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[. INTRODUCTION

Fractional calculus has been used in a set of applications,
mainly, to deal with modelling errors in differential
equations and dynamic systems. There are also applications
in Signal Processing and sampling and hold algorithms,
[1-3]. Fractional integrals and derivatives can be of
non-integer orders and even of complex order. The related
fractional calculus facilitates the description of some
problems which are not easily described by ordinary calculus
due to modelling errors, [1-5]. There are several approaches
for the integral fractional calculus, the most popular ones
being the Riemann-Liouville fractional integral. There is also
a fractional Riemann- Liouville derivative. However, the
well- known Caputo fractional derivative are less involved
since the associated integral operator manipulates the
derivatives of the primitive function under the integral
symbol. This paper extends the basic fractional
differ-integral calculus to impulsive functions described
through the wuse of Dirac distributions and Dirac
distributional derivatives, [5], of real fractional orders. In the
general case, it is admitted a presence of infinitely many
impulsive terms at certain isolated point of the relevant
function domains.

II. GENERALIZED RIEMANN-LIOUVILLE
FRACTIONAL INTEGRAL
Let us denote the set of positive real numbers by
R,={reR:r>0} and left-sided and right-sided

Lebesgue integrals, respectively, as:

[3a(r)dz:= lim [ g(z)dz (the identification X =X~
tox=x"

is used for all x in order to simplify the notation), and
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Iy o(r)dz:= IiT+j:)g(T)dT

t—

Now, consider real functions f f:R + >R ,such that
J())( (x—t)#~1f (t)dt exists, VxeR , , fulfilling:

F(x)=F (x)+ Xy, cimp K i 80=x)=F (x)+ i () K i 6(x=x1)

5(x) delta
K5(0)=1(x7)- f(x;) with K ,eR ; Viel(x)cz, ,
[5],and IMP:= [JIMP (x)= UIMP(X+)0findexingset

XxeR , xeR ;.

denotes the Dirac distribution,

I(oo) is the whole impulsive set defined via empty or

non-empty) partial impulsive strictly ordered denumerable
sets:

IMP (x):={x; €R ,: T (x7 )~ F(x;)=K 5(0) x; <x} (1)
of indexing set
I(X):={ieZO+:XieIMP(X)}CI(X+)CZ+ , for each
xeR , ;and
IMP (x )< IMP (x7),

:={xieR+:f(xi+)— f(x;)=K;5(0),x; sx*}cR ()

of indexing set

1(x)< fw):: {i €Zg,: xie|MP(x+)}cz + . for

each xeR, with the IMP being

lo)= UI(x)= Ul (X +) . If we are interested in
xeIMP(x) xE|MP(x*

studying the fractional derivative of the impulsive function

indexing set of

f:R, > Rthen f:R + > Ris non- uniquely defined as
f(x)=f(x) for xeR,\IMP , and f(x;)="f(x;) ,
fci)=f(xi)eK 1 80)=F(x)+K80) . for
Xj € IMP with f_(x +)eR ( non-uniquely) defined being
bounded arbitrary (for instance, being

f_(x+): f(x)) if xeIMP . Note that IMP and I () have

infinite cardinals if there are infinitely many impulsive values
of the function f(t).

Zero or

Note that the existence of j'())( (x—t)#~1f (t)dt implies that
of [o (x=t)#"f (t)dt =[5 (x—t)*~"f (t)dt i xeIMP(x),

since I())( (x—t)#~1 f (t)dt exists, and that of
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[ =) @)t = [0 (-t T e (x5 ()= 1 ()
ifxieIMP(X+) 3)
Theorem 2.1. The extended fractional Riemann- Liouville

integrals by considering impulsive functions are defined for
any fixed order # e R and all xeR, by

(94 f)(x)::ﬁ T (k)41 £ (D)t

“rip{ e o Zoony i)
T }Ifr‘ 0 0

iel(x)u{0 !

1

J.X; (x—t)“~"f (t)dt + Z(x—xi)”‘l(f (xi*)—f(xi))

) icl(x)

iel(x")
1 i+l u-1
:F(”)iel(xz):u{o} ! ( ) f()d
! u-l X )= f(x
+mie%+()><—xi) (f ( i ) f( |)) %)

(J 0 f)(x*)z(‘] 0 f)(x):: f (x)

where /'Ry, - R, is the /7 - function , [1-5] and

n:IMP—>2Z is defined by

n(x)=card I (x)=card IMP(x). D
Note that if Xe IMP then

(J " f)(x*):% z J‘ i+ )41 £ (t)dt

F'u iel(x* )u
1 w15 (x )= f (x
+r<ﬂ>.zﬁx-m i

1 -1 +
+m Z(x—xi) (f (xi )—f(xi)) (6)

iel(x)

and if x¢ IMP | since I(x" )=1(x), then
05 b )-lo # 1)).

III. GENERALIZED RIEMANN-LIOUVILLE
FRACTIONAL DERIVATIVE

Assume that feC ™! (R + ,R) and its m—th derivative
exists everywhere in R , . Then, the Caputo fractional
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ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

derivative of order #>0 with m-1<u(eR,)<m |,
meZ, isforany Xe R |

(D#f)(x):= (%} m'(J ws ) )
il ) e m) o

r(m-u)
The following particular cases follow from this formula
for u=m-1:

(a) u=—1;m=0 yields (D “f)(x):J'OX f (t)dt which

is the standard integral of the function f. This case does not
verify the “derivative constraint 0<m-1< u(eR,)<m
leading to an integral result.

(b) ) 11=0;m=1yields (D°f)(x)= f(x) which so that
D f is the identity operator

(© u=1;m=2yields (D" 1 )(x)= f D(x)
(@) u=2;m=3 yields (D2)(x)=f @)(x) which is the

standard first- derivative of the function f.

Compared to the parallel cases with the Caputo fractional
derivative, note that the Riemann- Liouville fractional
derivative, compared to the Caputo corresponding one, does
not depend on the conditions at zero of the function and its
derivatives. Define the Kronecker delta §(a,b) of any pair of

real numbers (a,b)as &(a,b)=1if a=band 5(a,b)=0if
a #b and then evaluate recursively the Riemann — Liouville
fractional derivative of order x>0 from the above formula
by using Leibniz’s differentiation rule by noting that, since
HEM—|;V ] (e Z +)> 1 , only the differential part
corresponding to the differentiation of the integrand is non
zero for j >m—u . This yields the following result:

Theorem 3.1. Assume that feC ™2 (R,,R) and

£ () exists everywhere in R, and that f(t) is integrable

on R, , then:
o )< )= i ) (b0 )
ol

U (m a1 (x— t)m‘”‘zf(t)dt+f(x)&(,u,m—l)}
L (e

+;[ ij i ( J'OX (m—p—1)(x—t)" =2 f (t)dt)

dx

e f M D(x)5 (1, m—1)
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If fepPCk (R,,R) with f (k)(x) being discontinuous
of first then f ™ (x)=5 U0V (x)  with
j(x)=m—1-k(x), one uses to obtain the right value of (8)

class

the perhaps high-order distributional derivatives formula:
‘ f (m-l)(x + ) _f (m—l)(x) ‘ =
k
(— 1) . k! ‘f (mflfk) (X +)_ f (m—l—k) (X ) ‘ 6(0): o0 (9)

X
to yield

If g=m—1then

1)
y (m‘l)(x){

(1D
provided  that (J.: (X—t)_(’”l) f (t)dt) exists  for

3

-1

Il JACRRCY

0

i

XxeR , (which is guaranteed if f(t) is Lebesgue-integrable

on R,), feC m-2 (R, ,R)and f M1 exists everywhere
in R, . The correction (10) applies when the derivative does

not exist. o

If yzm-1with m-1< ,u(eR +) <m then after defining
the impulsive sets, its associated indexing sets and the

function f:R ,—R as for the extended Riemann-

Liouville fractional integral, one gets:

(D#f)x)
r(ﬁ)[ﬂ { —ﬂ]}( I (o) e )

ﬁ{nh]] D R

iel(x)ufo} =71

+F(m1—,u)[ﬁ [j_;u]].[:;(x X— t) (/Hl)f(t)dt
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x ) Dt )= 1 )
(12)

{H[J—#]}Z

el(x)

<oﬂf><x+>:@[“”n_ﬂ]}

j=0

( [t b F a3 (exq) w8 () o (xi))J

iel(x)
(13)

IV. GENERALIZED CAPUTO FRACTIONAL
DERIVATIVE

Assume that feC ™! (R, ,R) and its m—th derivative

exists everywhere in R, . Then, the Caputo fractional

derivative of order x>0 with m-1< ,u(eR +)<m ,

meZ, is forany xe R, :

(Di‘ f)(x)::(J m=# f (m))(x)

o (k)T f () )

14
r(m-u) (9

;m=1<pu<m,meZ ., xeR,
The following particular cases occur with #=m—1leading
to

(D))= t ™ (R)ot = £ ™D (x)- £ Do) 15

(a) u=—-1;m=0 yields (D1 1 )(x)= £ CD(x)— 1 (Vo*)
which is an integral result f . Note that this case does not
verifies the “derivative constraint” 0< u(eR , ) <m leading

to an integral result.

(b)) #=0; m=1yields

(D21)x)=t Ox)-1 O )= 1 (x)-  07)

(© u=1;m=2yields (D1)(x)=f D(x)-1 Oo7)
(d) p=2; m=3yields (D21 )(x)= £ @(x)- @)(o7)

We can extend the above formula to real functions with
impulsive m-—th derivative as follows. Assume that

feC™?(R,,R) with bounded piecewise (m—1)-th

derivative
d™f(x)
m

f (m)(x) ]
X

() =K 300)= (1 (-1 () 0

existing  everywhere  in R, and

being impulsive with

; VXjelMP | equivalently , ‘v’iel(oo) , at the eventual
discontinuity points X; >0 at the
IMP:= [JIMP (x), where the partial impulsive sets are

xeR

impulsive  set

re-defined as follows:

WCE 2011



Proceedings of the World Congress on Engineering 2011 Vol I
WCE 2011, July 6 - 8, 2011, London, U.K.

IMP (x):={x; eR _x £ ™D {x )= £ (x )=k, x; <xfeIMP( )
(16)

IMP (x " )= {x €R L f D x )= £ (x ) =K, x; <x* < IMP(x*
a7

Now, consider feC™(0,0) with

(m) d™f(x), . _
f ( X ) = d—m being almost everywhere piecewise
X

continuous in R, except possibly on a non-empty discrete
impulsive set IMP .Define a non-impulsive real function
f:R, >R defined as fm) (x)= f(m)(x) for
XeRAMP . and  f™x)=FM(x,) |
£ Mx;)= F™(x,)+K ; 5(0) x; € IMP
with F™(x*)=f™(x) ; xeIMP ( defined being
bounded arbitrary (for instance, zero) if Xe IMP . Through a

for

similar reasoning as that used for Riemann-Liouville
fractional integral by replacing the function f:R  — R by

its m-th derivative, one obtains the following result:

Theorem 4.1. The Caputo fractional derivative of order
p#eR, satisfyingm—-1<u<m;meZ ,_and all XeR, is
given below:

(D2 1)00:= b0 1 g

= il O T e

F(mlﬂ)z( )(x—xom”l(f ®0(x; )= £ (x, Jalx )
ﬁ(; . [ Gt F e
Fna e, G0 e

iy T e 1)

(18)
e 1)l )= g fo G0 O

:;)j: (x—t)™#1 § (M) dt

F(m—,u

Z X=X, ) ‘( m1)(xi*)—f(mfl)(xi))5(X—Xi)

|e|(x*)

X K(x))— t () (x n(x)))5 (0)
(x—t)™ 4 F (M)t dit

+
i

Il
—_
O
*x
—
~—~—
—_
>
=
+
—_
>
|
>
=
—~
B3
=
~
3
®
—
—+
—_
3
=
—_—

B3

r(m-u) iel(xyufo}™*

L Z (X—Xi)mfﬂfl(f (m’”(xi*)—f (mfl)(xi))5(X—Xi)

r(m*/‘)iel(x)

+

and if x¢IMP, since I(x" )=1(x), then
(fo f)(x+)=(Df f)(x). The above formalism applies

when f (m-1) R, > R is piecewise continuous with
isolated  first- discontinuity points, that is
fePC™!(R,,R) implying that feC ™2(R,,R). A
more general situation arises when the discontinuities can
point-wise arise for points of the function itself of for any

successive derivative up- till order m. This would lead to a
more general description than that given as follows. Define

k)

s R) and x is a discontinuity

class

partial sets of positive integers as k :={1,2,
Assume that f ePC) (R
point of first class of f (j)(x) for some jem-1U{0}.

Then , f (i+) (x) are impulsive for /€ m— j of high order
being increasing with ¢ . Define the (j+1) — th impulsive sets
of the function f on (0,x)c R as:

|MPJ+1(X):={ZGR+ZZ<X, 0<‘f (j)(z+)— f (j)(z)‘<oo} ;

jem-1u{o0}, xeR . (20)
This leads directly the definition of the following impulsive
sets:

P ={xeR, 0 <[t O(x) 1 0x)| <o |

- U @1

|MP:={X€R+Z 0<‘f ( )—f(j)(x)‘<oo,somejeﬁu{o}}

= UXER+(UjEﬁU{O} IMP;.. (x ))

if zeIMP;,

IMPy, ()

(22)

which can be empty Thus , then

f (j—l)(x+

limits,

=f (j_l)(x) exists with identical left and right

f )=t D(x)=k =K (x)%0

and

1 m—p— m-— + m— i
* r(m—p) Z (x=x )™ l(f ( 1)(Xi )* il 1)(Xi))5(x’xi) f (J)(X )=K&(0) with successive higher-order derivatives
el (x)

(19)
where n:IMP—Z , is a discrete function defined by
n(x)=card I (x)=card IMP(x). O

Note that if Xe IMP then

(D2 f)c )=
> (=)™ ) dl

r(m-p) iel(x)ufo) "
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represented by higher- order Dirac distributional derivatives

The above definitions yield directly the following simple
results:

Assertion 52. xelMP=xelIMP; for a unique
i=i(x)em
Proof: Proceed by contradiction. Assume that
x e (IMR,; NIMP;, ) for i, j(#i )e m—1U {0 }.Then:
WCE 2011
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0<‘f(i)(x+)—f(i)(x)‘<oo ;
0<‘f (j)(x+)— f (j)(x)‘<oo

Assume with no loss of generality that j =i+k >i for some
k(sm-i-1)eZ, . Then,

‘f ((x*)- 1 ()(x)
k

CEDTKE 0 () 0 )| 5(0) =

Xk

‘:‘f (i+k)(x+)_f (i+k)(x)‘

withx eR . If‘f (i)(x +)—f (i)(x)‘io which contradicts
O<‘f(i)(x+)—f(i)(x)‘<oosothati:j. 0
Assertion 5.3. x e IMP =

x e IMP; <3 aunique j = j(x)=max ‘ f (i")(x*)—f (i’])(x)‘<oo

iem

Furthermore, such a unique j=j(X) satisfies

‘ £ (i) (x+)—f (j_l)(x)‘ >0.

Proof: The existence is direct by contradiction. If
—3j=jx)em-1u{o0} such that

‘ f (j)(x+)—f (j)(x)‘<oo then X¢IMP . Now, assume

there exist two nonnegative integers

i:i(x):‘ 0 ()1 (i_l)(x)‘<oo and
j :j(x):i+k :‘ f (k) (X +)—f (i+k-1) (X)‘<oo;for some

kem—i.Butfor x>0,

Y (—1)';k! ‘f (“1)(x+)—f (i—l)(X)‘5(0)

X
:‘ f (k1) (x +)_f (i+k-1) (X)‘«D
which is a contradiction. Then,
xeIMP; =3 j = j(x)=max ‘ £ 00 (x*)—f (i) (X)‘<oo
iem

which is unique. Also, from the definition of the impulsive
sets IMP(x),

‘ f (j_l)(X+)—f (j_l)(x)‘<oo:>X€Ui€]U{0} ||\/|Pi(X)

Now , assume that XeUieﬁu{o} IMP(x) . Thus,

0<‘ f (i-1) (x +)- ¢ (i) (X)‘<oo :»‘ f (j)(x *)— f (j)(x)‘:oo

from the definition of the impulsive sets.
Thus, xe IMP j(X).The contrary logic implication

j = j(x)=max ‘ f (i‘l)(x +)—f (i‘l)(x)‘<oo: x € IMP;
iem
is proved. Then, it has been fully proved that X € IMP =
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|

[Xe IMP; < 3 a unique j = j (x)=max ‘ £ (1) (x*)—f (i) (X)‘<oo

Now, establish again a contradiction by assuming that
j :j(x):| f () (x *)— f (k’l)(x)|:max

[ 100 ()= £ 00 ()] =0 <oo; wkem
what contradicts X € IMP . This proves that the unique j=j(X)
implying and being implied by XxelIMP; satisfies
‘f(i—l)(x+)—f ()] > 0. o

Using the necessary — high order distributional derivatives,
one gets that

ket = 1 0= V=D () (y4) ¢ D)) o)

x M-
; with jem—-1u {0} being uniquely defined so that

0<|f ) (X +)— £ ) (x )‘ <. Thus, the m-th distributional

derivative of f :R _— R can be represented as:

fM(x)= ™ (x)
+ZX,6IMP M(f (ji)(xr)_f(ji)(xi ))5(X—Xi)

m—J;
, XeR |

Ji+l i

with  jj=ji(x;) being uniquely defied for each
X; € IMP so that x; €IMP; ., where feC™(R, ,R) with
everywhere  continuous first-derivative  defined as
f_(j)(x): f (j)(x) ; xeR, , f(0)=1(0). The above
formula is applicable if f&PC m(R + ,R) but it is also
applicable if f ePC ™(R, ,R) yielding:

£ x )= £ M(x)= FM(x) if x e 1MP
£ m(x)= FM(x)

f (m)(x+ ): f(m)(x)+('1)L(m_‘j)!(f (j)(x+ )_f(j)(x ))5(0)

if X eIMP
£ ()= F(x)
0 Jo 1m0 EV D 0 )00

if xelMPand j<m-1

f(m—l)(x): f(m—l)(x)

£t )= £ D) (£ (xr )£ (k) it
xelMPand j=m-1

foraunique j= j(x)em—1u{0} from Assertion 1. Denote
further sets related to impulses as follows:

IMP(x):={ze IMP:z <x} ; ||\/|P(X+)::{Ze IMP:z < x }
; VXeR |,
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being indexed by two subsets of integers of the same
corresponding cardinals defined by:

I(X):]:m indexing the members z; of IMP(X) in
increasing order

I{x"), being either | (X) or | (X)+1, indexing the members

zjof IMP(X+) in increasing order
The following result holds:

Theorem 5.4. The Caputo fractional derivative of
f:R,—>R of order ueR,

satisfying m—1<u<m; meZ , and all xeR, is after

using distributional derivatives becomes in the most general
case:

(Df f)(x):: !

r(m-u)

-1 (Lot 7o

F(m—,u
" Z () m—j(x i)—l(x_x i)m—y—l

iel(x)

[X(x=t)m# 1 g M)

S [ ) ™

Z m—j(x;)-1 m—p—1
+r(m—u).e|(x>(_1) e

m-j Xi)— ! X + i (x
><(>((— :gm—)J Xliz—l (f it '))(X )_f(J( I))(Xi )) (23)

1 X4 -
= - (k=)™ F (M)t
F(m_’u)iel(gu{o}-"xi

; -1 m_j(xi)_1 oy ym-u-l
+F(m_;u)ie%+§) (X XI)
(M= 306)=DY (G g 00y
W(f (7 )-£ 00D (%)) (24

O
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= if

Note that ‘(fo)(x*)

Xx=XjelMP , as

expected.

V. CONCLUDING REMARKS

This manuscript has investigated some simple formulas for
Riemann-Liouville impulsive fractional integral calculus and
for Riemann-Liouville and Caputo impulsive fractional
derivatives. It can be asserted that the method of fractional
calculus is promising to be applied for some applied
problems of dynamic systems, in particular, those involving
delays. See, for instance, [6-9] which can be potentially
reformulated accordingly to the formalism described in this
manuscript.
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