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Energy Function Analysis of a Single-Machine
Infinite-Bus Power System

A. Cifci, Y. Uyaroglu, and A. T. Hocaoglu

Abstract—A power system at a given operating state and
subjected to a given disturbance is voltage stable if the voltages
near loads approach post-disturbance equilibrium values. In
this paper, by using the energy function that maps the energy
variation of the system, the effect of the slow chance of the
system is analyzed and thus the system’s energy level changes’
effects on the system’s stability is shown by using MATHCAD
program. It is demonstrated that the stored energy measure is
an indicator of the closeness of the operating point to the
instability region of the system.

Index Terms—Energy function, Lyapunov’s second method,
The variable gradient method, Voltage stability

NOMENCLATURE
) Load angle in radians

V Load voltage in p.u.

En Generator voltage in p.u.

Eo Infinite bus or slack bus voltage in p.u.

Y Generator admittance in p.u.

Yo Infinite bus or slack bus admittance in p.u.
Om Generator rotor angle in radians

C Compensated load capacitor in p.u.

On Generator admittance angle in degrees

6o Infinite bus admittance angle in degrees
M Generator inertia in p.u.

D Damping coefficient

P Mechanical power in p.u.

Kow Koy Constant parameters

Kaw Kgur Kguz Constant parameters

I. INTRODUCTION

INCE 1920s, electric power system stability has been
considered as an important problem in terms of reliable
system operation [1], [2]. The concept of voltage stability is
expressed as the ability of keeping voltages’ magnitudes of
load buses, under both in steady state voltage stability and
transient voltage stability conditions, within the specific
operating limitations [3].
In the cases of not making voltage control and increase
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the load due to disabling, for any reason, the elements such
as generator, line, transformer, bus etc if an uncontrolled
voltage drop occurs, then there appears power system
instability. The main reason of the voltage instability is that
in the overloaded systems the system can not ensure the
reactive energy needed by the system to keep voltage values
in a certain amount [4]-[7]. Other reasons are generator
reactive power limits, load characteristics, characteristics of
load tap changer transformers, characteristics of reactive
power compensation devices and behaviour of voltage
control devices [8].Voltage stability and collapses began to
play a significant role in power system analysis and control
as a result of energy system collapses in various places of
the world such as Egypt [9], Chile [10], The United States
and Canada [11], [12].

This study is organized as follows respectively. Section 11
outlines the main idea of Lyapunov stability analysis.
Section 1l examines a single-machine infinite-bus power
system’s energy function. Section IV presents simulation
results of energy function analysis. Finally conclusions are
given in Section V.

Il. LYAPUNOV STABILITY ANALYSIS

The constant exponents can be used in the study of
nonlinear differential equations’ stability was first shown by
a Russian mathematician, Sonya Kovalevskaya, in 1889.
Later in 1892 Kovalevskaya’s study was developed by
another Russian mathematician, Alexandr Mikhailovich
Lyapunov.

Lyapunov’s second method (also called Lyapunov’s direct
method) provides us with studying the stability of the system
concerning on the dynamic system before finding the
solution of differential equation. The second method is
appropriate for the voltage stability of nonlinear systems
which do not have accurate solutions. This method is the
most common one in terms of the determination of stability
conditions of time-dependent nonlinear systems and could
be applied to all known systems.

Stability Analysis of Nonlinear Systems

Voltage stability of nonlinear systems is regional. Hence,
Lyapunov function which obtains sufficient stability
conditions in the largest region around the origin is searched
for.

Some methods which arise from Lyapunov’s second
method are proper to examine the stability of nonlinear
systems. One of them is the variable gradient method which
is used for the generalization of Lyapunov functions.

WCE 2011



Proceedings of the World Congress on Engineering 2011 Vol 11
WCE 2011, July 6 - 8, 2011, London, U.K.

The Variable Gradient Method

There are no generally applicable methods for finding
Lyapunov functions. The variable gradient method is a
formal approach to constructing Lyapunov functions. The
variable gradient method assumes a certain form for the
gradient of an unknown Lyapunov function, and then finding
the Lyapunov function itself by integrating the assumed
gradient [13].

Consider a nonlinear dynamical system described by

x=f(xt) 1)

f: nx1 nonlinear vector function
x: nx1 state vector
n: numbers of states, order of the systems

Accept an equilibrium point at the origin of the space.
Denote a test Lyapunov function by using V. Assume that in
(1), V is x’s open function but not t’s. Then,

— Xy + .+ —X, (2)
can be written. Hence,
V =(VV) x (3)

In (3), (VV)" isVV’s transpose. The gradient of V,
denoted by VV as follows:

v

wW=| . |=| . (4)
oV vV,
_axn_ - -

VV ’s line integral can be expressed by
X

V=j(vv ) dx (5)
0

In (5), integral’s upper limit does not point that V is a
vector magnitude, but integral is prefer to line integral of a
random point (Xy,X,,...,X,) at the space. This integral can be
done separately from integration method.

Investigation of Lyapunov Function Using Gradient System

A special class of dynamical system is particularly well
suited to the Lyapunov method. This system arises from the
gradient of a function [14]. A gradient dynamical system is
given as

X =—AVV(X, X ) (6)
In (6), vi R"XR" >R can be a continuously
differentiable. Ae R™" is defined as det(A)#0 and
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V(X,X0)=0 for x=Xo. If V(X,X0)’s Hessian is completely
positive definite at xg, equilibrium point is asymptotically
stable at x,.

Lyapunov function is given as

X T

v(x)= [[f(&)] dg (7)

Xo

Lyapunov function which is given above will be used in
order to find the single-machine infinite-bus power system’s
energy function.

I1l. ENERGY FUNCTION OF A SINGLE-MACHINE INFINITE-
Bus POWER SYSTEM

We consider the power system model shown in Fig. 1,
which is taken from [15].

P £ Vol Sa
| — | —
I I

o) = (e )

Fig. 1. Power system model.

This system consists of a load bus and two generator
buses. One of the generator busses is treated as a slack bus.
The load is modelled by a simplified induction motor in
parallel with a constant P-Q load and constant impedance.
The load also includes a fixed capacitor C to raise the
voltage up to near 1.0 per unit [15]. The network, load and
generator parameters have been presented in the Appendix.

First-order differential equations are expressed which show
power system model’s equations of state as follow [16].

Sy =W 8
M\ = —Dw+ P, + E,VY,, SiN(6 = 8, — 0, )+ Ey Yy sindyy,  (9)
Kaqwd =—KgV — KoV 2 +Q-Qp —Qy (10)
TKuK oV = KoKV + (K pyKgy = Kgup V... 1)

+Kpu(Q +Q - Q) - Kgu(Ry + R = P)

The system differential equations above can be written
again under the condition that generator mechanical power is
equivalent to active load requirement (P,,=P)).

D

. 1
WZ_WMW—V f(5,6,.V) (12)
. 1
S ZVMW (13)
5=-9(6,6,.V) (14)
V =-h(5,6,.V) (15)
Here,
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£(6,6,V)=~(P, +E WY, sin(6-3, -8, )+E, 2 sin(d,)) (16)

1
9(8,5,V ):_K_(-vazv2 ~KV +Q-Q-Q)) 17)
qw
1 2
h(5,5,,V)=—————(K KoV 2 + (K, Kqv...
( m ) Tquva( pw™qv2 ( pw q (18)

_KqWva)V +pr(Q0 +Q1_Q)_qu(PO +P1_P))

The system differential equations expressed by the
equations (8), (9), (10), and (11) are the definition of the
simple system that involves highly complicated load
modelling at around the high voltage operating point.

Defining Gradient System to the Form of Lyapunov
Function for a Simple Power System

The derivation of Lyapunov Function for the system in
Fig. 1, equations (12), (13), (14) and (15) could be
determined as

. 1 _
Sl 19~ O Off(SmeNV)
i 1 D Mw
Wisl=— = 0 0 (19)
s s
v h(s.,,8,V
0 o0 1] (6. 6V)

The equation (19) for the system defined in (8), (9), (10)
and (11) equations, is an alternative definition for this
system’s dynamics.

For the (Wo,dmo,00,Vo)’s equilibrium point, a candidate
energy function which is seen on the right of the (19)
equation ((4x1) gradient matrix seen on the right of the (19)
equation) is obtained and therefore it can be used in (7)
equation. The candidate energy function can be written in
(7) equation as

T

Mw dw
(W,8,,0V)
m f(5,.6V)| |ds
v(w,8,,6V )= J. (6"‘ 5V) d5m (20)
(Wo Smo S Vo ) 9om.0,
h(s,.6M) | | dv

If fitw,0m,0,V), g(W,0m,0,V) ve h(w,61,0,V) are replaced on
(20) equation, the system’s energy function is obtained [17].
The equilibrium point is (W",3,,,8",V")=(0.0,0.3,0.2,0.97).

IV. SIMULATION RESULTS OF A SINGLE-MACHINE INFINITE-
Bus POWER SYSTEM

There are four important state variables in these analyses.
These are the system frequency (w;), generator rotor angle
(®m), load angle () and load voltage (V). The aim of these
analyses is to show what kind of effects the load would have
over the whole energy of the power system. The generator
rotor angle will be changed, beginning with zero and will be
increased to 1.6 by 0.4 rise each turn in order to observe the
system’s stability.

The sample of the energy function for the single-machine
infinite-bus power system is given as follows:
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V(5V)=2008V3+a,V?+aV +a (21)
When the sample of the energy function given above is
equalized the system’s energy function which is obtained
from (20) equation, a,, a; and a are respectively obtained for
each case.
The following cases are considered:

Case-1: Generator rotor angle 6,,=0 rad., system frequency
w=1p.u
a,, a; and a are respectively obtained as

a, = 2.426 —14.9075 +0.075sin(5 — 0.087)...

+0.3sin(6 —0.209) - cos( & —0.087 ) —4cos( o —0.209) (22)
a, =-0.405+2.86 +500s(5—-0.213)-5cos( 5 +0.087)... 23)
+5sin(6-0.087 )+ 205sin(5-0.209)

a=-1.336-1.36-0.063sin(5 —0.087 ) - 0.254sin( & - 0.209 )...(24)

+0.846 cos( 5 —0.087 )+ 3.386 cos( 5 —0.209)

ENErTY measirement

load angle (rad)

load voltage (pu)

1

0.5
load woltage (pu)
(@) (b)
System’s stored energy for 6m=0 (a) Two-dimensional
representation (b) Three- dimensional representation.

Fig. 2.

The system's energy density is in the range of 0.6<V<1
and 1<6<1.6, which is seen as in Fig. 2 and Table I. The
system's energy density varies between 8 and 9 energy units
around these points.

TABLE |
ENERGY MEASUREMENT FOR Ay=0

) Energy
Measurement

0 29 23 18 12 06 -1 -07 -13 -19 -24 -29
02 26 26 26 24 22 18 15 11 06 02 -03
04 22 28 32 35 36 36 35 33 31 27 23
06 16 27 36 43 48 52 54 54 53 50 47
08 09 25 38 49 58 64 68 71 71 70 67
1 00 21 38 52 64 72 79 83 84 83 80
12 09 14 35 52 65 76 84 89 91 90 87
14 -20 07 29 48 63 75 83 88 90 89 84
16 -31 -03 21 41 56 68 76 80 81 78 72
18 -42 -13 11 30 46 56 63 65 64 58 49
vV 0 01 02 03 04 05 06 07 08 09 1

For 6,=0 rad. and w=1 p.u., Table | shows numerical
values of the energy function for different load angles and
different load voltages.

Case-2: Generator rotor angle 6,=0.4 rad., system
frequency w=1 p.u.
a,, a; and a are respectively obtained as
WCE 2011
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a, = 2.426 —14.9075 +0.075sin( 5 —0.487 ...

+0.3sin(6 —0.209) — cos( & —0.487 ) —4cos(5 —0.209) (29)
8 =1.573+2.85 +5c0s( 5 —-0.213) - 5c0s( 5 +0.313)... (26)
+5sin(6—-0.487 )+ 20sin(5—0.209)

a=-1.562—1.35 —0.063sin(5 —0.487 ) —0.254sin(5 —0.209)... @)

+0.846 cos( 5 —0.487 ) +3.386 cos( 5 —0.209)

. BLENTY mlEAsurement
=
g
=
g1
i1
o
=

o

1 o ! load woltage (pu)
load voltage (p.u)
(@) (b)

Fig. 3. System’s stored energy for 6m,=0.4 (a) Two-dimensional

representation (b) Three- dimensional representation.

The system's energy density is in the range of 0.5<V<l
and 1<6<1.6, which is seen as in Fig. 3 and Table Il. The
system's energy density varies between 7 and 8 energy units
around these points.

TABLEII
ENERGY MEASUREMENT FOR Ay=0.4

.. BHErgY tneasurement
=
£
L)
=
g1
b=
Lo
A

0 load voltage (p.u.)

0 05 1

load voltage (p.u.)

_ @ ®
Fig. 4. System’s stored energy for 8m,=0.8 (a) Two-dimensional

representation (b) Three- dimensional representation.

The system's energy density is in the range of 0.5<V<0.9
and 1<8<1.6, which is seen as in Fig. 4 and Table Ill. The
system'’s energy density varies between 6 and 7 energy units
around these points.

TABLE llI
ENERGY MEASUREMENT FOR Ay=0.8

) Energy
Measurement

) Energy
Measurement

0 26 21 15 10 04 -02 -08 -13 -19 -24 -28
02 24 24 23 21 19 15 11 o7 03 -02 -07
04 20 26 29 31 32 3,2 30 28 24 20 15
06 15 25 34 40 44 46 47 46 44 41 36
08 09 23 36 46 53 58 61 62 61 58 54

1 00 20 36 49 59 6,7 71 74 74 72 67
12 -09 14 33 49 62 71 77 81 81 79 74
14 -19 07 28 46 6,0 7,1 78 81 82 79 73
16 -30 02 21 40 55 66 73 76 76 72 64
18 -41 -12 12 31 46 56 62 64 62 55 45
vV 0 01 02 03 04 05 06 07 08 09 1

0 22 18 14 09 05 00 -04 -08 -12 -15 -18
02 20 21 21 20 18 15 12 09 05 01 -03
04 17 23 26 29 30 29 28 26 22 18 14
06 13 23 30 36 40 42 42 41 39 35 30
08 07 21 33 41 48 52 55 55 53 49 44
1 -01 18 32 44 54 60 64 65 63 60 54
12 -09 12 30 45 56 64 69 70 69 66 59
14 -19 05 26 42 55 64 69 71 70 65 58
16 -29 -03 19 37 50 59 65 66 64 58 49
18 -40 -1,2 10 28 42 51 55 56 52 44 32
vV 0 01 02 03 04 05 06 07 08 09 1

For 8,=0.4 rad. and w=1 p.u., Table Il shows numerical
values of the energy function for different load angles and
different load voltages.

Case-3: Generator rotor angle 06,=0.8 rad., system
frequency w=1 p.u.

a,, a; and a are respectively obtained as
a, = 2.426 —14.9075 +0.075sin(5 —0.887)... (28)
+0.3sin(6 —0.209) —cos( 5 —0.887 ) — 4 cos(o —0.209)
8 =3.329+2.85 +5c05(6—0.213) - 5c0s( 5 +0.713)... (29)

+5sin(5 —0.887 )+ 20sin(5 —0.209)
a=-1.788-1.35 —0.063sin(J - 0.887 ) —0.254in(& —0.209)..

(30
+0.846 cos( 5 —0.887 ) +3.386 cos( 5 —0.209) (30)
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For 8,=0.8 rad. and w=1 p.u., Table Ill shows numerical
values of the energy function for different load angles and
different load voltages.

Case-4: Generator rotor angle 0,=12 rad., system
frequency w=1 p.u.

a,, a; and a are respectively obtained as
a, = 2.426 —14.9076 +0.075sin(6 - 1.287)... 31)
+0.3sin(6—0.209)—cos( o —1.287 )—4cos( 5 —0.209)
8 =4.584+2.86+5005(5—-0.213)—-5cos(J +1.113)... 32)

+5sin(6—1.287)+ 20sin(5-0.209)
a=-2.014-1.35 —0.063sin(5 — 1.287 ) - 0.254sin(5 —0.209)..

(33)
+0.846 cos( 5 —1.287 ) +3.386 cos( 5 —0.209)

ENErgy fmeasurement

3

load
angle (rad

load angle (rad)

load woltage (pu)

o () 1

load woltage (pu)

@ (b)
Fig. 5. System’s stored energy for 6m=1.2 (a) Two-dimensional
representation (b) Three- dimensional representation.
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The system's energy density is in the range of 0.4<V<I
and 0.6<6<1.8, which is seen as in Fig. 5 and Table IV. The
system's energy density varies between 4 and 5 energy units
around these points.

TABLE IV
ENERGY MEASUREMENT FOR Ay=1.2

TABLEV
ENERGY MEASUREMENT FOR Ay=1.6

) Energy
Measurement

) Energy
Measurement

0 16 15 12 10 08 06 04 02 00 00 -01
02 16 18 19 19 19 18 16 14 12 10 08
04 13 19 24 27 29 2,9 29 27 25 22 19
06 09 19 27 33 37 39 40 39 37 33 29
08 04 18 29 37 44 48 49 49 47 43 37
1 -03 14 28 39 48 53 56 56 54 49 43
12 -11 09 26 39 49 56 59 60 57 52 44
14 -20 03 22 36 47 55 58 59 55 49 40
16 -30 -05 15 31 42 50 53 53 49 41 29
18 -40 -14 0,7 23 34 41 44 42 36 26 12
vV 0 01 02 03 04 05 06 07 08 09 1

0 11 11 12 1.2 1,2 13 13 14 16 18 21
02 10 14 1,7 19 2,1 22 23 23 24 24 24
04 08 15 21 26 2,9 31 32 32 32 31 29
06 05 15 24 30 35 38 40 40 39 36 33
08 00 13 25 33 4,0 44 46 46 44 41 35
1 -06 10 24 34 4,2 47 49 49 47 42 35
12 -14 05 21 33 4,2 47 50 49 46 39 31
14 -22 01 16 29 3,9 44 46 45 40 33 22
16 -31-09 09 23 3,3 38 39 37 31 21 07
18 -41-17 01 15 2,4 28 28 24 16
vV 0 01 02 03 04 05 06 07 08 09 1

For 6,,=1.2 rad. and w=1 p.u., Table IV shows numerical
values of the energy function for different load angles and
different load voltages.

Case-5: Generator rotor angle J,=1.6 rad., system
frequency w=1 p.u.

a,, a; and a are respectively obtained as
a, = 2.426 —14.9076 +0.075sin(6 —1.687)... (34)
+0.3sin(6 —0.209) —cos( 5 —1.687 ) —4cos( o —0.209)
a, =5.140+2.86 + 5¢0s( 6 —0.213) - 5c0s( 5 +1.513)... (35)

+5sin(5 —1.687 )+ 20sin(5 —0.209)
a=-2.241-1.35 —0.063sin(6 — 1.687 ) - 0.254sin(& - 0.209)..

(36
+0.846 cos( 5 — 1.687 ) +3.386 cos( & —0.209) (36)

ENErgY fneasuretment

load angle (rad)

load wolt .
7 o ! oad voltage (p.u.)

load voltage (pu)
Fig. 6. System’s stored energy for 6n=1.6 (a) Two-dimensional
representation (b) Three- dimensional representation.

The system's energy density is in the range of 0.3<V<I
and 0.4<8<1.6, which is seen as in Fig. 6 and Table V. The
system's energy density varies between 3 and 4 energy units
around these points.
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For 6,,=1.6 rad. and w=1 p.u., Table V shows numerical
values of the energy function for different load angles and
different load voltages.

After all of these cases, we observed that the value of the
whole energy density decreased. This decrease in energy
measurement is an indicator of operating point’s movement
towards instability region. In case-1, while 6=1.2 rad. and
V=0.8 p.u., maximum energy level was 9.1 energy unit. But
in case-5, energy level was 4.6 energy unit even the same
value of 6 and V. It is observed clearly that, any changes in
load is going to continue decrease level of energy density to
low values, even possible to see negative values.

V. CONCLUSION

Energy function has long been recognized as a useful way
of analysing voltage stability. Our study shows that a more
realistic energy function -which can clearly demonstrate the
critical load angles gained on the energy measurement
levels, corresponding to the representations of system works
in the different levels and load voltages, and a single-
machine infinite-bus power system’s stability attitude- can
be obtained. Thus, this shows the effect of energy
fluctuations in the system on system stability, nearly
definitely. Eventually, for the system dependency to load
angle and load voltage, optimal range of load angle and load
voltage can be defined with the energy fluctuation which is
plotted the range of stability shown.

APPENDIX

The load parameter values used in the simulation are [15]:

Kow= 0.4, K,y = 0.3, Ky =-0.03, Koy =-2.8, Kgo = 2.1

T=85P;=0.6,Q=13P;=0.0,Q,=0.0

The network and generator parameter values used in the
simulation are [15]:

Yo=20,0,=-5Ey=1,C=12, Y, =8, ' = -12

Ey=25Y,=560,=-5E,=1,P,=1,D=0.05

M =0.3

All values are in per unit except for angles, which are in
degrees.
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