

 Abstract—Information security using minimal hardware and

software resources is very indispensable in mission and safety

critical applications. Currently, various methodologies have

been proposed in which hardware exhibits parallelism either

implicitly or explicitly. In this paper, we report an

enhancement in DLX processor and PicoJavaII processor

instruction set for efficient implementation of modified AES

algorithm. We create a custom permutation instruction,

WUHPERM, in CPUSIM simulator on RISC based

architecture. In addition, we implement the same instruction

on Mic-1 simulator which is based on IJVM micro

architecture. The results show substantial improvements in

the execution time of approximately six times when the new

instruction is implemented in RISC architecture and eight

times for stack architecture.

Index Terms— Micro architecture, Cryptography, RISC

architecture, Stack architecture, Permutations algorithms.

I. INTRODUCTION

ryptography plays a vital role in establishing secure

links in modern telecommunication networks.

Information is transformed and transmitted in such a way

that a third party can not extract valuable and pertinent

data from a secure communication link. Many

cryptographic algorithms have been proposed such as AES

[5], DES [15], Twofish [16], and Serpent [17], etc.

 These cryptographic algorithms use permutation

operations to make the information more secure. For

example, there are six different permutation operations

used in DES, two permutation operations in Twofish, and

two permutations in Serpent. The efficient computer

implementation of permutation algorithms has always been

a challenging, interesting, and attractive problem for

researchers. During the past twenty years, more than twenty

permutations of N elements [9]. The practical importance

of permutation generation and its use in solving problems

was described by Tompkins [10].

Manuscript received February 05, 2011. This work was supported in part by

the Higher Education Commission (HEC) Grant No. 1-

308/ILPUFU/HEC/2009-609.

 W. Ahmed is a graduate student at Department of Electronics, Quaid-i-

Azam University, Pakistan (e-mail: waqasat@ele.qau.edu.pk).

H. Mahmood is with the Department of Electronics, Quaid-i-Azam

University, Islamabad, Pakistan (e-mail: hasan@qau.edu.pk).

 U. Siddique is a graduate student at Research Center for Modeling and

Simulation, National University of Sciences and Technology (NUST),

Islamabad, Pakistan (e-mail: umair.siddique@rcms.nust.edu.pk).

.

TABLE I

APPROXIMATE TIME NEEDED TO COMPUTE PERMUTATION OF N

(1µ SECOND PER PERMUTATION) [9]

N N! Time

1 1

2 2

3 6

4 24

5 120

6 720

7 5040

8 40320

9 362880

10 3628800 3 seconds

11 39916800 40 seconds

12 479001600 8 minutes

13 6227020800 2 hours

14 87178291200 1 day

15 1307674368000 2 weeks

16 20922789888000 8 months

17 355689428096000 10 years

If we assume that the time taken for one permutation is

1µ sec, then Table I shows the time required to complete

the permutation from N=1 to N=17. For N>25; the required

time is far greater than the age of the earth. Therefore, it is

very important to implement the permutation operation in

the most efficient manner.

We modify the DLX [1] and PicoJavaII [3] by adding a

new custom permutation instruction WUHPERM in their

instruction set. The performance of the new instruction is

analyzed for execution time. We create and implement the

new permutation instruction in CPUSIM 3.6.8 [11] and

MIC-1 simulator [3] respectively.

The paper is organized as follows: Section II presents the

modified AES algorithm, which is an enhanced version of

the original AES algorithm and utilizes the permutation

operation more intensively as compared to other

algorithms. Section III presents the details of the

architecture of DLX processor, the simulators used in this

paper, and the new permutation instruction. Section IV

presents the comparison for different implementations of

the permutation instruction. We discuss the related work in

Section V, and finally the conclusions are presented in

Section VI.

II. MODIFIED AES ALGORITHM

The modified AES algorithm is an improvement in the

original AES cryptographic method presented in [4]. AES

 The Efficient Implementation of S8 AES

Algorithm

W. Ahmed, H. Mahmood, and U. Siddique

C

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

mailto:waqasat@ele.qau.edu.pk
mailto:hasan@qau.edu.pk
mailto:umair.siddique@rcms.nust.edu.pk

is the first algorithm proposed by National Institute of

Standards and Technology (NIST) in October 2000 and

published it as FIPS 197[4]. Currently, it is known as one

of the most secure and popular symmetric key algorithm

[5].

S-box plays a vital role in the AES algorithm, as it is

widely used in the process of encryption and provides the

confusion ability. Many cryptanalysts have studied the

structural properties of AES. A simple algebraic structure

within AES and its S-box was presented by Gerguson et al.

[6]. The most important and essential algebraic structure

within AES was further analyzed in [7] and a polynomial

description of AES was introduced in [8].

A new S8 S-box is obtained by using the action of

symmetric group S8 on AES S-box [4], and these new S-

boxes are used to construct 4032040320 secret keys [2]. The

creation of the encryption keys with the permutations of the

existing S-boxes results in 40320 new S-boxes, which in

turn, enhances the security and makes the system more safe

and reliable. As a result, the information can be transmitted

more securely over an unsecure and open access channel.

The introduction of additional complexity to the existing

AES algorithm increases the computation time in

implementing the encryption algorithm, therefore, it is

desirable to execute this algorithm in an efficient manner.

We present a new instruction which facilitates the efficient

execution of the modified and more complex AES method.

III. ARCHITECTURE OF DLX

The DLX architecture provides 32 general-purpose

registers of 32 bits each which are named R0-R31. These

registers have special roles. The value of register R0 is

always zero. Branch instructions to subroutines implicitly

use register R31 to store the return address. Memory is

divided into words of 32 bits and is byte addressable. The

detailed data path can be seen in [1].

A. DLX microarchitecture

In this paper, we use the micro programming technique

to create new instructions. The detailed examples of some

important DLX instructions, used in the WUHPERM, with

their corresponding micro instructions are presented in

Table II. The DLX micro architecture is shown in Fig. 1.

B. Simulators

We use CPUSIM 3.6.8 [11] and MIC-1 [3] simulators to

create and test new instructions. These simulators have the

ability to create custom instructions. Instructions are

created by implementing the microprogramming code for

each individual instruction. Some important features of

these simulators are described in the subsequent

subsections.

C. CPUSIM 3.6.8 Simulator

The CPUSIM 3.6.8 simulator is created by Dale Skrien

and is presented in [11]. This simulator has the ability to

test and simulate RISC based custom designed instructions,

therefore in this work, we use the CPUSIM 3.6.8 simulator

to create the proposed permutation instructions for DLX

microprocessor. In TABLE II, the microcode for some basic

instruction of DLX processor is shown. Using these basic

micro instructions, we can create new custom instructions.

Fig 1. DLX Microarchitecture

D. MIC-1 Simulator

 The MIC-1 simulator is proposed by Andrew S.

Tanenbaum in his book “Structured Computer

Organization” [3]. MIC-1 simulator is a JAVA based

simulator which implements stack architecture and

simulates the PicoJavaII custom instructions. The basic

MIC-1 micro architecture is presented in [3]. It contains 32

registers, named PC, SP and MDR, etc. With the use of

micro programming, we can access these dedicated internal

registers. A micro program memory known as control store,

which contains 512 words, is used to keep the micro

program and is relatively faster than main memory.

Control store is similar to ROM and has dedicated

memory address register and memory data register. The

memory instruction register is called MIR,

(Microinstruction Register). Its function is to hold the

current micro instruction, whose bits drive the control

signals that operate the data path. MIC-1 instructions and

their micro instructions are presented in [3]. Using the

available micro instructions we can also create custom

instructions in MIC-1 simulator.

E. Permutation Instruction

Many permutation algorithms have been proposed such

as Heap Method, Johnson-Trotter Method, Loopless

Johnson Trotter Method, Ives Method, Alternate Ives

Method, Langdon Method, and Fischer-Krause Method,

etc. The heap method runs faster and is simpler than other

methods as presented in [9]. A ladder diagram for heap

algorithm is depicted in Fig. 2.

In this paper, we create custom permutation instructions

based on this heap algorithm. The efficient implementation

of the permutation operation for S8 S-box to construct

secure keys can be achieved by using these instructions as

presented in [2].

The permutation operation in [2] is performed on 32-bit

data. We divide these 32-bits into 8 groups of 4-bit nibbles.

In this paper, we demonstrate the method used to create the

permutation instructions for 4-bit nibbles and this technique

can be further enhanced to 32-bit data. The heap algorithm

for 4-bit data is shown in Fig. 2. It is apparent that we need

four instructions to implement this algorithm. These

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

instructions swap these 4-bits in the order as this ladder

descends. At the end, we have 24 unique set of different

permutations.

Fig 2. Ladder for Heap Algorithm

Therefore, we create four WUHPERM1, WUHPERM2,

WUHPERM3 and WUHPERM4 instructions which initially

swap the first and second location bit, second and third

location bit, third and fourth location bit, and fourth and

first location bit, respectively.

The number of instructions used to calculate the

permutation of a given data is given as

N (I) =Log2 (N)

 Where, N (I) is the number of instruction required and

N is the number of bits in data.

IV. COMPARISON

The assembly language program is written for CPUSIM

3.6.8 and MIC-1 simulators in order to compare the

performance. It is seen that the number of microinstructions

for assembly code is greater than the microinstructions

required to create the custom instruction.

TABLE III and TABLE IV show the comparison for an

assembly language program which performs the

permutation function, and the entire program when

replaced by a custom permutation instruction, which swaps

any two bits. In Table III, statistics are shown for the

CPUSIM simulator program. It is seen that the time

consumed by assembly language program is greater when

compared to the system that implements the custom

instruction in its algorithm. In Table IV, analysis for MIC-1

simulator is presented. Here we can see that the

performance of programs, which use custom instruction,

has less execution time as compared to simple assembly

language program. The performance is further enhanced if

we compare these results with CPUSIM simulator output.

This comparison can also be extended to all N! unique

permutations. In the case when N is increased, it is seen

that performance substantially improves by using the

custom instructions. It can be observed from Fig. 3 and Fig.

4, that performance improvement rate on stack based

architecture (MIC-1 simulator) is greater as we increase the

number of data bits. This increase is due to the redundancy

in the assembly language program for this architecture, i.e.,

we must transfer the data into the stack in order to execute

arithmetic operations.

TABLE II

DLX INSTRUCTION AND THEIR MICROCODE

DLX Instruction Microinstruction

LD R4,100(R1) Ir(8-15)->mar

Main[mar]->mdr

Mdr->Ir(5-7)

End

SW R4,100(R1) Ir(8-15)->mar

Ir(5-7)->mdr

Mdr->Main[mar]

End

AND R1,R2,R3 Ir(8-10) ->B

Ir(11-13) ->A

Acc<- A & B

Acc ->Ir(5-7)

End

SRL R1,R2,R3 Ir(8-10) ->B

Ir(11-13) ->A

Acc <- A << B

Acc->Ir(5-7)

End

The number of microinstruction used in MIC-1 simulator

is greater than the instructions required for CPUSIM 3.6.8

simulator. This is because of the inherent property of RISC

architecture, which takes less execution time in performing

the same amount of work than stack implementation for

any processor.

V. RELATED WORK

 Various methodologies have been proposed to

implement permutation operation using software and

hardware. In software implementations, the permutation

operation is achieved by EXTRACT and DEPOSIT

instructions [12][13]. These instructions extract the bits

individually by using AND mask and place the bits in a

different order to produce permutation operation. In this

paper, we use only one instruction to perform the tasks of

EXTRACT and DEPOSIT operations. A new instruction

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

(WUHPERM) is added to achieve the permutation

operation. This reduces the complexity in the code and

allows easy implementation. Also, the number of additional

fetch instructions is reduced by replacing multiple

instructions with a single instruction.

Hardware designs are also proposed to implement the

permutation operation in an efficient way. A popular

approach to achieve permutation is presented by Zhijie Shi

[14]. In the hardware approach, the cost of hardware

increases and the data path becomes more complex. In a

software approach, the hardware changes are minimally

reduced and there is no substantial increase in the cost of

the microprocessor hardware.

Fig 3. Percentage Performance for CPUSIM

VI. CONCLUSION

 In this paper, a new instruction to efficiently perform

permutation operation required in cryptography is

presented. The new instruction implements the

mathematically intensive operation used by AES algorithms

and achieves enhancement in speed and performance. This

enhancement to the instruction set is implemented on DLX

process and PicoJavaII processor instruction set.

Fig 4. Percentage Performance for MIC-1

The custom permutation instruction, WUHPERM, is

designed for CPUSIM simulator for RISC based

architecture. In addition, we implement the same

instruction on Mic-1 simulator, which is based on IJVM

micro architecture. The results show a substantial

improvement in the execution time of approximately six

times when the new instruction is implemented in RISC

architecture and eight times for stack architecture. The

proposed technique is suitable for applications which

require intensive permutation operations. For future studies,

we propose to apply the presented techniques to information

theoretic frameworks.

REFERENCES

[1] J. Hennessy, D. Patterson, Computer Architecture, A Quantitative

Approach. San Francisco, USA: Morgan Kaufmann publisher Inc.,

1996.

[2] I. Hussain, T. Shah, and H. Mahmood, “A New Algorithm to Construct

Secure Keys for AES,” Int. J. Contemp. Math. Sciences, vol. 5, no. 26,

pp.1263-1270, 2010.

[3] A. S. Tanenubaum, Structured Computer Organization, 5th ed.,

Prentice Hall, 2005.

[4] J. Daemen and V. Rijmen, “AES proposal: Rijindael AES algorithm

submission,” 1999.

[5] M. T. Tran, D. K. Bui, and A. D. Duong, “Gray S-Box for Advanced

Encryption Standard,” in Int. Conf. Computational Intelligence and

Security, CIS’08, vol. 1, pp. 253-258, Dec 13-17, 2008

[6] N. Ferguson, R. Schroeppel, and D. Whiting, “A simple algebraic

representation of Rijndael,” In Selected Areas in Cryptography,

SAC01, LNCS2259, pp. 103-111, 2001.

[7] K. Nyberg, “Differentially uniform mapping for cryptography,” In

EUROCRYPT93, LNCS 765, pp. 386-397, 1994.

[8] J. Rosenthal, “A polynomial description of the Rijndael Advanced

Encryption Standard,” Journal of Algebra and its Applications, vol. 2,

no. 2, pp. 223-236, 2003.

[9] R. Sedwick, “Permutation generation methods,” Computing Surveys,

vol. 9, no. 2, Jun. 1977.

[10] C. Tompkin, “Machine attack on problems whose variable are

permutations,” in proc. symposium in Appl. Math. Numerical analysis,

McGraw Hill, Inc., N. Y., vol. 6, pp. 195-211, 1956.

[11] D. Skrien, “CPU Sim 3.1: A Tool for Simulating Computer

Architectures for CS3 classes,” ACM Journal of Educational

Resources in Computing, vol. 1, no. 4, pp. 46-59, Dec. 2001.

[12] R. Lee, “Precision Architecture,” IEEE Computer, vol. 22, no. 1, pp.

78-91, Jan. 1989.

[13] R. Lee, M. Mahon, and D. Morris, “Path Length Reduction Features in

the PA-RISC Architecture,” in Proc. of IEEE Compcon, San Francisco,

California, pp. 129-135, Feb. 24-28, 1992.

[14] Z. Shi and R. B. Lee, “Bit Permutation Instructions for Accelerating

Software Cryptography,” in Proc. of the IEEE Int. Conf. on

Application-specific Systems, Architectures and Processors, Boston,

Massachusetts, USA, pp. 138-148, Jul.10-12, 2000.

[15] B. Schneier, Applied Cryptography, 2nd ed., John Wiley & Sons, Inc.,

1996.

[16] B. Schneier and J. Kelsey. Twofish: A 128-bit block cipher. ch. 4.

Available: http://www.schneier.com/twofish.html.

[17] B. Smith, R. Anderson, E. Biham, and L. Knudsen. Serpent: A Proposal

for the Advanced Encryption Standard. Available:

http://www.cl.cam.ac.uk/ftp/users/rja14/serpent.pdf.

[18] K. Asanovic. DLX Microprogramming Slides. MIT Laboratory of

computer science,

Available:http://dspace.mit.edu/bitstream/handle/1721.1/35849/6-

823Spring-2002/NR/rdonlyres/Electrical-Engineering-and-Computer-

Science/6-823Computer-System-ArchitectureSpring2002/B1A470D6-

9272-44BE-8E8D-B77FA84A7745/0/lecture04.pdf.

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

http://www.schneier.com/twofish.html
http://www.cl.cam.ac.uk/ftp/users/rja14/serpent.pdf
http://dspace.mit.edu/bitstream/handle/1721.1/35849/6-823Spring-2002/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-823Computer-System-ArchitectureSpring2002/B1A470D6-9272-44BE-8E8D-B77FA84A7745/0/lecture04.pdf
http://dspace.mit.edu/bitstream/handle/1721.1/35849/6-823Spring-2002/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-823Computer-System-ArchitectureSpring2002/B1A470D6-9272-44BE-8E8D-B77FA84A7745/0/lecture04.pdf
http://dspace.mit.edu/bitstream/handle/1721.1/35849/6-823Spring-2002/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-823Computer-System-ArchitectureSpring2002/B1A470D6-9272-44BE-8E8D-B77FA84A7745/0/lecture04.pdf
http://dspace.mit.edu/bitstream/handle/1721.1/35849/6-823Spring-2002/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-823Computer-System-ArchitectureSpring2002/B1A470D6-9272-44BE-8E8D-B77FA84A7745/0/lecture04.pdf

TABLE III

MICROINSTRUCTION ANALYSIS OF CPUSIM (A.I=

ASSAMBLY INSTRUCTION, M.I = MICROINSTRUCTION, F.I

FETCHED INSTRUCTION)

TABLE IV

MICROINSTRUCTION ANALYSIS OF MIC-1 (A.I= ASSAMBLY

INSTRUCTION, M.I = MICROINSTRUCTION, F.I FETCHED

INSTRUCTION)

 Assembly

Language

Program

 Custom

Instruction

B
its

A.I M.I F.I
(I x 4)

Total
M.I

Time (T)
Total M.I

x 4

M.I F.I

(I x4)
Total
M.I

Time (T)
(Total M.I

x 4)

%Performance

4 33 158 132 290 1160 42 4 46 184 630%

8 58 298 232 530 2120 80 4 84 336 631%

16 112 575 448 1023 4096 156 4 160 640 640%

32 220 1131 880 2011 8044 308 4 312 1248 644%

 Assembly

Language

Program

 Custom

Instruction

B
its

A.I M.I F.I
(I x 4)

Total
M.I

Time (T)
Total M.I

x 4

M.I F.I

(Ix4)

Total
M.I

Time (T)
(Total M.I

x 4)

% Performance

4 90 367 90 457 1828 62 1 63 252 752%

8 174 706 174 880 3520 112 1 113 452 779%

16 342 1384 342 1726 6904 212 1 213 852 810%

32 678 2740 678 3418 1372 412 1 413 1652 827%

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

