
 

  
Abstract— The independent modal control to suppress the 

vibration of nonlinear flexible structures is applied in this 
paper. Technological improvements in the mechanical field 
showed during the recent years have led to high-performance 
systems with low weight and, as a consequence, high flexibility 
and low damping. Here active control quickly bettered the 
traditional passive damping systems. The structure 
investigated in this paper is a multi-body flexible boom moved 
by hydraulic actuators. The nonlinear system dynamic was 
numerically modeled and a control strategy, based on the use 
of the same actuators, was developed. Finally a test rig was 
created to experimentally validate the proposed approach. 
 

Index Terms— Independent modal space control, nonlinear 
control, vibration suppression 
 

I. INTRODUCTION 
In recent years vibration control has been increasingly 

used not only in aerospace research but also in many 
mechanical application fields. The need for weight 
reduction to improve system performance led to structures 
with high flexibility and low damping. These structures 
suffer fatigue and instability issues raising, as a 
consequence, a number of safety questions. Traditional 
external passive control methods are generally more 
invasive, introducing mass into the structure, and less 
effective in a large range of frequencies. On the other hand, 
active control is an attractive solution, especially 
considering the extensive development of calculator 
hardware and the consequent cost reduction. Among the 
different control techniques proposed in recent decades, 
modal control offers many advantages thanks to its 
immediacy and connection to the dynamic design of the 
system. Moreover the improvement of sensor and actuator 
technology and innovative algorithms allows the spillover 
limits due to the truncated modes and unmodelled dynamic 
to be partly overcome. 
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In literature modal control was introduced by Balas [1] 
and Meirovitch [2] between the 1970s and 1980s. Balas’ 
studies deal with vibration suppression in large spacecraft 
structures, applying the modal expansion theorem and 
modal control. Some years later Meirovitch proposed an 
independent modal space control (IMSC) using the modal 
filter technique for estimating the modal coordinates [3]. 
The method was further improved by Baz and Poh [4], who 
suggested a modified independent modal space control 
(MIMSC) for optimal gain calculation adopting 
piezoelectric actuators. 

Anyway Lin and Chu [5] demonstrated that modal 
control, for a general dynamic system with complex mode 
shapes, does not assure stability even for the controlled 
modes. The spillover problems were partially cushioned by 
the use of distributed sensor and actuators (Lee and Moon 
[6]) and some applications of IMSC for the control of 
flexible linkage mechanism (Zhang [7] and Changjian [8]) 
can be found. In 2001, Inman too [9] discussed the spillover 
issue associated with modal control, concluding that modern 
technology makes the problem manageable. 

Moreover, modal control can be employed in conjunction 
with FEM for model definition, as shown by Skidmore [10] 
and Khulief [11]. They studied an active control scheme for 
vibration suppression in a single beam/cable structure, 
considering also its large motion. 

This paper deals with independent modal control on a 
multi-body (MB) non-linear flexible boom. In particular 
suppression of the vibration caused by the large motion of 
the structure was investigated. Because only a few modes 
actively participate in describing the system’s dynamic 
behavior, modal control is particularly useful. 

The modal model required for the control law synthesis 
can be defined both experimentally, through a modal 
parameter identification campaign, or numerically, by 
means of FEM. In the proposed work a FEM approach was 
followed. The model not only allowed control/observer gain 
to be defined through pole placement techniques, but also 
permitted numerical simulations. At the same time a test rig 
was created to validate the defined control law. Finally a 
comparison between the behaviour with and without control 
is proposed. 

II. THE SYSTEM 
The boom is composed of a number of segments, 

connected to each other with revolving joints (Fig. 1). Each 
segment’s movement is generated by an hydraulic actuator 
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through a kinematic chain assumed to be rigid. 
 

 
Fig. 1.  The test rig 

 
Owing to the length and the low flexional stiffness of the 

section, the structure presents high flexibility producing, in 
normal operating conditions, low frequency vibrations, 
generally associated with a low damping ratio.  

A numerical model, described in [12], was developed as a 
tool both for defining the control logic and for simulating 
boom behaviour. The boom kinematics were solved using 
the “floating frame of reference” formulation [13] to 
describe the large motion and the Finite Element Method 
(FEM) to model the segment flexibility. Using the Lagrange 
formulation, the boom’s non-linear equation of motion was 
obtained 

 

( ) ( ) [ ] ( )actact, Tf t= +⎡ ⎤⎣ ⎦M z z z z Λ F  (1) 

 
where 
- z  represent the independent variable vector, 

containing all the segment rotations and nodal 
displacements 

- ( )⎡ ⎤⎣ ⎦M z  represents the inertial contribution; 

- ( ),f z z  contains all the non-linear damping, elastic 
and gravitational terms 

-  actF  represents the large motion actuator forces and 

[ ]actΛ  represents the kinematic relationship between 
the actuator length and the independent coordinates 
vector z . 

Eq. (1) is a non-linear equation because all the matrices 
depend on the motion variables and in particular on the 
segment configuration. 

To study the vibration problem and obtain system 
eigenvalues, the non-linear equation can be evaluated and 
linearized in each boom configuration. In a generic 
configuration of the system “ i=z z ”, the (1) becomes 

 

[ ] [ ] [ ] ( ) [ ] act
T

i i i g ii i i iδ δ δ+ + = +M z R z K z f z Λ F  (2) 
 
where 
- iδ z  is defined as i iδ = −z z z  

- [ ]iM  and [ ]iK  respectively represent the inertial and 
elastic matrices, considering both the structural and 
gravitational terms and the actuator contribution; 

- the damping term [ ]iR  is assumed to be proportional 
to the elastic and inertial ones. The proportional 
coefficients are estimated from experimental data; 

- gf  represents the constant contribution of the 
gravitational term. 

Owing to the low segment rotation speed, centrifugal and 
Coriolis terms were assumed as negligible. 

The following paragraphs present and 
numerically/experimentally investigates a control logic for 
reducing the structural vibrations. 

III. ACTIVE CONTROL 
In operating conditions, the system described earlier is 

subjected to a generic large motion which causes, because 
of the high flexibility of the segments, significant vibration 
levels. To suppress these vibrations ( iδ z ), this paper 
proposes applying a control action using the same actuators 
used to move the individual segments. In many practical 
applications, in fact, the actuator number and position is 
assigned and cannot be modified. 

The vibration control logic adopted is based on an 
independent modal approach [2,14,15]. Following this 
approach, the control action is calculated starting from the 
system vibratory state and a suitably defined gain matrix. In 
particular the vibratory state is described by a set of modal 
coordinates representing the system dynamics in the 
frequency range of interest. The modal coordinates, which 
for a generic application cannot be measured directly 
(unless we use distributed sensors [6]), have to be estimated 
by a modal observer. Below, the individual steps are 
analyzed in depth. 

The control synthesis can be calculated starting from (2), 
introducing the control law vector cu  and without 
considering the gravitational and external forces terms 
because these contributions don't modify the value of the 
poles of the system 

 

[ ] [ ] [ ] [ ]T
i i ii i i i cδ δ δ+ + =M z R z K z Λ u  (3) 

A. Independent modal control 
The aim of the control force cu  is to increase the 

system’s damping ratio in order to reduce vibrations by 
imposing new values cλ  for the system’s original 
eigenvalues λ . In particular the real part of the system’s 
eigenvalues was increased, while the imaginary part 
remained unchanged so as to avoid having to use significant 
control forces and imposing additional mechanical fatigue 
stress on the boom material. 

As previously described, in the present work the motion 
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equation was obtained using FEM discretization of the 
links. This means that the variable vector z  contains, as 
mentioned in par. 2, all the nodal displacement of the 
structure, and its dimension is not compatible with a full-
state feedback formulation. Moreover, it should be 
considered that the structure dynamic is ruled only by the 
first modes, because high frequency modes usually have 
higher damping ratios and they can hardly be excited. For 
this reason a reduced modal system needs to be defined to 
describe boom motion using a limited set of coordinates, 
taking into account the well-known problem of spillover. 

Defining the complete modal coordinates vector as 
tot

q  

and the m  reduced modal coordinates vector 
z

q , the 

following coordinate change can be performed 
 

[ ], tot toti i i z
δ ⎡ ⎤= ≈⎣ ⎦z φ q φ q  (4) 

 
where ,toti⎡ ⎤⎣ ⎦φ  represents the n n×  eigenvector matrix of 

[ ] [ ]1−M K , while [ ]iφ  is an n m×  partition of ,toti⎡ ⎤⎣ ⎦φ  

containing only the eigenvectors of the modes considered in 
the control formulation. 

Applying the (4) to the (3), the motion equation becomes 
a set of independent modal equations 

 

[ ] [ ] [ ] [ ] [ ]T T
i i i i i cz z z

+ + =m q r q k q φ Λ u  (5) 

 
where [ ]im , [ ]ir  and [ ]ik  are m m×  diagonal matrices, 

obtained by 
 

[ ] [ ] [ ][ ]T
i i i i=m φ M φ  (6) 

 
should be noted that (5) and (6) are only valid for systems 

with real modes. Anyway the examined system damping is 
very small and its modes can be assumed real. 

To apply the state-space control approach to the reduced 
modal system, the (5) can be written in state-space form 

 

[ ] [ ] [ ] [ ]
[ ] [ ]

[ ] [ ] [ ]
[ ]

1 1

1

   

i i i i

T T
i i i

c q q c

− −

−

⎡ ⎤− −
= ⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤

⎡ ⎤ ⎡ ⎤+ = +⎢ ⎥ ⎣ ⎦ ⎣ ⎦
⎢ ⎥⎣ ⎦

m k m rq q
I 0

m φ Λ u A q B u
0

 (7) 

 
where 
 

z

z

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

q
q

q
 (8) 

 
The control force is defined as 
 

[ ]c c= −u G q  (9) 

 
where, applying the independent modal control approach,  

the control gain matrix is calculated as [12] 
 

[ ] [ ] [ ][ ][ ]( )1 1
qc q c

− −⎡ ⎤⎡ ⎤ ⎡ ⎤= −⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦
G B 0 A U λ U  (10) 

 
where 
- [ ]cλ  is a diagonal matrix containing the eigenvector 

imposed for the controlled system 
- [ ]U  is the right eigenvector matrix of q⎡ ⎤⎣ ⎦A  

- q⎡ ⎤⎣ ⎦B  represents the upper part of q⎡ ⎤⎣ ⎦B  and must be 

invertible; as shown in (7), the lower part is equal to 
zero when the system is described by 2nd order 
differential equations 

In this way, the (7) becomes 
 

[ ] ,q q c q c⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − =⎣ ⎦ ⎣ ⎦ ⎣ ⎦q A q B G q A q  (11) 

 
The disadvantage of the state-space approach is that the 

gain matrix values lose physical meaning. For this reason, 
the modal control law proposed has been calculated 
imposing that the term [ ] [ ]T T

i i cφ Λ u  of (5) doesn't couple 
the system modes and leads to an increase of the system 
damping ratio 

 

[ ] [ ] [ ]T T
i i c v pz z

⎡ ⎤= − − ⎣ ⎦φ Λ u g q g q  (12) 

 
where p⎡ ⎤⎣ ⎦g  and [ ]vg  have a precise physical meaning, 

because they represent respectively the increase in stiffness 
and damping ratio brought about by the control. To ensure 
independent modal control they must be diagonal, so that 
the control law provides an independent stiffness and 
damping contribution on each mode, keeping the same 
eigenvectors as the uncontrolled system. This condition can 
be obtained only if the number of actuators is equal to the 
number of considered modal coordinates. In addition, the 
system must be controllable, so any row or column of 

[ ] [ ]T T
i iφ Λ  must be non-zero. This means that at least one 

control force must have a non-zero contribution on every 
mode and each control force must act on at least one mode. 
The control force can be calculated as 

 

[ ] [ ]( ) [ ]( )

[ ]

1T T
c i i v pz z

z
v p

z

−
⎡ ⎤= − + ⎣ ⎦

⎧ ⎫⎪ ⎪⎡ ⎤⎡ ⎤= − ⎨ ⎬⎣ ⎦⎣ ⎦ ⎪ ⎪⎩ ⎭

u φ Λ g q g q

q
G G

q

 (13) 

 
Selecting [ ]vg  and p⎡ ⎤⎣ ⎦g , the desired system eigenvalues 

can be set for the controlled system. In particular p⎡ ⎤⎣ ⎦g  can 

be set to zero to keep the same natural frequencies as the 
uncontrolled system. 

B. The modal observer 
Assuming that the exact modal coordinates are known, 
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the method proposed guarantees a completely decoupled 
modal control and avoids spillover problems, even if the 
number of controlled modes is smaller than the number of 
structure modes. 

However, in most flexible structure control applications 
the modal coordinates are unknown and so have to be 
estimated using a modal observer or filter [3]. In this paper a 
modal observer has been considered (Fig. 2). 
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(accelerations)

Aq
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modal coordinates

Bq

C

Go

D

∫ +++

‐ +++
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measurements
(control forces)

measurements
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Fig. 2.  The scheme of the modal observer 

 
According to the (7),the observer equation can be written 

as 
 

[ ]( )ˆ ˆ ˆq q c o⎡ ⎤ ⎡ ⎤= + + −⎣ ⎦ ⎣ ⎦q A q B u K y y  (14) 

 
where 
- q̂  is the estimator of the system modal coordinate 

vector; 
- [ ]oK  is the observer gain matrix, which will be 

defined later; 
- y  and ŷ  respectively represent the measurements and 

estimated measurements vectors. y  is an observer 

input, while ŷ  is defined by 

 
[ ] [ ]ˆ c= +y C q D u  (15) 

 
The values of [ ]C  and [ ]D , which link the estimated 

measurements vector to the observer states and control 
forces, depend on sensor type (accelerometer, position 
sensors, strain gauges, etc.) and position. 

Considering the (15), and neglecting the contribution of 
[ ]D , the observer equation (14) becomes 

 

[ ][ ]( ) [ ]
[ ] [ ]

ˆ ˆ

ˆ

q o q c o

o q c o

⎡ ⎤ ⎡ ⎤= − + +⎣ ⎦ ⎣ ⎦

⎡ ⎤= + +⎣ ⎦

q A K C q B u K y

A q B u K y
 (16) 

 
Now it’s possible to define the last term of the observer, 

the gain matrix [ ]oK , which  is calculated using the pole 
placement method. 

IV. NUMERICAL AND EXPERIMENTAL ANALYSIS 
In the previous paragraph the vibration control logic was 

defined. To test the adopted solution, a numerical and 
experimental campaign was carried out. The test rig, 
introduced in par. 2, was instrumented with 

- 3 load cells, to read total actuator forces; 
- 3 LVDT sensors, to obtain boom configuration; 
- 1 accelerometer used as the observer input and the 

boom vibration indicator, located at the end of the last 
segment. 

As said in par. 2, the motion of the system is described by 
a non linear equation. For this reason all control matrices 
need to be updated at every step to make the control logic 
rigorous. This updating can be easily reproduced in the 
numerical simulations, where there are no limits due to real-
time issues. 

However, the experimental application requires real-time 
calculation of control matrices and normal microprocessors 
do not have enough power or speed to handle the required 
time scale, so an approximation must be applied. In any 
case, considering that the rotation speed of the segment (and 
so the matrix variation) is lower with respect to the 
controller dynamic, this approximation doesn’t compromise 
control efficiency and two possible approaches can be 
adopted. 

The first consists in calculating control matrices every 
time steps, using the control board in a multi-tasking mode. 
A faster method calculates the control forces every time step 
while the other method calculates them at longer intervals. 

The second approach is to pre-calculate the matrices for a 
discrete set of boom configurations. In this way, at every 
time step, the software simply needs to extract the nearest 
configuration matrices using linear interpolation. The actual 
boom configuration, as mentioned, can be determined from 
the actuator LVDT output. The limit of this solution is the 
memory available on the control board. 

Considering the small amount of memory required by the 
present application, this second method was preferred and 
implemented. The controlled system and observer pole are 
set as follows: 

- the imaginary part of each controlled and pole is set 
equal to the imaginary part of the uncontrolled system. 
This is because we are not interested in modifying the 
system frequencies since this is not the aim of the 
present work and would lead to high control forces. As 
mentioned, a control force increase could lead to high 
mechanical stress and fatigue problems. Instead, the 
imaginary parts of the observer poles are set twice 
those of the uncontrolled system, in order to make the 
observer dynamics faster than the system dynamics; 

- the real part of each controlled and observed pole is 
placed respectively equal to 15% and 30% of the 
corresponding imaginary one, in order to set the 
controlled system damping ratio higher than that of the 
uncontrolled boom. 

For comparison, the possibility of using a co-located 
control force was analyzed. This solution is the simplest 
one, because it only requires the measurement of the 
actuator length and is the most natural solution for adding 
damping to the system. The resulting control force, consists 
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of a co-located derivative control, that increases the total 
damping of the system by adding a damping contribution on 
the boom actuators. This solution is simpler than modal 
control. In fact it requires low computational effort and 
doesn’t compromise system stability. However,  this 
solution doesn’t provide a large increase in the damping 
ratio. In fact this derivative action only works on actuator 
vibrations, without considering the vibrations of the 
segments due to their flexibility. As a consequence, even 
after optimization, only a small damping ratio increase is 
achieved. 

A. Numerical analysis 
This paragraph presents some numerical results. All the 

simulations refer to the numerical model of the test rig that 
was used for the experiments. All the results (with and 
without vibration control) refer to the same large movement 
of the boom (Fig. 3). 

 

 
Fig. 3.  Large motion reference for the boom segments: starting and final 
configuration (a) and rotation reference (b) 

 
Fig. 4 compares the system vibrations with and without 

modal control, highlighting the increase in damping. The 
acceleration of the end of the third segment is considered as 
indicating control performance. On the left, the figure shows 
the acceleration time history during the large motion 
described in Fig. 3. The time history also includes static 
acceleration due to gravity. On the right it shows, on a 
logarithmic scale, the acceleration spectrum with the 
application of an external force on the first segment end. 
This simulation was carried out in the final configuration of 
the large motion shown in Fig. 3 . The external force 
consists of a frequency sweep up to 7 Hz, that involves the 
first three natural frequencies of the structure. The figure 
shows that modal control causes a large reduction of 
vibrations near the controlled natural frequencies. However, 
system response increases between these. 
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Fig. 4.  Numerical acceleration of the end of the third segment: time history 
(a) and spectrum (b) 

 
In any case, as Table 1 also shows,  modal control can 

ensure a large increment in the boom damping ratio. 
 
 

TABLE I 
COMPARISON BETWEEN THE DAMPING RATIOS OF THE FIRST THREE MODES 

OF THE BOOM IN HORIZONTAL CONFIGURATION WITH AND WITHOUT 
CONTROL 

Damping 
ratios [%] No control Modal control 

Mode 1 0.19 14.4 
Mode 2 0.42 13.9 
Mode 3 0.73 13.1 

 

B. Experimental results 
This paragraph presents the results obtained on the test 

rig (Fig. 1). As in the numerical case, the acceleration of the 
end of the third segment is considered to estimate control 
performance. 

Fig. 5 shows the experimental results, obtained 
reproducing the same conditions as in the numerical 
simulations (movement, control parameter, measurement 
instruments). A good agreement with the numerical data 
was obtained. 
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Fig. 5.  Experimental acceleration of the end of the third segment: time 
history (a) and spectrum (b) 

 
In order to complete the numerical-experimental analysis, 

in Fig. 6 a comparison is shown. 
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Fig. 6.  Numerical-experimental spectra comparison without (a) and with 
(b) modal control 

V. CONCLUSIONS 
In this paper a control strategy was implemented to 

suppress the vibrations induced in a non-linear highly-
flexible boom by its large motion. For this kind of structure 
the modal solution remains an attractive one for modelling 
the system dynamics with a reduced number of degrees of 
freedom in a focused range of frequencies. As a 
consequence the non-linear active control logic adopted is 
based on the independent modal control theory, illustrated 
using the 2nd order equation typical of mechanical systems. 
In the same way, a modal observer was implemented to 
estimate the non-measurable modal coordinates. The control 
force is applied to the system through the same hydraulic 
actuators responsible for the boom’s large motion. 

First this methodology was tested using numerical 
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simulation, showing that an increase of the damping ratio of 
up to about 15% could be achieved without affecting the 
large motion and reducing material stress during operation. 

Finally a test rig was created and the methodology was 
experimentally validated. The experimental results show a 
very good agreement with the numerical ones and the modal 
control action provides an high reduction of test rig 
vibrations. 
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