
 

  
Abstract— Impact of induced strain on charge carrier 

mobility is investigated for a monolayer graphene sheet. 
Mobility is computed within Born approximation by including 
impurity scattering, surface roughness effects and interaction 
with lattice phonons. Unlike its sSi counterpart, strained 
graphene shows a drop in mobility with increasing strain. Main 
reason for this effect is decrease in Fermi velocity due to 
induced distortions in the graphene honeycomb. Effect of 
temperature on graphene mobility under varying strain is 
studied. Non symmetric temperature dependence was observed 
for the two crystallographic orientations.  
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I. INTRODUCTION 

ince its discovery the most explored area in the study of 
the 2D graphene sheet is its electronic properties. 

However, recently, a whole new wealth of information about 
graphene has emerged following the reports on its 
mechanical and other non-electronic properties. Graphene is 
the strongest material ever measured [1], with a breaking 
strength of mN40~ and Young’s modulus TPa 0.1~ . Its 

thermal conductivity [2] has been reported at a record value 

of 11 5000~ −− KWm . Moreover, graphene was shown 
capable of withstanding reversible strain as high as 20% [1]. 
Additionally, strain is a way forward towards bandgap 
engineering which is essential to convert graphene into 
semiconductor [3-4]. Collectively, these characteristics 
increase graphene’s potential as a material of choice for 
Nanoelectromechanical Systems (NEMS) and sensory 
device applications. Within these emerging novel properties, 
strain is considered very crucial as it promises whole new 
prospects for studying electronic transport [5]. Although, 
fabricating an electronic device to extract Hall or field effect 
mobility in graphene while applying strain is a massive 
technological challenge, but with recent efforts such as in 
ref. [6], it does not seem long before it takes shape. 

The 2D nature of graphene means that strain laterally 
propagates within a layer without diminishing. Coupling this 
with its high resistance to both elastic deformation and 
breakage [1, 7], and additionally its high electronic quality 
[5, 8] provides motivation to explore changes in its 
electronic properties when put under strain. A further 
encouragement to this fact comes from theoretical reports[3] 
on opening of a band gap in graphene for strains higher than 
20%. The importance of such a result for prospects of future 
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graphene applications adds to our interest in further 
understanding its behavior under applied strain.  

In this study we involve the complete spectrum of the 
typical nearest neighbor hopping parameters in the tight 
binding description of the density of states for a graphene 
lattice. The former are a set of three parameters which are 
reduced to one due to symmetry considerations [9], which is 
not applicable to graphene under strain. In the latter case, the 
unit cell lattice vectors are strain dependent and they carry 
this dependency into the nearest neighbor hopping parameter 
description [3]. This enables one to describe the density of 
states and ultimately the Fermi velocity as a function of 
strain [10]. Considering three scattering mechanisms 
namely: remote impurity, phonon and surface roughness, we 
determine the Fermi velocity in the close vicinity of the 
Dirac point, and ultimately the conductivity dependent 
mobility of the charge carriers. Our results show that for 
applied strain along the special crystallographic orientations 
of Zigzag (Z ) and Armchair (A ), the mobility of charge 
carriers is particularly degraded in the interval 

%10%20 ≥≤η  which is the limit of strain used in our 

simulations. The reduction is more prominent in the Z  
direction to that in the A direction. At low temperature, a 
significant drop in mobility midway of the above mentioned 
range for strain in the Z  direction is expected.  

The necessary formalism for electronic properties of 
graphene and the impact of applied strain are described in 
section II. Section III elucidates the transport models in the 
vicinity of the Dirac point through taking into account the 
remote impurity interactions, surface roughness interaction, 
and the effect of phonon interactions. Results are given in 
section IV followed by conclusions in section V.  

II.  ELECTRONIC PROPERTIES OF GRAPHENE 

A. Graphene Unit Cell and Fermi velocity 

Graphene is the first known stable 2D material [8]. It is an 
allotrope of carbon composed of periodically arranged 
hexagons in a 2D one-atom thick infinite sheet. It is also 
considered as a semimetal with zero bandgap. Fig. 1 
illustrates a section of the infinite hexagonal network. Some 
prominent associated parameters are also sketched. 

In equilibrium, distance between two adjacent carbon 

atoms is oA42.1=oa . Since each atom is shared by three 

adjacent hexagons, thus the unit cell encloses one-third of 
each atom, this leads to two atoms per unit cell. These two 
atomic sites are denoted byA  (filled circles) and B (empty 
circles). Each atom )(BA  has three nearest neighbors 

)(AB  and six next nearest neighbors )(BA . The two 
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primitive lattice vectors are ( )0,1a=a  and 

( )2321 ,a −=b , where 03aa =  while the lattice 

vectors joining site A  to site B  are denoted by 

i
�

( 3,2,1=i ). 

Graphene’s electro-magneto properties are sensitive to the 
edge effects [11-12], in particular along the two prominent 
directions viz. Zigzag (Z ) and Armchair (A ), depicted with 
broken lines in fig. 1. The coordinate axes can always be 
chosen such that x-axis is aligned along the Z  orientation. 
Angle ϑ  represents arbitrary vector directed in between Z  
and A  orientations.  

Each carbon atom in graphene possesses four valence 
electrons. The three in-plane σ  orbitals are tightly bound to 
neighboring atoms. The fourth loosely bound π  orbital is 
perpendicular to the sheet and contributes to the electrical 
conductivity [13]. In the tight-binding (TB) model  the 
energy bands in terms of nearest neighbor π orbital hopping 

integrals ( it , in fig. 1.) is given by [14]: 

( ) bkbak ⋅−+⋅− ++±= ii etettE 132  (2.1) 

where upper (+) and lower (-) signs are for conduction and 
valence bands, respectively. ( )yx kk ,=k  is the 2D wave-

vector associated with charge carriers with energyE . Note 
first Brillouin zone (BZ) of the graphene unit cell is a 
hexagon itself. 

 
Figure 1.  Part of infinite honeycomb network. Unit cell with two atoms A  

and B  per cell. Hopping parameters it ’s and bond lengths i
�

’s are also 

shown. Lattice primitive vectors are denoted by a andb . Also shown are 

two distinctive directions in the network viz. zigzag and armchair. oa  is 

the C-C distance. X-axis is aligned along zigzag orientation. 

 
The π  orbitals of the valence and conduction bands cross 

at two corners K and K ′ of the BZ also known as Dirac 
points. Charge carriers near the Dirac point behave like 
masseless particles, also for an intrinsic graphene Fermi 
energy is zero at these K  points. 

Hamiltonian H  of π -bands near a Dirac point is 
described by the Dirac-Weyl equation [9, 15]: 

 
( ) kkk ±Ψ=±Ψ+=±Ψ EykyxkxFvH σσh  (2.2) 

where Fv  is the Fermi velocity which is independent of 

charge carriers energy, xσ and yσ  are Pauli spinors and h  

is the reduced Plank’s constant. Eigenstates of Dirac-Weyl 

equation are given by plane wave as: 

( )
k

rk
k ±

⋅
± =Ψ ψie

A

1
 (2.3) 

where A  is the area of the system and ( )yx,=r  is the in-

plane vector with 
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The overlap of wave-function between initial and final 
states can easily shown to be [16]: 

( ) ( )1
2
1 +=⋅ ′±

∗
±

θψψ iekk  (2.5) 

where θ  is the angle between initial wave-vector k  and the 

final scattered wave-vector k ′ .  

In equilibrium conditions the dispersion relation ( )kE  

near the Dirac point is given by utilizing equation (2.1) and 
(2.2) as [13]: 

kFvE h±=  (2.6) 

Note at equilibrium eVttt  03.3321 ===  [16] and 

0321 a=== δδδ . 

Electric transport is affected by the number of available 
vacant states in the system. In case of graphene, density of 
states (DoS) is given by 

( )
2)(2 Fv

Esgvg
ED

hπ
=  (2.7) 

where 2=vg  and 2=sg  are introduced as the valley 

( KK ′&  points) and spin degeneracy, respectively.  

In terms of hopping parameter ot and C-C distance oa , 

the Fermi velocity is given by 
h2

3 oo
F

at
v = , which turns out 

to be around 300 times less than the speed of light. Fermi 
velocity can alternatively be defined in terms of the unit cell 
area cA  as [9]: 

2

1 cc
F

A
v

ρ×
=
h

 (2.8) 

where 
2

33 2
o

c
a

A =  and 23 ot t=ρ . This form is useful for 

the forthcoming discussion. 
 

B. Applied Strain 

If strain is applied the lattice vectors i
�

’s are modified as: 

( ) o
ii

����
⋅+= ×22  (2.9) 

where o
i

�
’s correspond to the relaxed lattice vectors within 

the graphene unit cell. 22×
�

 is identity matrix of order 2 and 

the strain matrix�  is given by [3]: 
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where η  is the applied strain and 14.0=ν  is the Poisson’s 

ratio for graphene [17]. The deformation of lattice vectors 

i
�

’s modify the hopping parameters it ’s accordingly [3]: 
( )137.3

0
0 −−= a

i
iett δ  (2.11)  

The two distinctive directions in a graphene layer viz. Z  
and A  corresponds to 0=ϑ  and 6/πϑ =  respectively, 
while 3/πϑ =  is the periodicity of system in ϑ . It is also 
reported for %20<η  no change in bandgap is observed [3]. 

Simulations in this work will be bound to this limit.  
DoS of the system is also altered by the induced strain. In 
general DoS is given by [10]: 

( ) ( )''
cc

sv

A

Egg
ED

ρπ
=  (2.12) 

where cA′  is the area of the deformed unit cell and: 

( ) ( )4
3

4
2

4
1

22
3

2
2

2
1

' 2 ttttttt ++−++=ρ  (2.13) 

 
Comparing (2.12) with (2.7) one may define the “effective” 

Fermi velocity as 
2

1 ''
' tc
F

A
v

ρ×
=
h

 which reduces to 

equation (2.8) in the limit 0=η . The parameter tρ ′  

decreases monotonically with increasing strain. 
The effective Fermi velocity reduces with increasing strain. 

Our simulations reveal an initial linear drop in Fv′  with 

increasing η  (slope of scm8102.1~ ×−  for %10≤η ) 

consistent with the recent study [18] and then a  relatively 

sharp drop in '
Fv  for %10>η . Thus it is expected, with 

induced strain the dc conductivity and the corresponding 
mobility will degrade. 

III.  TRANSPORT MODELS IN THE VICINITY OF DIRAC POINT  

Electrical conductivity eσ  is computed utilizing the 

Kubo-Greenwood transport formalism, given as: 
 

( ) ( ) ( )
( ) dEEfE

dEEfEeEDEve ffF
e ∂∂−∫

∂∂−∫=
τ

σ
2

22

 (3.1) 

In order to compute the effective scattering rate ffeτ we 

have taken into account three dominant scattering 
mechanisms viz.: Coulomb scattering with impurity charges, 
scattering with lattice vibrations and charge carrier 
interaction with rough interface. In the following section we 
give perturbation potentials required for the effective 
scattering rate in the Born approximation. 

A. Remote Impurity Scattering 

Charge impurities present in the substrate is one of the 
significant sources of mobility degradation in graphene [16, 

19-20]. In k -space the Coulomb scattering potential C
SV  is 

given by: 

( )
q

ee
qV

dq
C

s κ
π −

=
22

 (3.2) 

where charged impurities in the substrate are assumed to be 
at a distance d  away from the graphene sheet, the scattered 

wave-vector 2sin2 θkq =′−= kk  and κ  is the effective 

dielectric constant of the system (graphene and the base 
substrate). Inclusion of screening effect is vital in observing 
the impact of charge impurity. In particular for graphene, the 
screened Coulomb potential results in the matrix element as: 

( )
( ) ( )kkk,k

ψψ
ε

⋅= ∗
′′ q

qV
V

C
sC  (3.3) 

where ( )qε  is the static dielectric function for a 2D 

graphene sheet. Starting from the Lindhard function and 
under random phase approximation (RPA) [21], ( )qε  is 

given in terms of polarization function ( )qΠ  as [16]: 

( ) ( )q
q

e
q Π+=

κ
πε

22
1  (3.4) 

( ) ( ) dk
k

q
fdkf

v

gg
q
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F

sv ∫ ∫
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++ 






−−=Π
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2

2
1

2 kk
hπ

 (3.5) 

where ( ) ( )ζ2++=+
kkk EfEff  with ( )kEf  is assumed to 

be the Fermi-Dirac function. 
Finally the scattering rate for the Coulomb interaction in 

the presence of in  charge centers per area is given as: 

( )

( )
( ) θ

ε
θ

π
π

τ
π

d
q

qV

EDn

C
s

i
Col

22

0

2

2

cos1

2

21



























 −

×






=

∫

h
 (3.6) 

B. Surface Roughness Interaction 

Surface roughness in graphene can occur due to intrinsic 
rippling effect [22] and or due to topography of the 
underlying substrate [23].  Impact of surface roughness on 
charge carrier mobility is extensively studied for quasi-2D 
structures such as in references [24-27] to name but a few. In 
this work the impact due to difference in the dielectric 
values at the graphene/substrate interface is taken into 
account. The interface randomness is, as usual, modelled by 
the autocovariance function between ∆  -the rms height of 
the random interface “steps” and Λ -the average width of 
the same fluctuation. For an exponential autocorrelation 

form the power spectrum density 
2

)(qS  is given by [26]: 

2

3
22222

)2/1()(
−

Λ+∆Λ= qqS π  (3.7) 

In the presence of two different dielectric materials at the 
interface, polarization charges are created. The potential 
induced by such polarization is given by [27]: 

( ) 0~ qz
eff

pol
s eEeqV −= ε  (3.8) 

where the parameter ( ) ( )subgsubg εεεεε +−=~
 with 

gε and subε  denote the dielectric constants of the graphene 

and the substrate, respectively. Effective electric field effE  

at the graphene side of the interface is defined here as 

( )si
g

eff nn
e

E +=
ε , while 0z  is taken as ∆  of the 

interface. 
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The mismatch of the dielectric constants at the interface 
also introduces image charges [25]. For sufficiently thick 
substrate the scattering potential associated with image 
charges is given by [27]: 

( ) ( ) ( )







−= 00

0

01
22

2

~

16

~
qzK

qz

qzKqe
qV

g

img
s

ε
πε
ε

 (3.9) 

where 0K and 1K  are modified Bessel functions of the 

second kind of order zero and one, respectively. Net impact 
of these two scattering sources is thus given by: 

( ) ( ) ( )qVqVqV img
s

pol
ss

SR +=  (3.10) 

Note that the net scattering strength not only depends on 
the dielectric properties of the substrate but more 
importantly on the difference between the dielectric 
properties of the two materials at the interface. Surface 
roughness induced scattering potential thus yields the 
scattering rate as: 
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 (3.11) 

 

C. Phonon Interaction 

For ambient and higher temperature regime carrier-phonon 
interaction is a major cause of mobility degradation in 
electronic devices [28]. Low energy acoustic phonons are 
treated under elastic scattering approximation. It is reported 
that group symmetry forbids TA phonon modes to exist for 
graphene [20, 29], therefore only LA mode of the spectrum 
is taken into account with relatively stronger coupling (see 
discussion below). 
The scattering potential associated with acoustic phonons is 
given by [30-31]: 

( ) ( )ti

g

B

ph

acac
s e

A

Tk

v

D
qV ω

ρ
−⋅= rq

2
 (3.12) 

where acD  is the deformation potential of the graphene 

lattice, gρ  is the surface density of the system. Phonon 

velocity is denoted by phv , Bk  is Boltzmann constant and 

T  is the temperature in Kelvin’s scale. Here linear phonon 
dispersion is assumed (i.e. acoustic phonon 

frequency qvph
ac
q =ω ) and equipartition approximation is 

applied which is valid for moderate to higher temperature 
regimes. 

Impact of screening on electron-phonon interaction is 
long debated however via simulations the ineffectiveness of 
screening in case of electron-phonon scattering is concluded 
[32], following this, dynamical screening is not included 
here. 
Finally the acoustic phonon scattering rate is derived 
through the evaluation of matrix element as: 

( )ED
v

TkD

gph

Bac
ac 













=

ρ
π

τ 2

2

8

21

h
 (3.13) 

Non-polar optical phonons are treated inelastically in the 
simulations. Similar to acoustic phonon spectrum only LO 

phonons contribute towards scattering mechanism. The 
interaction potential in this case is given by [30]: 

( ) ( )ti
qop

qg
op

op
s e

i
N

A
DqV ω

ωρ
−⋅







 ±+= rq

22

1

2

h
 (3.14) 

where qN  is the Bose-Einstein distribution function, opD  is 

the deformation field associated with vibrating lattice sites, 
1−=i  is for phonon absorption (upper sign) and 1+=i  is 

for emission process (lower sign). Optical phonon frequency 

is denoted by op
qω  and in the dispersion region of interest it 

bears a constant value oω , independent of the transferred 

wave-vector q .  

The interaction potential leads to the scattering rate as:  

( ) ( )oo

o
og

op
op

EED

i
N

D

ωω

ωρ
π

τ

hh

h

h

±Θ±

×






 ±+













=

22

1

4

21
2

 (3.15) 

where the Heaviside step function ( )xΘ  is introduced to 

account for only physically possible scattering events. 

IV.  RESULTS 

For the Coulomb interaction the location of charge centers 
in the substrate away from the interface is taken as nmd 1≈  

[19] while the impurity charge density in  is assumed to be 

around 211105.1 −× cm . 

Unless graphene surface topology is thoroughly 
investigated the autocorrelation of the step width Λ  and rms 
step height ∆  will be used as fine tuning parameters to 
simulate observed mobility. With the exponential 
autocovariance model used here, Λ  and ∆  parameters are 
taken as nm0.1  and nm5.0 , respectively. Relative 

dielectric constant of graphene is assumed to be 5.7 [20]. 
In the phonon interaction model the value of acoustic 
deformation potential acD  is not settled yet. In literature 

values as small as eV75.4 to as large as eV30 are quoted 

[20, 33] (and references within). Ignoring the anisotropy of 
the deformation potential a single constant value 

eVDac 20~  is used in this work. Phonon velocity phv  of 

the LA branch is set to scm6100.2 ×  and graphene 

density is taken as 28106.7 cmgg
−×=ρ  [34]. The 

deformation field constant oD  appearing in optical phonon 

model is assumed to have the strength of 

cmeV9100.2 × while LO phonon is associated with energy 

of meVo 152=ωh  [20]. Fig. 2 shows, in the absence of any 

strain, the relative scattering strength of the three scattering 
mechanisms studied here. Both phonon and surface 
roughness scattering rates tend to increase with carrier’s 
energy. 
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Figure 2.  Scattering rate for lattice phonon, impurity charges and surface 
roughness interaction at room temperature. For electron energy > 0.15eV 
optical phonon emission process is possible and thus a sharp increase in 
phonon scattering rate is observed at this energy. Coulomb scattering rate 
initially increases with energy and then drops for sufficiently high carrier’s 
energy. 

 
In order to benchmark the transport models and their 

respective parameters, simulations are performed and 
compared with the reported measured/extracted mobilities 
[35]. Fig. 3 shows the comparison of computed and the 
measured data. 

Simulations are performed for substrate with dielectric 
constant of 047ε  at room temperature. As it can be seen the 

modelled mobility reasonably follows the reported trend and 
its magnitude. Inclusion of high dielectric ( subε ) constant 

possibly have diverse effects on carrier mobility. Firstly, 
strength of impurity charge centers is certainly reduced due 
to screening and thus mobility is expected to increase. On the 
other hand possible soft optical phonon modes in the 
substrate and relatively higher amount of charge impurities 
present in the dielectric could result in low mobilities. 
Interface roughness is not necessarily same for each selected 
substrate, in addition, theoretically the difference between 

subε  and gε  alters the impact of surface roughness 

provided Λ  and ∆  are assumed to be same for different 
dielectrics.  
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Figure 3.  Simulations are benchmarked against the measured mobilities as 
a function of sheet density. Experimental data are from ref. [35]. 
 

Under identical conditions our simulations reveal higher 
mobilities for graphene on Silicon oxide ( 09.3 εε =sub ) as  

compared to Dimethyl sulfoxide ( 047εε =sub ), this is due 

to the reduced scattering potential ( )qV SR
s  associated with 

SR.  
Substrate materials such as PMMA, PDMS, and SU8 are 

more suited for strain studies with graphene. For a base 
substrate of PMMA with a static dielectric constant of 

04.3 ε  [36], the mobility profiles as a function of induced 

strain for low, moderate, and elevated temperature are given 
in figure 4.  

At low temperature ( K77 ) contribution of phonons in 
scattering mechanism is negligible and thus only impurity 
charges and surface roughness play their dominant parts. In 
this low temperature regime mobility nominally increases as 
the induced strain in increased below%13 . This is due to 
the reason that the net scattering rate stays almost constant 
for low T  and η  values but the Fermi derivative term 

( )Ef ∂∂− , that appears in Kubo-Greenwood conductivity 

expression, increases relatively rapidly and thus effective 
conductivity shows a positive slope in this region. 
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Figure 4. Strain dependent simulated mobilities for low to high temperature regimes. Base substrate is PMMA and sheet density is 21210 −cm . 
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V CONCLUSION 

In this study charge carrier mobility in a monolayer 
graphene sheet is computed under induced strain both along 
Z and A edges. It is predicted that mobility and hence dc 
conductivity will degrade with increasing strain. Prime 
reason for this observation is the decrease in the Fermi 
velocity which in turn is inversely proportional to the 
available DoS in the graphene system. Fermi velocity is 
computed in terms of hopping parameters which are 
functions of distorted bond lengths between C-C atoms. 
Generally a reduction in the mobility is observed for both 
Z and A  directions for increasing temperature, this 
decrease was observed to be steeper along the Z orientation 
for %15>η . Three main scattering mechanisms are 

included in the simulations viz. remote impurity, interface 
roughness and lattice phonon (both acoustic and optical) 
interaction. 
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