomes more complex. In a 

software approach, the hardware changes are minimally 

reduced and there is no substantial increase in the cost of 

the microprocessor hardware. 

  
Fig 3. Percentage Performance for CPUSIM 

VI. CONCLUSION  

 In this paper, a new instruction to efficiently perform 

permutation operation required in cryptography is 

presented. The new instruction implements the 

mathematically intensive operation used by AES algorithms 

and achieves enhancement in speed and performance. This 

enhancement to the instruction set is implemented on DLX 

process and PicoJavaII processor instruction set. 

 
Fig  4. Percentage Performance for MIC-1 

 

The custom permutation instruction, WUHPERM, is 

designed for CPUSIM simulator for RISC based 

architecture. In addition, we implement the same 

instruction on Mic-1 simulator, which is based on IJVM 

micro architecture. The results show a substantial 

improvement in the execution time of approximately six 

times when the new instruction is implemented in RISC 

architecture and eight times for stack architecture. The 

proposed technique is suitable for applications which 

require intensive permutation operations. For future studies, 

we propose to apply the presented techniques to information 

theoretic frameworks.  
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TABLE III 

MICROINSTRUCTION ANALYSIS OF CPUSIM (A.I= 

ASSAMBLY INSTRUCTION, M.I = MICROINSTRUCTION, F.I 

FETCHED INSTRUCTION) 

 

 
 

TABLE IV 

MICROINSTRUCTION ANALYSIS OF MIC-1 (A.I= ASSAMBLY 

INSTRUCTION, M.I = MICROINSTRUCTION, F.I FETCHED 

INSTRUCTION) 

 

 

   Assembly 

Language 

Program 

 

 

   Custom 

Instruction 

  

B
its 

A.I M.I F.I 
(I x 4) 

Total 
M.I 

Time (T) 
Total M.I  

x 4 

M.I F.I 

(I x4) 
Total  
M.I 

Time (T) 
(Total M.I 

x 4) 

%Performance 

4 33 158 132 290 1160 42 4 46 184 630% 

8 58 298 232 530 2120 80 4 84 336 631% 

16 112 575 448 1023 4096 156 4 160 640 640% 

32 220 1131 880 2011 8044 308 4 312 1248 644% 

   Assembly 

Language 

Program 

    Custom 

Instruction 

  

B
its 

A.I M.I F.I 
(I x 4) 

Total 
M.I 

Time (T) 
Total M.I 

x 4 

M.I F.I 

(Ix4) 

Total  
M.I 

Time (T) 
(Total M.I 

x 4) 

% Performance 

4 90 367 90 457 1828 62 1 63 252 752% 

8 174 706 174 880 3520 112 1 113 452 779% 

16 342 1384 342 1726 6904 212 1 213 852 810% 

32 678 2740 678 3418 1372 412 1 413 1652 827% 
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