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Abstract—The concept of strong almost convergence was
introduced by Maddox in 1978 [Math. Proc. Camb. Philos. Soc.,
83 (1978), 61-64] which has various applications. In this paper
we introduce some new sequence spaces which arise from the
notions of strong almost convergence and an Orlicz function
in a seminormed space. A new concept of uniform statistical
convergence in a seminormed space has also been introduced.

Index Terms—sequence space, Banach limit, strong almost
convergence, Orlicz function.

I. INTRODUCTION

The first attempts to found a theory of sequence spaces
and infinite matrices in the last two decades of the nineteenth
century were motivated by problems in Fourier series, power
series and systems of equations with infinitely many vari-
ables. The theory of sequence spaces has wide applications
to several other branches of functional analysis, e.g., the
theory of functions, summability theory, the theory of locally
convex spaces. nuclear spaces and matrix transformations,
and is indeed well developed to have a logic of its own. One
of the typical problems concerning sequence spaces is the
inclusion problem (Abelian Theorems) i.e. given sequence
spaces S and T determine whether S is contained in T . The
main purpose of this paper is to establish certain inclusion
relations between the spaces of strongly almost convergent
sequences defined by an Orlicz function in a seminormed
space.

Let ℓ∞, c and c0 be the Banach spaces of bounded,
convergent and null sequences x = (xk) with complex terms,
respectively, normed by ∥x∥∞ = supk |xk|. A sequence
x ∈ ℓ∞ is said to be almost convergent if all Banach limits
of x coincide (see Banach [1]). Lorentz [12] proved that x
is almost convergent to a number l if and only if

tkn = (k + 1)−1
k∑

i=0

xi+n → l

as k → ∞ uniformly in n. Let ĉ denote the space of
all almost convergent sequences. Several authors including
Lorentz [12], Duran [4] and King [8] have studied almost
convergent sequences. Maddox [14] has defined x to be
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strongly almost convergent to a number l if

tkn(|x− l|) = (k + 1)−1
k∑

i=0

|xi+n − l| → 0

as k → ∞ uniformly in n. We denote the space of all
strongly almost convergent sequences by [ĉ] and the space of
all sequences which are strongly almost convergent to zero
by [ĉ0]. It is easy to sec that [ĉ0] ⊂ [ĉ] ⊂ ĉ ⊂ ℓ∞.

Das and Sahoo [3] extended the space [ĉ] to the space
[w1], where [w1] is the space defined in [3] as follows:

[w1] =

{
x : (m+ 1)−1

m∑
k=0

tkn(|x− l|) → 0

as m → ∞ uniformly in n, for some l

}
.

It is obvious that [ĉ] ⊂ [w1] and [ĉ] − limx = [w1] −
limx = l.

Lindenstrauss and Tzafriri [11] used the idea of an Orlicz
function M to construct the sequence space ℓM of all

sequences of scalars (xk) such that
∞∑
k=1

M

(
|xk|
ρ

)
< ∞

for some ρ > 0. The space ℓM equipped with the norm

∥x∥ = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|
ρ

)
≤ 1

}
is a BK space [7, p. 300] usually called an Orlicz sequence
space. The space ℓM is closely related to the space ℓp which
is an Orlicz sequence space with M(x) = xp, 1 ≤ p < ∞.
We recall [7], [11] that an Orlicz function M is a function
from [0,∞) to [0,∞) which is continuous, non-decreasing
and convex with M(0) = 0, M(x) > 0 for all x > 0 and
M(x) → ∞ as x → ∞. Note that an Orlicz function is
always unbounded.

An Orlicz function M is said to satisfy the ∆2-condition
for all values of u if there exists a constant K > 0 such
that M(2u) ≤ KM(u), u ≥ 0. It is easy to see that
always K > 2 [10]. A simple example of an Orlicz function
which satisfies the ∆2-condition for all values of u is given
by M(u) = a|u|α(α > 1), since M(2u) = a2α|u|α =
2αM(u). The Orlicz function M(u) = e|u| − |u| − 1 does
not satisfy the ∆2-condition.

The ∆2-condition is equivalent to the inequality M(lu) ≤
K(l)M(u) which holds for all values of u, where l can be
any number greater than unity.

It is easy to see that M1 + M2 is an Orlicz function
when M1 and M2 are Orlicz functions, and that the function
Mv (v is a positive integer), the composition of an Orlicz
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function M with itself v times, is also an Orlicz function.
If an Orlicz function M satisfies the ∆2-condition, then so
does the composite Orlicz function Mv .

The following inequalities [13, p. 190] are needed through-
out the paper.

Let p = (pi) be a bounded sequence of positive real
numbers. If H = supi pi, then for any complex ai and bi,

|ai + bi|pi ≤ C(|ai|pi + |bi|pi), (1)

where C = max(1, 2H 1). Also for any complex λ,

|λ|pi ≤ max(1, |λ|H) . (2)

Throughout the paper, X denotes a seminormed space with
seminorm q, p = (pi) is a sequence of positive real numbers,
M is an Orlicz function and w(X) denotes the space of all
X-valued sequences.

We now introduce the following X-valued sequence
spaces using an Orlicz function M .

[ĉ(M,p, q)] =

{
x ∈ w(X) : (k + 1)−1

k∑
i=0

[
M

(
q

(
xi+n − l

ρ

))]pi

→ 0

as k → ∞, uniformly in n,

for some l and ρ > 0

}
,

[w1(M,p, q)] =

{
x ∈ w(X) : (m+ 1)−1

m∑
k=0

(k + 1)−1

k∑
i=0

[
M

(
q

(
xi+n − l

ρ

))]pi

→ 0

as m → ∞, uniformly in n,

for some l and ρ > 0

}
,

[w∞(M,p, q)] = {x ∈ w(X) : sup
m,n

(m+ 1)−1
m∑

k=0

(k + 1)−1

k∑
i=0

[
M

(
q

(
xi+n

ρ

))]pi

< ∞

for some ρ > 0}

If we put l = 0 in [w1(M,p, q)], then we obtain
[w0(M,p, q)].

If we take X = C, q(x) = |x|, M(x) = x and pi = 1 for
all i, then [w1(M,p, q)] = [w1] and [w0(M,p, q)] = [w0].

We denote [w1(M,p, q)], [w0(M,p, q)] and [w∞(M,p, q)]
as [w1(q)], [w0(q)] and [w∞(q)] when M(x) = x and pi = 1
for all i.

II. INCLUSION THEOREMS

In this section we examine some algebraic properties of
the sequence spaces defined above and investigate some
inclusion relations between these spaces.

In order to discuss the properties of the sequence spaces,
we assume that (pi) is bounded.

Theorem 2.1. [ĉ(M,p, q)], [w1(M,p, q)], [w0(M,p, q)]
and [w∞(M,p, q)] are linear spaces over the complex field
C.

The proof is a routine verification by using standard
techniques and hence is omitted.

Theorem 2.2. Let M , M1, M2 be Orlicz functions. Then
(i) if there is a positive constant β such that M(t) ≤ βt

for all t ≥ 0, then [z(M1, p, q)] ⊆ [z(M0M1, p, q)],
(ii) [Z(M1, p, q)] ∩ [Z(M2, p, q)] ⊆ [Z(M1 + M2, p, q)],

where Z = w0, w1, w∞.
Proof. We prove the theorem for Z = w0 and the other

cases will follow similarly.
Let x ∈ [w0(M1, p, g)] so that

Amn ≡ (m+ 1)−1
m∑

k=0

(k + 1)−1

k∑
i=0

[
M1

(
q

(
xi+n

ρ

))]pi

→ 0 as m → ∞,

uniformly in n and for some ρ > 0. Since M(t) ≤ βt for
all t ≥ 0,

(m+ 1)−1
m∑

k=0

(k + 1)−1
k∑

i=0

[M(yi+n)]
pi

≤ max(1 + βH)(m+ 1)−1
m∑

k=0

(k + 1)−1
k∑

i=0

[yi+n]
pi ,

where yi+n = M1

(
q

(
xi+n

ρ

))
and

hence x ∈ [w0(MoM1, p, q)].
(iii) The proof is immediate using (1).
Theorem 2.3. Let h = inf pi > 0, M be an Orlicz

function and if lim
u→∞

M(u/ρ)

(u/ρ)
> 0 for some ρ > 0, then

[Z(M,p, q)] ⊆ [Z(p, q)], where Z = w0, w1 and w∞.
Proof. We prove the theorem for Z = w1 and the other

cases will follow similarly. If lim
u→∞

M(u/ρ)

(u/ρ)
> 0 then there

exists a number α > 0 such that M(u/ρ) ≥ α(u/ρ) for
all u > 0 and some ρ > 0. Let x ∈ [w1(M,p, q)] so that

(m + 1)−1
m∑

k=0

(k + 1)−1
k∑

i=0

[
M

(
q

(
xi+n − l

ρ

))]pi

→ 0

as m → ∞, uniformly in n, for some l ∈ X and ρ > 0.

(m+ 1)−1
m∑

k=0

(k + 1)−1
k∑

i=0

[
M

(
q

(
xi+n − l

ρ

))]pi

≥ max(αh, αH)(m+ 1)−1
m∑

k=0

(k + 1)−1

k∑
i=0

[(
q

(
xi+n − l

ρ

))]pi

.

Hence x ∈ [w1(p, q)].
Theorem 2.4. Let M be an Orlicz function which satisfies

∆2-condition, q1, q2 be seminorms. Then
(i) [w0(M,p, q1)] ∩ [w0(M,p, q2)] ⊆ [w0(M,p, q1 + q2)],

(ii) If there exists a constant L > 1 such that q2(x) ≤
Lq1(x) for all x ∈ X , then [w0(M,p, q1)] ⊆
[w0(M,p, q2)].
Proof. The proof of (i) is straightforward using (1).
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(ii) Let x ∈ [w0(M,p, q1)]. Since M satisfies ∆2-
condition,

(m+ 1)−1
m∑

k=0

(k + 1)−1
k∑

i=0

[
M

(
q2

(
xi+n

ρ

))]pi

≤ (m+ 1)−1
m∑

k=0

(k + 1)−1

k∑
i=0

[
M

(
Lq1

(
xi+n

ρ

))]pi

≤ (m+ 1)−1
m∑

k=0

(k + 1)−1

k∑
i=0

[
K(L)M

(
q1

(
xi+n

ρ

))]pi

≤ max(1, (K(L))H)(m+ 1)−1
m∑

k=0

(k + 1)−1

k∑
i=0

[
M

(
q1

(
xi+n

ρ

))]pi

→ 0 as m → ∞, uniformly in n.

Hence x ∈ [w0(M,p, q2)].
Theorem 2.5. For any Orlicz function M , [ĉ(M,p, q)] ⊆

[w1(M,p, g)].

Proof. If (k + 1)−1
k∑

i=0

[
M

(
q

(
xi+n − l

ρ

))]pi

→ 0

as k → ∞ uniformly in n, for some l and ρ > 0, then its
arithmetic mean also converges to 0 as m → ∞ uniformly
in n.

Although it seems likely that [ĉ(M,p, q)] is strictly con-
tained in [w1(M,p, q)], we have been unable to prove it. It
is therefore an open question.

Theorem 2.6. If M is an Orlicz function which sat-
isfies ∆2-condition and X is seminormed algebra, then
[ĉ0(M,p, q)] is an ideal in ℓ∞(q), where ℓ∞(q) = {x ∈
w(X) : supk q(xk) < ∞}.

Proof. Let x ∈ [ĉ0(M,p, q)] and y ∈ l∞(q). We show
that xy ∈ [ĉ0(M,p, q)]. Since y ∈ l∞(q), there exists a
constant T > 1 such that q(yk) < T for all k. Since M
satisfies ∆2-condition, there exists a constant K > 1 such
that

(k + 1)−1
k∑

i=0

[
M

(
q

(
xi+nyi+n

ρ

))]pi

≤ (k + 1)−1
k∑

i=0

[
M

(
q

(
xi+n

ρ

)
q(yi+n)

)]pi

≤ (k + 1)−1
k∑

i=0

[
M

(
Tq

(
xi+n

ρ

))]pi

≤ max(1, (K(L))H)(k + 1)−1

k∑
i=0

[
M

(
q

(
xi+n

ρ

))]pi

→ 0 as k → ∞, uniformly in n, for some ρ > 0.

Thus xy ∈ [ĉ0(M,p, q)] and the proof is complete.

III. THE SPACE OF MULTIPLIERS OF [w∞(M,p, q)]

Suppose (X, q) is seminormed algebra. We
define S([w∞(M,p, g)]), the space of multipliers of
[w∞(M∞, p, q)], as

S([w∞(M,p, q)]) = {a ∈ w(X) : (akxk) ∈ [w∞(M,p, q)]

for all x = (xk) ∈ [w∞(M,p, q)]} .

Theorem 3.1. If M satisfies the ∆2-condition, then
l∞(q) ⊆ S([w∞(M,p, q)]).

Proof. Let a = (ak) ∈ l∞(q), T = supk q(ak) and
x ∈ [w∞(M,p, q)]. Then supm,n(m + 1)−1

∑m
k=0(k +

1)−1
∑k

i=0

[
M

(
q

(
xi+n

ρ

))]pi

< ∞ for some ρ > 0.

Since M satisfies the ∆2-condition, there exists a constant
K1 > 1 such that

(m+ 1)−1
m∑

k=0

(k + 1)−1
k∑

i=0

[
M

(
q

(
ai+nxi+n

ρ

))]pi

≤ (m+ 1)−1
m∑

k=0

(k + 1)−1

k∑
i=0

[
M

(
q(ai+n)q

(
xi+n

ρ

)
q(yi+n)

)]pi

≤ (m+ 1)−1
m∑

k=0

(k + 1)−1

k∑
i=0

[
M

(
(1 + [T ])q

(
xi+n

ρ

))]pi

≤ (K1(1 + [T ]))H(m+ 1)−1
m∑

k=0

(k + 1)−1

k∑
i=0

[
M

(
q

(
xi+n

ρ

))]pi

where [T ] denotes the integer part of T .
Hence a ∈ S([w∞(M,p, q)]).

IV. COMPOSITE SPACE [w1(M
v, p, q)] USING COMPOSITE

ORLICZ FUNCTION Mv

Taking Orlicz function Mv instead of M in the space
[w1(M,p, q)], we define the composite space [w1(M

v, p, q)]
as follows:

Definition 4.1. For a fixed natural number v, we define

[w1(M
v, p, q)] =

{
x ∈ w(X) : (m+ 1)−1

m∑
k=0

(k + 1)−1

k∑
i=0

[
Mv

(
q

(
xi+n − l

ρ

))]pi

→ 0

as m → ∞, uniformly in n,

for some l ∈ X and ρ > 0

}
.

Theorem 4.2. For any Orlicz function M and v ∈ N,
(i) [w1(M

v, p, q)] ⊆ [w1(p, q)] if there exists a constant
α ≥ 1 such that M(t) ≥ αt for all t ≥ 0.

(ii) Suppose there exists a constant β, 0 < β ≤ 1 such
that M(t) ≤ βt for all t ≥ 0 and let n, v ∈ N be
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such that n < v, then [w1(p, q)] ⊆ [w1(M
n, p, q)] ⊆

[w1(M
v, p, q)].

Proof. (i) Since M(t) ≥ αt for all t ≥ 0 and M is
non-decreasing and convex, we have Mv(t) ≥ αvt for each
v ∈ N. Let x ∈ [w1(M

v, p, q)]. Using (2), we have

(m+ 1)−1
m∑

k=0

(k + 1)−1
k∑

i=0

[q(xi+n − l)]pi

≤ max(1, ρH)max(1, α−vH)(m+ 1)−1

m∑
k=0

(k + 1)−1
k∑

i=0

[
Mv

(
q

(
xi+n − l

ρ

))]pi

and hence x ∈ [w1(p, q)].
(ii) Since M(t) ≤ βt for all t ≥ 0 and M is non-

decreasing and convex, we have Mn(t) ≤ βnt for each
n ∈ N. The first inclusion is easily proved by using (2).
To prove the second inclusion, suppose that v − n = s and
let x ∈ [w1(M

n, p, q)]. Again, using (2), we have

(m+ 1)−1
m∑

k=0

(k + 1)−1
k∑

i=0

[
Mv

(
q

(
xi+n − l

ρ

))]pi

≤ max(1, βsH)(m+ 1)−1
m∑

k=0

(k + 1)−1

k∑
i=0

[
Mn

(
q

(
xi+n − l

ρ

))]pi

→ 0 as m → ∞, uniformly in n

and hence x ∈ [w1(M
v, p, q)].

Example 4.3. M1(t) = et− 1 ≥ t and M2(t) =
t2

1 + t
for

all t ≥ 0 satisfy the conditions given in Theorem 4.2(i),(ii)
respectively.

V. INCLUSION RELATION WITH UNIFORM STATISTICAL
CONVERGENCE

The idea of statistical convergence was introduced by Fast
[5] and studied by various authors (e.g., [2], [6], [9], [15],
[21]). Although statistical convergence was introduced over
nearly the last fifty years, it has become an active area of
research in recent years. This concept has been applied in
various areas such as approximation theory [18], turnpike
theory [16], [17], [20] etc.

Definition 5.1 ([6]). The number sequence x = (xk) is
said to be statistically convergent to l if for each ϵ > 0,

lim
n→∞

n−1|{k ≤ n : |xk − l| ≥ ϵ}| = 0,

where the vertical bars denote the cardinality of the set which
they enclose. The set of all statistically convergent sequences
is denoted by S.

The concept, of uniform statistical convergence was intro-
duced by Pehlivan and Fisher [19] as follows:

Definition 5.2 ([19]). The number sequence x is uni-
formly statistically convergent to 0 provided that for each
ϵ > 0,

lim
k→∞

(k + 1)−1 max
n≥0

|{0 ≤ i ≤ k : |xi+n| ≥ ϵ}| = 0 .

The set of all uniformly statistically null sequences is denoted
by Su0 .

We now introduce the following definition:
Definition 5.3. A sequence x = (xk) in X is said to be

uniformly statistically convergent to l ∈ X if for each ϵ > 0,

lim
k→∞

(k + 1)−1 max
n≥0

|{0 ≤ i ≤ k : q(xi+n − l) ≥ ϵ}| = 0 .

We shall denote the set of all uniformly statistically
convergent sequences by Su(q).

Theorem 5.4. For any Orlicz function M , Su(q)∩l∞(q) ⊆
[w1(M,p, q)] ∩ l∞(q).

Proof. Let x ∈ Su(q) ∩ l∞(q). Let yi+n = xi+n −
l. Since x ∈ l∞(q), there exists K > 0 such that

M

(
q

(
yi+n

ρ

))
≤ K for every ρ > 0 and for all yi+n.

Then for given ϵ > 0,

(m+ 1)−1
m∑

k=0

(k + 1)−1
k∑

i=0

[
M

(
q

(
yi+n

ρ

))]pi

= (m+ 1)−1
m∑

k=0

(k + 1)−1

k∑
i=0,q(yi+n)≥ϵ

[
M

(
q

(
yi+n

ρ

))]pi

+ (m+ 1)−1
m∑

k=0

(k + 1)−1

k∑
i=0,q(yi+n)<ϵ

[
M

(
q

(
yi+n

ρ

))]pi

≤ KH(m+ 1)−1
m∑

k=0

(k + 1)−1

max
n≥0

|{0 ≤ i ≤ k : q(yi+n) ≥ ϵ}|

+max

(
1,

(
M

(
ϵ

ρ

))H
)
.

We now select Nϵ such that

(k + 1)−1|{0 ≤ i ≤ k : q(yi+n)| ≥ ϵ}| < ϵ

KH

for each n and k > Nϵ. Now for k > Nϵ,

(M + 1)−1
m∑

k=0

(k + 1)−1
k∑

i=0

[
M

(
q

(
yi+n

ρ

))]pi

< KH ϵ

KH
+max

(
1,

(
M

(
ϵ

ρ

))H
)
.

Hence x ∈ [w1(M,p, q)] ∩ l∞(q).
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