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Abstract—The pull-in instability places substantial restric-
tions on the performance of electrostatically driven MEMS
devices by limiting their range of travel. Our objective is to
present a systematic method of carrying out optimal design of
novel types of electrostatic beams that have enhanced travel
ranges. In this paper, we implement a shape optimization
methodology using simulated annealing to maximize the static
pull-in ranges of electrostatically actuated micro-cantilever
beams. We use the Rayleigh-Ritz potential energy minimization
technique to compute the pull-in displacement and voltage
of each micro cantilever beam. A versatile parametric width
function is used to characterize non-prismatic micro-cantilever
geometries and the pull-in displacement of the cantilever is
maximized with respect to the parameters of the proposed width
function. Geometric constraints encountered in typical MEMS
applications are incorporated into the optimization scheme
using a penalty method. The simulated annealing algorithm uses
different cooling schedules with the same number of objective
function computations. We consider a matrix of several test
cases in order to successfully demonstrate the utility of the
proposed methodology. Our results indicate that an increase in
the pull-in displacement of as much as 20% can be obtained
by using our optimization approach. We have also compared
our results with those obtained using traditional optimization
approaches. We find the results are fairly independent of
the cooling schedule used which demonstrates the usefulness
and flexibility of this method to carry out optimal design of
structural elements under electrostatic loading.

Index Terms—MEMS, Simulated Annealing, Shape Opti-
mization, Pull-in Instability, Electrostatic Actuator, Micro Can-
tilever

I. INTRODUCTION

THE word MEMS is an acronym for Micro Electro-
Mechanical System. Rapidly emerging technology of

MEMS combines many diverse fields within engineering and
science to develop devices and systems that perform highly
precise functions. Successful and commercialized MEMS
actuators include digital micro mirror device, automotive
crash sensors, ink jet printer nozzles, catheter tip pressure
sensors, etc [1]. There are two basic components of MEMS,
sensors and actuators. The actuator contains the mechanical
members, which are acted upon by various mechanisms like
electromagnetic, thermo actuation, use of shape memory
alloys, piezo actuation, magneto static actuation and elec-
trostatic actuation. Out of all these, electrostatic actuation
is widely used. The popularity of electrostatic actuation in
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MEMS is because of their simple construction, compatibility
with micro fabrication processes, and lower power consump-
tion relative to other actuation methods [2].

II. BACKGROUND AND MOTIVATION

The principal drawback in using electrostatically driven
systems is the well-known pull-in instability in which one
of the movable capacitor plates forming the actuator strikes
its fixed counterpart after traveling a certain distance. The
immediate consequence of pull-in is the snapping of two
electrodes, which can cause a short circuit and it will make
the device non- functional [3]. Though useful in some of
the cases like measurement of the material properties, the
inherent phenomenon of pull-in hampers an efficient use
of electrostatic actuators in many applications that require
greater travel range of operation like digital micro mirror
device (DMD) [2],[4]. The origin of the pull-in instability
lies in the interaction of nonlinear electrostatic force; which
varies as per an inverse square law and the linear mechanical
restoring force. Pull-in displacements as percentages of the
original gaps in many structural models of these actuators
are 33.33% for parallel plates, 45% for cantilevers, 44.04%
for torsional actuators and 35.8% for fixed-fixed beams [5].
This means that in most applications more than 50% of
the original gap is not available for travel of the movable
electrode. This is the motivation behind the present work to
propose newer actuators which will permit to us to access
more of the available gap and will also permit us to gain
more control over the pull-in displacement.

Starting from an original prismatic shape (i.e. constant
width), the objective of the present work is to arrive at
optimum width profiles b(x) for the microcantilever beam
such that the occurrence of the pull-in instability is delayed
to the maximum possible extent, thereby increasing the travel
range of the device [5]. While doing so, we assume a few
constraints that are of interest to the engineering design of
microbeams. These include, a constant volume constraint and
constraints on the maximum and minimum allowable width.
The constant volume constraint helps in comparing the two
designs (prismatic and nonprismatic), for their performance,
when both of them consume same amount of material during
their fabrication. In addition, this constraint precludes the
role of volume of an actuator in controlling its pull-in
parameters and thus allows us to focus on the actuator’s
shape instead.

The maximum width constraint is motivated from the
spatial constraints on the device, such as a fixed number of
beam like actuators on a given chip in case of a specific
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application. The minimum width constraint is due to the
limitation on the minimum feature size that a specific MEMS
manufacturing process may have. For example, the design
rules of PolyMUMPs suggest the minimum feature size to
be limited to 3µ [6]. Also, in some cases, the width of
a beam-like structure has to be more than some specific
minimum value in order to mount transducer elements on
the cantilever [7]. In some configurations, minimum width
may be limited by the maximum allowable stress in the
microbeam. In this section, we implement the proposed
optimization framework to obtain the optimal shapes of
electrostatically actuated microbeams which maximize their
pull-in range, while obeying the imposed constraints.

To this end, we use simulated annealing as an optimization
tool to design electrostatically driven cantilevers with vari-
able geometries that lead to extended travel ranges. There are
several other techniques of optimization which can be used
for MEMS optimization like Genetic Algorithm and Nelder
Mead algorithm [8]. Example of it is GA used for model
updating of a multiphysics MEMS Micromirror [9]. Simu-
lated annealing (SA) is one of the most flexible techniques
available for solving hard combinatorial problems. The main
advantage of SA is that it can be applied to large problems
regardless of the conditions of differentiability, continuity,
and convexity that are normally required in conventional op-
timization methods. In this paper, the principles of simulated
annealing are presented for MEMS application. As happens
with other combinatorial techniques, the coding of solutions,
the neighborhood definition of a given configuration, the
evaluation function and the transition mechanisms are critical
to the success of practical implementations of simulated
annealing [10].
In this paper, we use simulated annealing to maximize the
static pull-in displacement of a cantilever with respect to
design parameters that characterize the in plane geometry of
the beam.

III. METHODOLOGY
First we present a Rayleigh-Ritz-based energy minimiza-

tion method that is used to compute the pull-in parameters
(displacement and voltage) of any cantilever beam with
variable width [11]. Consider the cantilever beam as shown
in figure 1 having length L, width b and thickness h, used as
a movable electrode in the electrostatic actuator system. The
fixed electrode is located at the bottom and the two electrodes
are separated by an initial gap g0. When voltage V is applied
across the two electrodes, the cantilever deforms under the
action of electrostatic force [11].

Using Euler-Bernoulli beam theory, the governing differ-
ential equation is given by [12]

E
b̂ (x̂)h3

12
d4û (x̂)
dx̂4

= q(x̂) =
εb̂ (x̂) V̂ 2

(g0 − û(x̂))2
(1)

where, û ˆ(x) is the deflection of the beam, which is a
function of the coordinate x̂ measured along its length. V̂
is the applied voltage, ε is the permittivity of free space,
ˆb(x̂) is the width at distance x̂ from fixed end. Using the

appropriate kinematic boundary conditions for the cantilever,
the assumed displaced shape can be written in terms of a as

û(x̂) = a(6L2x̂2 − 4Lx̂3 + x̂4) (2)

Fig. 1. Schematic of an electrostatically actuated variable width micro
cantilever

The total potential energy of the electrostatic-elastic sys-
tem can be written as

π̂ =
Eh3

24

L∫
0

b̂ (x̂)
(
d2û(x̂)
dx̂2

)2

dx̂− εV̂ 2

2

L∫
0

b̂ (x̂) dx̂
(g0 − û (x̂))

(3)
Assuming the constant width of prismatic beam b0,the

expression for the b̂(x̂) can be written as

b̂(x̂) = b0ŵ(x̂) (4)

where ŵ represent the scaling of b0 along the length of the
cantilever beam. We now define the following dimensionless
entities in order to generalize the analysis.

u(x) =
û(x̂)
g0

x =
x̂

L

V 2 =
εb0L

4V̂ 2

2EIg3
0

I =
b0h

3

12
where I is the area moment of inertia of the rectangular
prismatic microbeam. Using the above dimensionless entity,
the normalized total potential energy can be written as

π =
12π̂L3

Eb0h3
(5)

Following the principle of minimum potential energy
[12]and the condition for instability to determine the pull-
in parameters of the system.

dπ

da
= 0 (6)

Eh3

12

L∫
0

b (x)
[
u
′′
(x)
]
dx− εV 2

2

L∫
0

b (x) du(x)
da dx

[g0 − u (x)]2
= 0 (7)

d2π

da2
= 0 (8)

Numerical integrations in the above equation have been
carried out using 9 point Gauss quadrature rule. On sim-
plification, a polynomial equation in a is obtained, which
is of 7th order, which also contains the terms of V . If we
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assume the values of E, I, ε0, b, L and g0 as equal to unity
for convenience, then the resulting polynomial equation can
be solved using voltage iteration scheme. We propose that the
variable width along the length of the beam can be described
by the function [13]

b (x) = αb0 (1− fxn)m (9)

where α, f , m and n are the constants and b0 is the initial
width of a beam and x is the location along the length of
the beam.

Our objective is to determine the optimal parameters,
α, f , m and n of the width function given by equation
9,which maximize the pull-in displacement. We convert
maximization problem into a minimization problem. In the
following, we formulate the augmented objective function
of optimization using the penalty approach.The optimization
problem can be stated as follows

Minimize
G(α,m, n, f) = 1− ups + P1 (Carea) +
P2 (Cbmin + Cbmax + Cf + Cmn)

(10)
Subject to the following constraints.

bmin

L
≤ b (x)

L
≤ bmax

L
(11)

1∫
0

b0dx =

1∫
0

b (x)dx (12)

0 ≤ f ≤ 1 (13)

0 ≤ m ≤ ∞ (14)

0 ≤ n ≤ ∞ (15)

where ups = u(x)|x=1, is the maximum deflection of the
cantilever beam in static mode. bmin is the minimum width
and bmax is the maximum width allowed in the cantilever
beam.P1 and P2 are the penalties used on violation of the
constraints. The constraints on the minimum and maximum
width are driven by the least achievable dimensions in typical
MEMS fabrication processes and constraints on dimensions
in the end device respectively. The constant area constraint
is motivated by the need to avoid trivial solutions of the
optimization problem and in addition to observe the effect
of shape, rather than the size, on the pull-in behavior of
the actuator under considerations [8]. The five constraint
related quantities, which are multiplied by the penalties are
explained here,

1) The term Carea quantifies the degree to which the
constant-area constraint is violated

Carea =

1−
1∫

0

b (x)dx

2

2) The term Cbmin quantifies the degree to which the
minimum width constraint is violated.

Cbmin =
[
min

(
0, bimin − bmin

)]2
where, bimin represents the minimum width of the
beam-shape that is obtained in any representative in-
termediate ith iteration.

3) The term Cbmax quantifies the degree to which the
constraint on the maximum width is violated. This term
is mathematically expressed as,

Cbmax =
[
min

(
0, bimin − bmax

)]2
where, bimax represents the maximum width of the
beam-shape that is obtained in any representative in-
termediate ith iteration.

4) The value of the parameter f should be between 0
and 1. Zero value of f indicates a prismatic geometry,
while f = 1 indicates the beam having zero width at
the free end, which is practically not possible

Cf = [max (0, (f − 1)]2 + [min(0, f)]2

5) On similar logic, the indices m and n need to be
positive in order to avoid the infeasible geometries of
microbeams. This constraint is included in the term
Cmn, which is mathematically expressed as,

Cmn = [min (0,m]2 + [min(0, n)]2

The penalty P1 = 100 is set on the violation of the area
constraint. Our numerical experiments have shown that using
this value of penalty P1, the area constraint is satisfied within
0.025%. The penalty P2 is set to 10000 in order to strictly
satisfy the constraints on the maximum and minimum width
and those on the parameters of the width function.As such, it
is very difficult to comment on the smoothness of ups, with
respect to the four parameters of the width function, i.e.,α,
f , m and n. Therefore, instead of numerically calculating the
partial derivatives of ups with respect to the four parameters
and then using derivative based algorithms to find their
optimal values, it is recommended to use the derivative free
algorithms of minimization which operate on the function
values rather than their derivatives.The simulated annealing
is a well-known random search scheme, originally suggested
by S. Kirkpatrick in 1983 [14]. This optimization technique
minimizes a scalar-valued nonlinear function of several real
variables using only function values, without any derivative
information. For the case under investigation, starting from
an initial guess of the four parameters α, f , m and n,
the SA algorithm modifies the guess in order to reduce the
scalar value of G in every iteration. MATLAB programming
environment is used to implement the simulated annealing
technique of function minimization. In the upcoming section,
we present and discuss the results obtained by implementing
the proposed optimization framework.

IV. SIMULATED ANNEALING METHODOLOGY

Simulated annealing (SA) is a random-search technique
which exploits an analogy between the way in which a metal
cools and freezes into a minimum energy crystalline structure
(the annealing process) and the search for a minimum in a
more general system; it forms the basis of an optimization
technique for combinatorial and other problems [15]. The
two main features of the simulated annealing process are (1)
the transition mechanism between states and (2) the cool-
ing schedule. When applied to combinatorial optimization,
simulated annealing aims to find an optimal configuration
(or state with minimum energy) of a complex problem. The
algorithm employs a random search which not only accepts
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changes that decrease the objective function(assuming a
minimization problem), but also some changes that increase
it [16]. Parameters affecting the result of simulated annealing
are initial and final temperature, cooling schedule, number of
transitions. Out of these, choice of cooling schedule is most
crucial.It is the scheme used for moving from trials at one
temperatureTi to another temperature. Ti+1 = FTi. Here F
represents the rate at which cooling is carried out. Procedure
to solve optimization problem by SA is as follows [17]

1) Let the f(X) is to be minimized for design vector Xi,
with the constraints Xi(l) <= Xi <= Xi(u)

2) Start with some initial point X0 and calculate f(X0)
3) At the current state i of the solid with energy fi =

f(X0) a subsequent set i+ 1 is generated by applying
a perturbation mechanism which transforms the current
state into a next state by a small distortion for instance
by displacement of a particle. The energy of the next
state is fi+1.

4) The acceptance of new point i+1 is based on Metropo-
lis criteria

5) If fi+1 − fi <= 0, i+ 1 is accepted as a current state
but if fi+1 − fi > 0 i is accepted with the probability

P (∆f) = e
(fi+1−fi)

KbT

6) Kb is a Boltzman constant, T is Temperature ∆f =
f(Xi+1)− f(Xi)

7) Repeat the procedure till T becomes very small
In our application we have used four cooling schedules which
are as follows[17]:

1) Balling cooling schedule: According to Balling [18]

F=
(logPs)(

1
(N−1)

)
(logPf )

(16)

where N = no of iteration ,Ps and Pf is the probability
of accepting worse move in the beginning and at the
respectively.

2) Logarithmic cooling schedule:

F =
(3σold)

(1 + Ti log(1 + δ))
(17)

σold is the standard deviation of the costs of the
configurations generated at the previous temperature
level i.e.Ti and δ is the distance parameter

3) Exponential cooling schedule:

F =
1

e(λTi/σold)
(18)

λ is the constant varying from 0.1 to 0.001.
4) Geometric cooling schedule: In this schedule F is

directly taken in the range from 0.9 to 0.99.

V. RESULTS AND DISCUSSION

In this section, application of simulated annealing op-
timization technique in obtaining the optimal shapes of
micro cantilever beam which maximize their pull-in range
is demonstrated. We first consider a matrix of nine test cases
formed by three different levels of minimum and maximum
width constraints.In order to maintain the generality, we
choose L = 1. The width of the original prismatic micro can-
tilever is chosen as b0 = 0.15L [8]. The three levels of maxi-
mum width constraints are chosen as,bmax/L = 0.2, 0.3, 0.4,

while the three levels of minimum width constraints are cho-
sen as, bmin/L = 0.02, 0.04, 0.06 as shown in Table I. The
present set of nine case is applicable to any beam geometry
having the ratio of b̂0/L̂ = 0.15. For example for a typical
microbeam with length L̂ = 200 µm and width b0 = 30
µm, the case with b̂max/L̂ = 0.3 and b̂min/L̂ = 0.04
corresponds to the maximum width constraint equal to 60
µm and minimum width constraint equal to 8µm. For all
nine cases, we maximize the travel range by incorporating
the procedure mentioned in the previous section. Decreasing
the area of overlap between fixed and movable electrode at
the weakest section of the beam (free end) reduces the local
intensity of the electrostatic force at that location thereby
increasing the travel range. Numerical values indicate that
for all the nine cases the area constraint is violated by less
than 0.025%. Amongst the considered set of nine cases, the
travel range can be maximized by 20% using Balling cooling
schedule (case 3).

Looking at the result we note that if we give enough time
for each cooling schedule the results obtained are very near
to those obtained using Nelder Mead algorithm. It is also
seen from the results that cases in which narrower at the
free end tend to exhibit more travel range. Due to imposed
constant-area constraint, more beam material is placed near
the fixed end of the micro cantilever beam.

We have used number of iterations N = 35000 for all
cooling schedules. The width function is as follows

b(x) = αb0(1− f(x)n)m (19)

TABLE I
INPUT DATA FOR VARIOUS CASES

bmin/L ↓ bmax/L→ 0.2 0.3 0.4

0.02 Case 1 Case 2 Case 3

0.04 Case 4 Case 5 Case 6

0.06 Case 7 Case 8 Case 9

Initial conditions for all the parameters are as follows.
m = 0, n = 1, α = 1, f = 1. These values refer to the
rectangular geometry.

A. Balling cooling schedule:

Using Balling cooling schedule following are the values of
the parameters Ps = 0.99999,Pf = 0.00001, Ti = − 1

(logPs) .

TABLE II
OPTIMIZED PARAMETERS USING BALLING COOLING SCHEDULE

Case m n α f ups

1 10.250298 4.236121 1.322676 0.19379 0.523135

2 2.578837 1.331798 1.958812 0.617247 0.525621

3 7.668786 1.757603 1.90588 0.289606 0.536894

4 6.890679 9.002083 1.169594 0.306000 0.510665

5 11.584822 1.827703 1.629923 0.144241 0.504795

6 7.639875 1.776813 1.657084 0.212944 0.505416

7 5.853314 3.061333 1.254242 0.174651 0.484518

8 4.310797 3.593793 1.207178 0.224494 0.483571

9 2.55539 1.645953 1.45439 0.397253 0.485762
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B. Logarithmic cooling schedule:

Values of the parameters are Ti = 45800 , δ = 0.1

TABLE III
OPTIMIZED PARAMETERS USING LOGARITHMIC COOLING SCHEDULE

Case m n α f ups

1 7.165915 3.912808 1.337301 0.27012 0.525132

2 5.266267 4.234209 1.327773 0.355997 0.524805

3 4.803242 1.326269 2.108531 0.407502 0.525477

4 2.968883 3.4914 1.26476 0.407891 0.499075

5 7.360817 2.191086 1.50969 0.20894 0.50465

6 7.130526 2.064105 1.542995 0.219369 0.505445

7 5.987075 6.378461 1.109323 0.138207 0.474509

8 1.514529 2.427 1.265898 0.520961 0.482671

9 6.574407 2.457781 1.323455 0.166233 0.486019

C. Exponential cooling schedule:

Using exponential cooling schedule following are the
values of the parameters Ti = 50000 , λ = 0.001.

TABLE IV
OPTIMIZED PARAMETERS USING EXPONENTIAL COOLING SCHEDULE

Case m n α f ups

1 3.050779 3.626343 1.325517 0.496072 0.516787
2 5.266267 4.234209 1.327773 0.355997 0.524805
3 3.102129 1.710787 1.804173 0.563229 0.533988
4 2.96888 3.4914 1.26476 0.407891 0.49908
5 7.360817 2.191086 1.50969 0.20894 0.50465
6 3.112345 0.870452 2.291207 0.482457 0.497802
7 2.506305 3.821395 1.180953 0.343579 0.481579
8 7.496556 2.103352 1.370872 0.144783 0.483836
9 11.92556 3.139586 1.246247 0.090354 0.484944

D. Geometric cooling schedule:

Using Balling cooling schedule following are the val-
ues of the parameters α = 0.999 , Ti = 50000.

TABLE V
OPTIMIZED PARAMETERS USING GEOMETRIC COOLING SCHEDULE

Case m n α f ups

1 2.351767 4.698475 1.229493 0.608871 0.51378

2 12.23655 2.107813 1.743387 0.188148 0.537542

3 2.940951 1.856634 1.724789 0.578311 0.533724

4 15.04048 3.691606 1.276886 0.0909558 0.50161

5 1.993659 1.882712 1.468635 0.554507 0.498626

6 1.87657 2.25872 1.399555 0.584287 0.500995

7 2.506305 3.821395 1.180953 0.343579 0.481579

8 7.358758 2.239256 1.358018 0.153282 0.486289

9 7.358758 2.239256 1.358018 0.153282 0.486289

E. Comparison of Results of SA with Nelder Mead

We have compared the results obtained using various
cooling schedule of simulated annealing with the Nelder
Mead algorithm for optimization.The percentage of travel
range is compared and mentioned in the following table.

TABLE VI
COMPARISON OF TRAVEL RANGE WITH NELDER MEAD ALGORITHM

Case SA SA Log- SA Expo- SA Geo- Nelder-
no. Balling arithmic nential metric Mead
1 52.3135 52.5132 51.6787 51.378 52.72
2 52.5621 52.4805 52.4805 53.7542 53.78
3 53.6894 52.5477 53.3988 53.3724 54.06
4 51.0665 49.9075 49.9075 50.161 49.97
5 50.4795 50.465 50.465 49.8626 50.47
6 50.5416 50.5445 49.7802 50.0995 50.48
7 48.4518 47.4509 48.1579 48.1579 48.46
8 48.3571 48.2671 48.3836 48.6289 48.61
9 48.5762 48.6019 48.4944 48.6289 48.61

F. Optimized Shape of the Microcantilever beam

In order to visualize the obtained width profiles, we select
representative case(3) and case(7) and plot the optimal shapes
of the movable electrode of the cantilever beam in the figures
2 and 3.

Fig. 2. Optimum width profile for case 3 that result in an enhanced travel
range

Fig. 3. Optimum width profile for case 7 that result in an enhanced travel
range

For a given set of system parameters and constraints, the
proposed methodology can thus be applied to obtain the
optimum width distribution of micro cantilever beam. In the
following we summarize the important conclusions drawn
from the investigation.

VI. CONCLUSION

From the above results we can conclude that travel range
of cantilever beam under electrostatic loading after optimiz-
ing the shape using SA technique can be increased to 53.68%
from 45% of the rectangular beam.
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If we give large number of iterations for SA almost all the
cooling schedules are giving the results very close to each
other.But it is difficult to say that whether a particular cooling
schedule works better than the rest for all the nine cases.
We also compared results obtained from simulated annealing
with those obtained using the Nelder-Mead algorithm and
find that the two results match reasonably well. In addition,
we note that the obtained shapes easily lend themselves to
fabrication by surface micromachining techniques and can
thus be realized in practice without much difficulty.
Based on the case studies in this work, we can conclude
that the proposed approach is an effective and flexible design
tool capable of solving more complex structural optimization
problems encountered in the context of electrostatic actuators
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