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Abstract—This paper describes the implementation of a
Kalman Filter to separate heart rate and respiratory activity
out of a signal that has been acquired by three different
sensors in parallel. The different techniques of sensor fusion,
signal extraction and signal shaping are merged into one
single state space model. It can be demonstrated, assuming
sine shaped signals for heart and breathing activity, that the
processing performs well when the heart and breathing rate
are approximately estimated. In addition, real-time processing
ability has been evaluated and achieved.

Index Terms—non-contacting sensors, kalman filter, sensor
fusion, vital parameter extraction.

I. INTRODUCTION

KALMAN Filtering techniques can be used either for
sensor fusion, signal extraction or signal shaping. All

three methods have been included into one single set-up.
In this case, a linearised state space model has been used
for calculations. The applied methods are able to extract
breathing and heart activities out of signals that have been
acquired prior to that (c.f. chapter III).

R.E. Kalman et al. [1] firstly introduced this filtering
technique based on the Wiener Filter [2]. The aim of these
filters is to minimise the squared error between real and
estimated signal with the constraint to minimise the variance
as well. With the aid of a-priori knowledge and the modelling
of noise processes, the Kalman Filter offers good properties
for the efficient implementation on computers. In addition,
the overall structure is straightforward. Q. Lee et al. [3]
used Kalman Filters for robust heart rate estimation. Other
examples for signal filtering processes can be found in [4],
[5] and [6].

M. Mneimneh et al. [4] compared different approaches to
remove ECG baseline wandering and found for the Kalman
Filter that it returned best results comparing the mean error
and its standard deviation.

O. Sayadi et al. [5] used a modified, more complex,
Kalman Filter structure to de-noise and compress ECG data
by estimating parameters of a combination of gaussian basis
functions.

A. Schlögl et al. [6] de-trended heart rate variability (HRV)
data to obtain the mean heart rate and do further analysis.

All these examples show that Kalman Filters can be widely
employed in the field of (biomedical) signal processing. The
good results and the easy implementation motivates the use
of such a system.
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II. KALMAN FILTERING

The three introduced methods in the Kalman Filtering
process can be described by a simple block diagram shown
in Fig. 1. Three different sensors S1 to S3 on the left hand
side represent the inputs of the system. On the right hand
side, five different signals are extracted, the breathing as
well as heart activity and three offset signals that describe
the absolute signal amplitude of the sensors, respectively.
Recursive estimation algorithms, such as the Kalman Filter,
are very accurate in the estimation of signal levels and show
good performance when compared to non-recursive estima-
tion algorithms. In addition, they are easy to implement.
With each time step, more and more information about the
system is gathered, since the variance is minimised. The
strongest drawback is the need of accurate knowledge about
the measurement system, noise and signal shapes [7]. In
many cases, it is not trivial to obtain this knowledge for a real
system and it has to be approximated, which compulsorily
leads to a decrease in performance.
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Fig. 1. Kalman Filter Sensor Fusion (Sensors: S1 to S3) and Vital Signs
Extraction

A. General Equations

Usually, using the state vector xk ∈ <N and the measure-
ment vector zk ∈ <M (see (2)), the equations for the Kalman
filter are set up in a state space model, see (1). System and
measurement noise are modelled by the vectors wk and vk.
They are assumed to be normally distributed, mean valued
around zero (white noise) and statistically independent from
each other. The covariance matrices of the noise vectors
are called Q and R, respectively. uk is an optional input
vector, which is related via B to the state vector xk. The
state transition matrix A relates the previous state xk−1 to
the actual state xk. Furthermore, the measurement matrix
H connects the current state to the measurement vector. In
general, the matrices A, B, H, Q and R are time variant,
so that they have to be recalculated at each time step. In a
slowly or never changing system, some or all of them can be
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assumed as constant or only have to be updated after some
time steps.

xk = Axk−1 + Buk−1 + wk−1 (1)

zk = Hxk + vk (2)

The state vector xk is unknown, but can be determined
by using a-priori (x̂−

k ) and a-posteriori (x̂k) estimations.
The estimation errors are defined as e−k = xk − x̂−

k and
ek = xk − x̂. The corresponding covariance matrices are
named P−

k and Pk.
The estimated vector x̂k is calculated by building the

linear combination of the a-priori knowledge (x̂−
k ) weighted

difference between the actual measurement zk and the
predicted state zk −Hx̂−

k in (3). With the system noise
covariance matrix Q and the estimation error covariance
matrix Pk−1, taken from the previous time step, it is possible
to calculate an a-priori estimation error matrix P−

k , see (4).
Kk is known as the Kalman Gain. Its calculations in (5)
use the a-priori error covariance matrix P−

k and the noise
covariance matrix R as well as the measurement matrix
H. Afterwards, the estimation error covariance matrix Pk

is calculated (6).

x̂k = x̂−
k + Kk(zk −Hx̂−

k ) (3)

P−
k = APk−1A

T + Q (4)

Kk = P−
kH

T(HP−
kH

T + R)−1 (5)

Pk = (I−KkH)P−
k (6)

Even with time-invariant system matrices the Kalman Gain
Kk is time-variant as it depends on the estimation error
covariance matrix, which changes at each calculation step.
Furthermore, two special cases can be considered:

• the predicted is more trustworthy than the actual state
Q→ 0⇒ Kk → 0

• the measurement is more trustworthy than the actual
state
R→ 0⇒ Kk → H−1

In measurement systems, the calculations are divided into
two steps, the Measurement Update (mud) and the Time
Update (tud), see Fig. 2. During tud the internal state vector
x̂−
k is estimated (prediction). Afterwards, during mud, the

measurement vector zk is taken into account and aligned
with the prediction.

At this point, it is already noticeable that the Kalman
Filtering is on the one hand able to be used as a sensor
fusion system and on the other as a signal extraction system.
This will be further elaborated in the following chapters II-B
and II-C

B. Sensor Fusion

In general, fusion of different signals need an expansion
of the measurement matrix H to the number of employed
sensors and then has to be linked to the state vector xk. Sys-
tematic analysis of Kalman Filters applied in de-centralised
and centralised fusion layers have already been modelled
and analysed in [10]. Simulated data is biased with linear
as well as non-linear functions and performance of the
different fusion layers is evaluated. Also the effect of having
a defective or broken sensor is analysed.

In this case the fusion occurs on a centralised layer as all
input signals are routed to one single processing filter. No
pre-filtering is applied.

In a first instance, the state transition matrix and its cor-
responding state vector have to be determined. The detailed
derivation of the state transition matrix A and the state vector
xk can be found in the appendix in the case of one sensor
and one signal that has to be extracted. Two vital signals,
which can be approximated by sine shaped signals (breathing
Xs/Vs and heart beat Xf /Vf ) and three different sensors
with different offsets (C1,k-C3,k), are included in this set-
up. Therefore the state vector and the state transition matrix
taken from Eqs. (17) and (18) have to be expanded:

xk =



Xf,k

Vf,k
Xs,k

Vs,k
C1,k

C2,k

C3,k


, (7)

A =



1 ∆t 0 0 0 0 0
−ω2

f∆t 1 0 0 0 0 0

0 0 1 ∆t 0 0 0
0 0 −ω2

s∆t 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


(8)

with ωs = 2π · fs and ωf = 2π · ff as the angular
frequencies of the breathing frequency fs and the heart beat
rate ff respectively.

Additionally, the measurement matrix H, taken from (19),
has to be updated. In the case of the present system, three
different sensors are employed, see Fig. 1. Therefore, the
measurement matrix H has to contain three different rows,
see (9). Each sensor has its own state variable for the offset

H =

hf,1 0 hs,1 0 1 0 0
hf,2 0 hs,2 0 0 1 0
hf,3 0 hs,3 0 0 0 1

 (9)

The parameters hf,1···3 and hs,1···3 have been introduced
to be able to weight the sensors differently during the fusion
process. It highly depends on the signal quality of the sensor.
So if e.g. all sensors are not corrupted, the absolute values of
hf,1···3 and hs,1···3 will tend to 1. If one sensor is too noisy,
its parameters will tend to 0. Negative values of parameters
indicate that the sensor measures the ”same” signal, but
with inverted sign. To determine if a channel has good
signal quality, the variance of the signals can be analysed,
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Fig. 2. Schematic way of iterative Kalman Filter parameter calculation ([2][8][9])

which would indicate high thoracic activity, always assuming
that the signals are not corrupted by moving artefacts or
measurement errors. For the sake of completeness it has to
be said that the optional input signal uk in (1) has not been
used in the state model.

C. Signal Extraction

A major task in finding the optimal model parameters
is the determination of the system and measurement noise
Q and R. In general, small values in the Q matrix mean
a high smoothing and larger ones more adaptation to the
(noisy) measured signal (with same R matrix). It also has
been shown that higher sample rates achieve better filtering
performance [11]. Good values for the matrix items in R can
be set by evaluating the standard deviations (σ1···3) of each
sensor without external stimulation (idle measurement):

R =

σ1 0 0
0 σ2 0
0 0 σ3

 (10)

III. RESULTS AND DISCUSSION

The Kalman Filtering procedure has been applied to a
real measurement set-up. It includes three different non-
contacting sensors, placed on back of the body without
any direct contact to the person. The sensors are based on
measuring general impedance changes in the body due to
thoracic activity, including breathing and heart beat. The
detailed technical description of the sensory functioning is
not part of this paper.

In addition to those signals, an airflow sensor attached to
a breathing mask (FlowSensor) and a pulse-oximetry finger
clip sensor (PPG) have been recorded as global references
for respiration and heart beat activity (see Fig. 3). All the
sensor signals have been recorded in parallel with a sample
rate of 30 Hz. In time domain, the respiratory signal can
be recognised in all raw sensor signals. The heart activity
is not clearly visible, but present, as correlation analysis to
the reference signal in the frequency domain have shown. It
turned out that the amplitude change of the heart activity is
about 1% compared to the breathing signal amplitude. This
encourages to define the higher frequency components in the
measurement matrix as hf,1···3 = 0.01 ·hs,1···3 to reduce the
amount of tunable parameters. For the measurement extract
of 20 seconds in Fig. 3, best results were obtained with
hs,1···3 =

(
−0.44 0.29 0.27

)
. This measurement shows

the case of one sensor (Sensor 1) measuring the breathing

signal with inverted sign compared to Sensor 2 and 3. This
effect can be seen best in the first three plots at t = 38 s on
the time scale. Sensor 1 also has the best signal shape, thus
giving it more influence in the measurement matrix.

Unfortunately, depending on the location of the sensor,
unpredictable drifting, undesired body movements (artefacts)
and different measurement principles - of course all of them
having their benefits and drawbacks - unwanted noise is in-
duced. These effects have to be considered in the processing
algorithms. Due to the complexity of the specified facts,
the standard deviation of the noise could not be determined
accurately. Therefore, for simplicity reasons, the values for
σ1···3 were set to 1, assuming equal sensor noise.

The last necessary system design has to be performed on
the Q matrix. In fact, the three sensor offset states Ck,1···3
represent the average of the recorded signal, which yields
to low matrix values for the last three states, as stated in
chapter II-C. For respiratory and beat activity, this smoothing
has to be reduced by increasing the matrix values for the
corresponding states. Good results could be achieved using
the matrix in (11).

Q =



1000 0 0 0 0 0 0
0 1000 0 0 0 0 0
0 0 100 0 0 0 0
0 0 0 100 0 0 0
0 0 0 0 10 0 0
0 0 0 0 0 10 0
0 0 0 0 0 0 10


(11)

Until this point, the values for the heart beat and breathing
rate, ff and fs respectively, were not included into the
model. The Kalman Filter is only as good as its model.
Therefore, it is crucial to set ff and fs correctly to obtain
best results. In general, these two values are not known, so
that they have to be guessed. Fig. 3(a) and Fig. 3(b) show
the cases that the breathing frequency has been set correctly
(fs = 0.26 Hz) and consciously wrong (fs = 0.6 Hz),
respectively. It is clearly visible that the filtering performance
of the respiratory signal is highly degraded. As the frequency
has been estimated much too high in the second case, higher
frequency components can also be found at the Kalman Filter
output compared to the first case. Nevertheless, the extraction
of the heart beat signal is hardly affected. Also the extraction
of this signal with very low amplitude, nearly invisible in the
time domain of the raw data, has been achieved.

Another point of view of this signal processing algorithm
is the real-time ability. In medical systems, especially whilst
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(a) Good breathing and heart frequency estimations (with fs = 0.26 Hz
and ff = 0.9 Hz).
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(b) Poor breathing frequency and good heart frequency estimations (with
fs = 0.6 Hz and ff = 0.9 Hz.

Fig. 3. Kalman Filter results showing the three sensor signals and extracted vital signals with references (arbitrary units)

monitoring vital parameters, it is often desired to process
signals as fast as possible. Therefore, the calculations, al-
gorithms and visual display should not delay the original
signal. In this work, the analysis has been performed off-
line. Nevertheless, it is possible to make a conclusion on
this point by measuring the total processing time of a large
data set. The calculation time of a 120 second data segment
took about 2-3 seconds on a standard workstation (DualCore
Intel R©Pentium 4 at 2.4 GHz CPU frequency and 2 GB
RAM). This already shows that even with seven states in
the state vector, it is possible to do the signal processing
in real-time. It also means, that an expansion to higher
sampling rates is imaginable, resulting in even better filtering
performance as the linearisation process is more accurate.

IV. CONCLUSION

Within this paper it has been shown that the Kalman
Filtering technique allows to fuse sensors, extract signals
and filter them directly in one processing block and in real-
time. Nearly all matrices can be determined empirically. The
only drawback is the missing knowledge about the correct
frequencies ff and fs in the state transition matrix A. A
certain misalignment is tolerable, but the better the correla-
tion frequencies to the real signal frequency the better the
performance of the whole filtering. This issue can be solved
by extending the linear state transition behaviour to a non-
linear and adaptive transfer function (also called Extended
Kalman Filter [8]). The missing frequencies would then
also be estimated. Another approach is to use independent

Kalman Filters for each sensor signal in a de-centralised
configuration and to merge the outputs. In [9] it has been
shown that the estimations of the states can then be improved.

APPENDIX
DERIVATION OF STATE TRANSITION MATRIX AND STATE

VECTOR

The following derivation has been taken and adapted from
P. Spincemaille et al. [11]. They introduced a periodic motion
model. The state transition matrix A and the state vector xk

can be derived as followed (assuming only one measurement
signal as measurement). A signal X(t) changing with the
speed V (t) = dX(t)

dt can be approximated by using the
first Taylor polynomial. Assuming small time steps ∆t, the
inverse of the sampling frequency Fs, it results in:

X(t+ ∆t) ≈ X(t) + ∆t
dX(t)

dt
= ∆tV (t) (12)

V (t+ ∆t) ≈ V (t) + ∆t
dV (t)

dt
(13)

Furthermore, we assume a periodic sine shaped signal
with an angular frequency ω:

X(t) = sin(ω · t) (14)

Then, we obtain the speed V (t) and its first derivative
dV (t)
dt , which is again dependent on X(t):

V (t) = ω · cos(ω · t) (15)
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dV (t)

dt
= −ω2 · sin(ω · t) = −ω2 ·X(t) (16)

Inserted into (12) and (13), we obtain the discrete state
vector and state transition matrix for one sine shaped signal.
Often signals are biased with a constant or slowly changing
offset that does not contain relevant information about the
desired signal. To remove this offset, an additional state Ck

is introduced, that contains the estimated offset value of the
signal. Finally, the following state equations are defined:

xk =

Xk

Vk
Ck

 (17)

A =

 1 ∆t 0
−ω2∆t 1 0

0 0 1

 . (18)

The measured states in the filtering process in this case
contain the desired signal in Xk and the undesired offset in
Ck. Thus the measurement matrix H is set to:

H =
(
1 0 1

)
. (19)

The noise covariance matrices Q and R are strongly
dependant on the applied measurement system. Therefore,
no values are given at this point. For concrete values, see
chapter III.
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