
 
 

 

 
Abstract— This paper is focused on the study of the problem 

of MHD heat and mass transfer by mixed convection flow in the 
forward stagnation region of a rotating sphere in the presence 
of heat generation and chemical reaction effects. The surface of 
the sphere is maintained at constant fluid temperature and 
species concentration. The governing equations of the problem 
are converted into ordinary differential equations by using 
suitable similarity transformations. The self-similar equations 
are solved numerically using an efficient iterative implicit 
finite-difference method. The numerical results are compared 
with previously published results on special cases of the 
problem and found to be in excellent agreement. The obtained 
results are displayed graphically to illustrate the influence of 
the different physical parameters on the velocity components in 
x- and y-directions, temperature and concentration profiles as 
well as the local surface shear stresses and local heat and mass 
transfer coefficients. 
 

Index Terms— MHD, stagnation region, heat and mass 
transfer, mixed convection, heat generation, chemical reaction.  
 

I. INTRODUCTION 

  In view of their applications in industry and engineering, 
the study of uniform fluid flow on bodies of various 
geometries has been considered by many researchers using 
different analytical and numerical methods. For instance, the 
problem of mixed convection flow and heat transfer on a 
rotating sphere has been considered by many researchers 
[1-4]. Chen and Mcoglu [5] used the Keller box scheme to 
discuss steady mixed or free convection flow over stationary 
spheres. Kumari and Nath [6] investigated unsteady 
incompressible boundary layer flow over a rotating sphere. 
Takhar and Nath [7] presented a self-similar solution for 
unsteady flow in the stagnation-point region of a rotating 
sphere with a magnetic field. Anilkumar and Roy [8] reported 
a self-similar solution for unsteady mixed convection 
boundary layer flow in the forward stagnation-point region of 
a rotating sphere where the free stream velocity and the 
angular velocity of the rotating sphere vary continuously 
with time. A numerical study for free convection flow over a 
rotating sphere has been reported by Takhar et al. [9]. 
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The study of heat generation or absorption in moving fluids 
is important in problems dealing with chemical reactions and 
those concerned with dissociating fluids. Possible heat 
generation effects may alter the temperature distribution and 
consequently, the particle deposition rate in nuclear reactors, 
electronic chips and semi-conductor wafers. In addition, 
hydromagnetic incompressible viscous flows are of interest 
in many engineering and technological applications. In fact, 
the literature is replete with examples dealing with MHD and 
heat generation/absorption effects in laminar flow and heat 
transfer of viscous fluids. A similarity solution for natural 
convection boundary layers adjacent to vertical and 
horizontal surfaces in porous media with internal heat 
generation was reported by Pop and Postelnicu [10]. 
Chamkha [11] studied the problem of MHD flow of a 
uniformly-stretched vertical permeable surface in the 
presence of heat generation/absorption and chemical 
reaction. Unsteady heat and mass transfer from a rotating 
vertical cone with a magnetic field and heat generation or 
absorption effects was studied by Chamkha and Al-Mudhaf 
[12]. Chamkha et al. [13] presented an analysis of the effects 
of heat generation or absorption on thermophoretic free 
convection boundary layer from a vertical flat plate 
embedded in a porous medium. Bararnia et al. [14] 
investigated analytically the problem of MHD natural 
convection flow of a heat generation fluid in a porous 
medium. Andersson et al. [15] studied the flow and mass 
diffusion of a chemical species with first-order and higher 
order reactions over a linearly stretching surface. 

Motivated by the investigations mentioned above, the 
purpose of the present work is to consider MHD heat and 
mass transfer by mixed convection flow in the forward 
stagnation region of a rotating sphere in the presence of 
chemical reaction and heat generation effects. 

 

II. GOVERNING EQUATIONS 

Consider unsteady laminar incompressible boundary layer 
flow of a viscous electrically-conducting fluid in the forward 
stagnation-point region of a sphere which is rotating with 
time-dependent angular velocity )(t in the presence of 

magnetic field, chemical reaction and heat 
generation/absorption effects. The fluid properties are 
assumed to be constant and the chemical reaction is 
homogeneous and of first order. The velocity at the edge of 
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the boundary layer eu  is assumed to vary as follows (see 

[8]): 

.0,0,0,/),( **  txAtxAtxue                                         

(1)                                                   

where *A is the velocity gradients at the edge of the 
boundary layer in the x-direction. The viscous dissipation 
and Joule heating effects are assumed to be negligible. Under 
these assumptions as well as the Boussinesq approximation, 
the continuity, momentum, energy and concentration 
equations are given by 
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where  t is time and x, y and z are the longitudinal, transverse 
and normal directions, respectively. r is the radial distance. u, 
v , and w are the dimensional velocity components  in x, y 
and z directions, respectively. T and C are the dimensional 
temperature and concentration, respectively. The parameters 
 ,  , 0 ,  ,  , c ,  , g, kc, Cp, D and Q0 are the fluid 

kinematic viscosity, electrical conductivity, magnetic 
induction, fluid density, thermal expansion coefficient, 
compositional expansion coefficient, thermal diffusivity, 
acceleration due to gravity, chemical reaction parameter, 
specific heat of the fluid, mass diffusion coefficient and the 
heat generation/absorption coefficient, respectively. The 
subscript  indicates ambient condition. 

The initial and boundary conditions for this problem are 
given by  
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where Vw , Tw and Cw are the normal velocity, temperature 
and concentration at the wall.   

For this problem we can define the following 
transformations: 
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where B is the velocity gradients at the edge of the boundary 
layer in the y-direction and   is the fluid dynamic viscosity. 

Substituting (8) into (3)-(6) yields the following set of 
similarity equations:  
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where A  is the acceleration parameter,  /Pr  , 
and DSc /  are the Prandtl number and the Schmitt 

numbers, respectively, 23 /)(   TTxgGr wx  is the 

Grashof number, 23 /)(   CCxgGr wcxC  is the 

modified Grashof number, 2
1 Re/ xxGr and 

2
2 Re/ xCx

Gr  are the buoyancy parameters, 

xxAM Re/2*2
0   is the magnetic field parameter, 

xpCxAQ Re/2*
0    is the heat generation/absorption  

parameter and xc xAk Re/2*    is the chemical reaction 

parameter.  
The initial and boundary conditions (7) are transformed to 
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where )/2/( * tAVf ww  is the suction/injection 

parameter such that 0wf  or 0wf  according to whether 

there is wall suction or injection, respectively.  
The coefficients of the local skin friction, local Nusselt 

number and the local Sherwood number can be written as 
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III. NUMERICAL METHOD AND VALIDATION 

Equations (9)-(12) are nonlinear equations and it is 
difficult to get a closed-form solution for this system of 
equations. Therefore, these equations subject to the boundary 
conditions (13) are solved numerically by means of an 
efficient, iterative, tri-diagonal implicit finite-difference 
method discussed previously by Blottner [16].  

These equations are discretized using three-point central 
difference formulae with 'f  replaced by another variable V.  

The   direction is divided into 196 nodal points and a 
variable step size is used to account for the sharp changes in 
the variables in the region close to the sphere surface where 
viscous effects dominate. The initial step size used is 

001.01   and the growth factor 037.1G  such that 

1** 
nn

G   (where the subscript n* is the number of 

nodes minus one). This gives max ≈ 35 which represents the 

edge of the boundary layer at infinity. The ordinary 
differential equations are then converted into linear algebraic 
equations that are solved by the Thomas algorithm discussed 
by Blottner [16].  Iteration is employed to deal with the 
non-linear nature of the governing equations.  The 
convergence criterion employed in this work was based on 
the relative difference between the current and the previous 
iterations.  When this difference or error reached 10-5, then 
the solution was assumed converged and the iteration process 
was terminated. 

 The accuracy of the employed numerical method is tested 
by direct comparisons with the previously published work of 
Anilkumar and Roy [8] for special cases of the present 
problem and excellent agreement between the compared 
results was found. This lends confidence in the numerical 
results to be reported subsequently. 

 

IV. RESULTS AND DISCUSSION 

In order to get a clear insight on the physics of the problem, 
a parametric study is performed and the obtained numerical 
results are displayed with the help of graphical illustrations. 
The results of this parametric study are shown in Figs. 1-11. 
In all of the obtained results, we used 7.0Pr  to represent 
Hydrogen. 

Figures 1 and 2 show the effects of the acceleration 
parameter A  on the velocity components in the x- and 
y-directions ( ), sf  , temperature and concentration profiles 

),(  for injection condition 1wf .0. It is found that 

increasing the acceleration parameter A  leads to increases in 
the velocity component in the x-direction. This can be 
explained as follows: from (1), the velocity at the edge of the 
boundary layer eu  increases with increasing values of the 

acceleration parameter A . Hence, the fluid inside the 
boundary layer gets accelerated in the x-direction which 
increases the velocity component f  . On the contrary, 

increases in the value of A  tend to decay the fluid motion in 
the y-direction (rotational direction). On the other hand, both 
of the fluid temperature and the species concentration are 
reduced by increasing the acceleration parameter A . These 
behaviors are clearly shown in Figs. 1 and 2.  
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Fig. 2. Effects of A  on θ and ϕ 
 
The effects of the magnetic field parameter M  and the 

suction/injection parameter wf on the velocity components 

in the x- and y-directions ( ), sf  , temperature and 

concentration profiles ),(  are depicted in Figs. 3 and 4. 

Application of a transverse magnetic field in the direction 
normal to the flow direction produces a drag-like force called 
the Lorentz force. This force tends to cause deceleration in 
the fluid motion and therefore, both of the velocity 
components decrease with increasing values of the magnetic 
field parameter. However, the corresponding fluid 
temperature and species concentration fields increase as the 
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magnetic field parameter M increases. It is also seen from 
Figs. 3 and 4 that increasing the suction/injection parameter 

wf  causes the x-component of velocity close to the sphere 

surface to decrease while it increases far downstream. 
However, the temperature and concentration increase close to 
the wall and decrease far downstream as wf  increases. The 

y-component of velocity shows a increasing trend with wf  

everywhere. 
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Figures 5 and 6 display the effects of the heat generation 

parameter  on the velocity component in x-direction f  and 

temperature profiles   for the injection case  0.1wf , 

respectively. As the heat generation parameter   increases, 
the fluid temperature increases. This increase in the fluid 
temperature has the tendency to increase the thermal 
buoyancy force. This produces higher buoyancy-induced 
flow along the sphere. This is represented in the increases in 
the x-component of fluid velocity as the heat generation 
parameter   increases as seen from Fig. 5. It is also 
observed that the fluid temperature profile overshoots in the 
immediate vicinity of the sphere surface for higher values of 
heat generation parameter as depicted in Fig. 6. 
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The effects of the chemical reaction parameter   on the 

velocity component in the x-direction f  and the 

concentration profiles   for the injection case 0.1wf  are 

presented in Fig. 7. The effects of the chemical reaction 
parameter on the velocity component in the y-direction and 
temperature profiles are insignificant and therefore, not 
presented. It is observed that both of the velocity component 
f   and the concentration profiles   decrease with 

increasing values of the chemical reaction parameter  . 
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With the help of Figs. 8 and 9, the behaviors of the 

coefficients of the local surface shear stresses in the x- and 
y-directions ( )0(),0( sf  ) and the local heat and mass 

transfer coefficients (or reduced local Nusselt and Sherwood 
numbers) ))0(),0((    under the effects of the magnetic 

field parameter M and the heat generation parameter are 
observed. As expected, the local surface shear stresses 
coefficients ( )0(),0( sf  ) and the local reduced Sherwood 

number ( )0( ) increase with increasing values of either the 

magnetic field parameter M or the heat generation parameter 
 . However, the local reduced Nusselt number ( )0(  ) 

takes the opposite behavior as either M or  increases.  
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Figures 10 and 11 depict the effects of the acceleration 

parameter A  and the chemical reaction parameter   on the 

local surface shear stresses coefficients ))0(),0(( sf  and 

the local reduced Nusselt and Sherwood numbers 
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reduced Sherwood number ( )0( ) increase as the chemical 

reaction parameter increases while the local reduced Nusselt 
number ( )0(  ) decreases as the chemical reaction 

parameter   increases for small values of the acceleration 

parameter A  and increases for large values of the 
acceleration parameter A .  
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Fig. 10. Effects of A and  on )0(f  and )0(s  
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Fig. 11. Effects of A and  on )0( and )0(  

 

V. CONCLUSION 

The problem of unsteady MHD heat and mass transfer by 
mixed convection flow in the forward stagnation region of a 
rotating sphere in the presence of chemical reaction and heat 
generation effects was studied. The governing equations 
were developed and transformed into a self-similar form. The 
similarity equations were solved numerically by an efficient, 
tri-diagonal, implicit finite-difference method. From the 
presented results of the problem, it was observed that 

I. Increasing the value of the magnetic field parameter 
resulted in increases in both of the local coefficients 
of surface shear stresses, local reduced Sherwood 
number, temperature and solute concentration in the 
fluid whereas the local reduced Nusselt number and 
velocity components decreased with the increasing 
values of the magnetic parameter. 

II. Imposition of fluid wall injection resulted in 
increases the x-component of velocity component 
close to the sphere surface and decreases in the 
temperature and concentration profiles close to the 
wall while the y-component of velocity decreased 
everywhere. 

III. Increasing the value of the acceleration parameter led 
to increases in the velocity component in the 

x-direction, local coefficients of surface shear 
stresses and local reduced Nusselt and Sherwood 
numbers whereas the velocity component in the 
rotational direction, temperature and concentration in 
the fluid decreased. 

IV. The local coefficients of surface shear stresses and 
local reduced Sherwood number increased as the 
chemical reaction parameter increased while the local 
reduced Nusselt number decreased as the chemical 
reaction parameter increased for small values of the 
acceleration parameter and increased for large values 
of the acceleration parameter. 
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