
  

 

Abstract—This paper presents an analysis on energy 
consumption and energy efficiency of a hexapod robot during 
its turning motion over flat terrain. The energy consumption 
model has been derived for statically stable wave-turning gaits 
by considering a minimization of dissipating energy for 
optimal foot force distribution. Two approaches, such as 
minimization of norm of feet forces and minimization of norm 
of joint torques have been developed. The variations of average 
power consumption and energy consumption per weight per 
traveled length with angular velocity and angular stroke have 
been studied for turning motion with tripod and tetrapod gait 
patterns. Tetrapod gaits are found to be more energy-efficient 
than the tripod gaits. 

 
Index Terms—Dynamic model, Energy consumption, 

Hexapod robot, Turning motion  
 

I. INTRODUCTION 

NERGY consumption is one of the main restrictions for 
the use of walking robots in practical applications [1]. 

The minimization of energy consumption plays an important 
role in the locomotion of an autonomous multi-legged robot 
used for service applications. Several studies on walking 
energy consumption had been carried out in the field of 
robotics, biomechanics and zoology. Some of those are 
design of energy efficient mechanical leg structure [2], [3]; 
optimal selection of gait parameters [4], [5]; and optimal 
solution to foot force distribution [6], [7]. Orin and Oh [8] 
tried to resolve the foot force distribution for minimum 
energy consumption and load balance among several legs. 
Nahon and Angeles [9] used quadratic programming to 
minimize power of robotic systems actuated by DC motors, 
but considered power regeneration by the motors doing 
negative work. Marhefka and Orin [10] utilized quadratic 
programming to solve foot force distribution in hexapod 
walking robots that minimizes the power consumption in 
DC motors. In their work, gains from power regeneration by 
the DC motors were not permitted in the optimization 
problem. Kar et al. [11] performed an analysis of energy 
efficiency with respect to structural parameters, friction 
coefficient and duty factor of wave gaits, based on a 
simplified model of six-legged robot. Kar et al. [11] and Lin 
and Song [12] took the instantaneous power to be the 
product of instantaneous joint torques and joint velocities. 
Such modeling ignored the fact that a considerable amount 
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of power is dissipated on the joints of the supporting legs. In 
order to eliminate such drawbacks, it is better to consider 
the integral of the sum of squares of the joint torques as a 
criterion of dissipated energy in the actuators. Nishii [13] 
used the integral of weighted sum of the product of 
instantaneous joint torques and joint velocities and the sum 
of squares of the joint torques as energetic cost, and 
analyzed the energetic cost of a two joint six-legged robot. 
Zhoga [14] and Zelinski [15] analyzed energy expenditure 
and energy efficiency of multi-legged locomotion systems 
taking into account the leg dynamics and torque, but they 
failed to consider joint actuator type, although the joint 
actuator’s contribution to energy consumption is decisive. 
The above mentioned work focused on walking along 
straight-forward path only.  

During locomotion of a multi-legged robot on flat terrain, 
different types of gaits, namely straight forward gait, crab 
gaits and turning gaits etc. are to be used to avoid obstacles 
in its path. Out of many possible gait patterns, the present 
study concentrates on dynamic modeling and energy 
efficiency analysis of turning gaits, as turning motion is 
very important to omni-directional locomotion. Hirose et al. 
[16], Zhang and Song [17] analyzed turning motion of a 
multi-legged robot from kinematics point of view. The 
problem of optimal turning gait generation of a six-legged 
robot had been solved by Pratihar et al. [18] using a 
combined genetic algorithm and fuzzy logic approach. 
Pratihar et al. [19] extended this work to find optimal path 
and gait generation of a hexapod walking robot, but they 
considered a simplified model of the robot. Moreover, they 
did not consider a detailed dynamic behavior of the leg and 
trunk body, although its contribution to gait generation was 
significant. Due to the inherent complexity of a realistic 
walking robot, it is not an easy task to include inertial terms 
in the modeling. The most of the studies on walking robot 
dynamics were conducted with simplified models of legs 
and body. But, in order to have a better understanding of its 
walking, dynamics and other important issues of walking, 
such as dynamic stability, energy efficiency and its on-line 
control; kinematics and dynamic models based on a realistic 
walking robot design are necessary to build. To the best of 
the authors’ knowledge, no significant study has been 
reported on energy efficiency analysis of turning gaits of a 
realistic six-legged robot. In the present study, attempts are 
made to study the effects of turning gait parameters [16-17] 
on energy consumption of a real six-legged robot. 
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II. MATHEMATICAL FORMULATION OF THE PROBLEM 

In order to develop a detailed dynamic and energy 
consumption model of a hexapod robot while negotiating 
turning motion on flat terrain, the following assumptions are 
made: (a) The trunk body is kept at a constant height from 
the level terrain and turning radius is also kept constant. (b) 
The robot is assumed to generate a wave-turning gaits with 
two duty factors equal to 1/2 (tripod gait) and 2/3 (tetrapod 
gait). (c) The joint actuators are DC geared motors, which 
cannot store negative energy. Therefore, any negative 
energy, i.e., gain in energy supplied by external forces, is 
lost. 

A complete kinematic and dynamic model of a realistic 
hexapod robot is required to analyze the complex 
relationships between locomotion parameters and energy 
consumption.   

 

A. Kinematic Model of the Hexapod Walking Robot 

 
A 3-D model of a realistic hexapod walking robot, 

considered in the present study, is shown in Figure 1. 
Denavit-Hartenberg (D-H) notations [20] have been used in 
kinematic modeling of each leg of three degrees of freedom. 
Table I shows four D-H parameters, namely link length (ai), 
link twist (i), joint distance (di), and joint angle (i), which 
are required to completely describe three joint legs.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

The foot tip reference frame {3} can be expressed in the 
leg reference frame {0} as follows: 
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The six legs and trunk body must be integrated to solve the 
kinematics problem of the robot. The body attached 
reference frame {B} is located at the geometric center of the 
trunk body as shown in Figure 2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Body reference frame {B} and hip reference frame of ith 

leg {0i} are represented with respect to global reference 
frame {G} attached at turning center, using transformation 
matrix as given below. 
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T  ; i=leg number 

Here, ri is the path radius of hip of ith leg, which can be 
determined as follows: 
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Fig. 1: 3-D model of a hexapod walking 
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TABLE I 

D-H PARAMETERS FOR LEGS 

Link no. ai i di i 

1 L1=0.085m 90 0 1

2 L2=0.115m 0 0 2 
3 L3=0.100m 0 0 3 

‘+’ for left side legs, ‘-’ for right side legs 

Fig. 2: A schematic showing top view of the hexapod 
robot walking in a circular path 
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where rG is the turning radius of the CG of the trunk 
body,  is the angular speed of the CG of the robot, t is the 
time, Lb is the length of the trunk body and Lw is the width 
of the trunk body. 

The joint trajectory of the swing leg is assumed to follow 
a fifth-order polynomial in time (t). The jth joint of a swing 
leg, that is, j can be represented in fifth-order polynomial 
as follows:  
j = aj0+aj1t+aj2t

2+aj3t
3+aj4t

4+aj5t
5 ; j=1, 2, 3.    (2) 

where aj0, aj1, aj2, aj3, aj4, and aj5 are coefficients. The 
boundary conditions of joint angles, joint velocities and 
joint accelerations at initial and final points of the trajectory 
are applied to determine the six coefficients for each joint. 
The velocity and acceleration equations for each joint of a 
swing leg can be obtained using the following equations: 

2 3 4
j j1 j2 j3 j4 j5θ =a +2a t+3a t +4a t +5a t         (3) 

2 3
j j2 j3 j4 j5θ =2a +6a t+12a t +20a t          (4) 

Moreover, the velocity and acceleration equations of for 
each leg during the support phase can be expressed as 

follows: 1θ = J p   and 1( ) θ = J p Jθ  ,         

where Cartesian velocity vector T
x y[ -v -v 0]p , 

joint velocity vector, T
1 2 3[θ θ θ ]θ    and J is the 

Jacobian matrix. 
 

B. Dynamic Model of the Hexapod Walking Robot 

 
A six-legged robot is a complex linkage, where its legs 

are connected to one another through the trunk body and 
also through the ground, and thus, form closed kinematic 
chains. The equations of motion for such a complex 
mechanism with six legs, each of which has 3 degrees of 
freedom, are derived by applying Lagrangian dynamics 
formulation together with Denavit-Hartenberg’s link 
coordinate representation, and the derived relationships are 
given in the vector-matrix form as follows: 

T
i i i iτ = [M(θ)θ + H(θ,θ) + G(θ)] - J F  ,       (5) 

where M() is the 33 mass matrix of the leg, H is a  31 
vector of centrifugal and Coriolis terms, G() is a 31 
vector of gravity terms, i  is the 31 vector of joint torques 
and Fi is the 31 vector of ground reaction forces of foot ‘i’. 
During the leg’s swing phase, there is no foot-terrain 
interaction, and Fi becomes equal to zero. However, during 
the support phase, ground contact exists and equation (5) 
becomes undetermined, which has to be solved using an 
optimization criterion, e.g., optimal foot force distribution. 
The dynamic equations of the mechanical part for each 
swing leg have been shown in Appendix. 
For computing foot-force distributions, the following 
assumptions are made: (i) The ground legs are assumed to 
be supporting the trunk body without any slippage on their 
tip points. (ii) The contacts of the tips of the feet with 
ground can be modeled as hard point contacts with friction.  

In the present study, the said problem of foot force 
distribution has been solved using two approaches as 
explained below. 

 

Approach 1: Minimization of Norm of Feet Forces 
 
To analyze the feet forces that robot must exert, let us 

assume that Fi=[fix, fiy, fiz]
T is the ground-reaction force 

vector on foot i. The wrench W=[ Fx, Fy, Fz, Mx, My, Mz]
T 

contains the forces (Fx, Fy, Fz) and moments (Mx, My, Mz) 
acting on the robot’s center of gravity and represents the 
robot’s payload, any externally applied forces and inertial 
effects of the robot’s body. However, the inertial effects of 
the legs have been neglected to simplify the study. Under 
these conditions, six equilibrium equations [21] that balance 
forces and moments can be expressed in matrix form as 
follows: 

 [A].[F] = - [B].[W]              (6) 
 

where 3 3 3
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I3 is the (33) identity matrix, 03 is the (33) null matrix 
and Ri is the (33) skew symmetric matrix of vector [xi, yi, 
zi]

T. 
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This matrix defines the position of tip of a foot i (i=p, q, r 
for tripod gait or i=p, q, r, s for tetrapod gait) or that of 
center of gravity (i=c) with respect to body reference frame. 
The coordinates of ith foot-ground contact point with respect 
to body reference frame, located at the body’s geometric 
center, are denoted by (xi, yi, zi). The values of Fx, Fy, Fz, 
Mx, My and Mz for turning motion are to be found as: 
Fx= -FIx; Fy= mrG2; Fz=-mgz; and  

B B 2
x xz yz

dω
M =- I + I ω

dt
; B B 2

y yz xz

dω
M =- I - I ω

dt
; B

z zz

dω
M = I

dt
 

With the known feet positions, the feet forces during a 
whole locomotion cycle can be computed using equation 
(6), which is indeterminate, because it consists of six 
equations but there are more than six unknowns. The 
solution of equation (6) has been obtained using the least 
squared method, which gives the minimum norm solution of 
the indeterminate equilibrium equations.  

 
Approach 2: Minimization of Norm of Joint Torques 
 
In this approach, the equation (6) can be reformulated by 

using the following relations. 
[F] = [D].[]                 (7) 

where 

p
3 3

q
3 3

r
3 3 9 9

[ ]=



 
 
 
  

J 0 0

D 0 J 0

0 0 J

 for tripod gait; 
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and 

p
3 3 3

q
3 3 3

r
3 3 3

s
3 3 3 12 12

[ ]=



 
 
 
 
 
  

J 0 0 0

0 J 0 0
D

0 0 J 0

0 0 0 J

 for tetrapod gait;  

-1i T
i=   J J  ; Ji is the (33) Jacobian matrix of leg i. Here, 

[]=[p, q, r]
T for tripod gait; []=[p, q, r, s]

T for 
tetrapod gait, and i=[i1, i2, i3]

T is the torque vector 
containing three joint torques at leg i.  

 
 
The equation (6) can be rewritten as follows: 
[A][D][] = - [B][W]             (8) 
[AJ][] = - [B][W]              (9) 
 
 
The minimum norm solution of the indeterminate 

equation (9) has been obtained using a least squared 
method.  

 
 

C. Energy Consumption Model of the Hexapod Robot 

The energy consumption in a legged robot is mainly due 
to the energy consumed by an actuator in each joint of the 
legs.  As a joint is driven by a DC motor [20], the consumed 
energy in motor during a time (T) is given by: 

 
T T T T 2

a a e a a0 0 0 0
E= u i  dt (u +R i ) i  dt dt dt        ; (10) 

where ua is the applied voltage and ia is the armature 
current. The first term is mechanical energy and the second 
term is related to energy loss by heat emissions. Although a 
negative value for the first term, i.e., mechanical energy 
indicates a gain in energy supplied by external forces, DC 
motor cannot store this energy. Therefore, the energy 
consumed by the DC motor during time T is given by 

   T T 2

0 0
E= dt dt       ,          (11) 

where    = 
0






                                                                        

Total energy consumed by all motors in a hexapod robot 
becomes 

 
6 3T 2

ij ij ij0
i 1 j 1

E= dt
 

                 (12) 

where 
2
s

2
t

RG
=

K
 ; Gs is the speed ratio of the geared motor,  

 
Kt is the torque constant, R is the armature resistance, ue 

is the induced voltage in the armature windings opposing 
the applied voltage.  

III. SIMULATION RESULTS AND DISCUSSION 

Results of computer simulations based on above 
formulations are discussed in detail. Table II shows the 
physical parameters of the hexapod walking robot 
considered in the present study. The values of moment of 
inertia and positions of centre of gravity of this real robot 
have been computed using CATIA CAD/CAE software. In 
this simulation, turning radius and body height are assumed 
to be equal to 1.0 m and 0.13 m, respectively.  
Table III shows the average values of the squares of joint 
torques of the robot negotiating turning motion with tripod 
and tetrapod gaits, as obtained by approaches 1 and 2. 
Simulation results indicate that the average of the squares of 
joint torques during one complete locomotion cycle for 
tripod gait has turned out to be higher than that of tetrapod 
gait for both the approaches. The average value of the 
squares of joint torques of the robot as obtained by approach 
1 is seen to be higher than that yielded by approach 2 for 
both tripod and tetrapod gaits. Since the average of the 
squares of joint torques is considered to be proportional to 
average dissipated power (average heat loss) of the joint 
motor, it can be concluded that approach 2 is more energy 
efficient than approach 1. This happens due to the forces 
required to support the body are distributed more evenly 
among the legs in case of tetrapod gait compared to tripod 
gait and thereby, the contribution (in terms of torque and 
power) of each support leg is reduced.     
 

if   0 

if   0 

TABLE III 
AVERAGE VALUES OF THE SQUARES OF JOINT TORQUES DURING 

TURNING MOTION 

Duty factor () 
Average of the squares of joint torques  

(N-m)2 
Approach 1 Approach 2 

1/2 7.2513 4.0773 
2/3 5.5217 2.9939 

Angular stroke=8°,  Angular velocity = 2°/sec,  Turning radius=1 m,  

 

 

TABLE II 
PHYSICAL PARAMETERS OF THE HEXAPOD ROBOT   

Dimensions of trunk body 
(10-3m) 

Length (Lb) 
Width (Lw) 
Height (Lh) 

440 
160 
80 

Moment of Inertia of trunk 
body (10-4 kg-m2) 

BIxx 
BIyy 
BIzz 

50 
270 
260 

Mass of trunk body 
including payload (kg) 

mb 
 

1.712 
 

Leg Link parameters Link 1 Link 2 Link 3 
Mass (Kg) m 0.152 0.04 0.106 

Link Length (m) L 0.085 0.115 0.1 

Position of Center of 
mass (10-3 m) 

x -71.22 -71.40 -97.33 
y -14.04 -2.47 0.98 
z 0.00 8.21 -3.43 

Moment of inertia 
(10-4 kg-m2) 

Ixx 1.00 0.23 0.22 
Iyy 8.28 3.07 10.00 
Izz 9.09 2.91 10.01 

Product of inertia 
(10-4 kg-m2) 

Ixy -1.57 -0.141 0.103 
Ixz -0.113 0.364 -0.376 
Iyz -0.037 0.018 0.0036 
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The effects of angular velocity on average power 
consumption over one locomotion cycle of the robot for two 
different duty factors are displayed in Table IV. For a 
particular value of duty factor, average power consumption 
is found to increase with the increase in angular velocity, as 
expected. Thus, the velocity should be as low as possible to 
minimize power consumption for a particular duty factor. 
However, traveling with a low velocity takes more time to 
cover a fixed distance, and consequently, total energy 
consumption may be increased. The energy required to 
travel a fixed distance can be quantified using a parameter 
called specific resistance [12], that is, energy consumed per 
unit weight and per unit traveled length. Table V displays 
the effects of variation of angular velocity on specific 
resistance during turning over a flat terrain. Specific 
resistance is found to decrease with the increase of angular 
velocity for a particular value of duty factor. However, 

average power consumption is seen to increase with the 
increase in angular velocity. Moreover, for a high value of 
duty factor, angular velocity cannot be increased to a high 
value due to dynamic constraints of joint actuators. The 
blank cells of Tables IV and V correspond to angular 
velocities, angular strokes and duty factors at which the 
robot is unable to walk because of the violation of dynamic 
constraints of the motors. Approach 2 is seen to yield more 
efficient gaits compared to approach 1 for both the tripod 
and tetrapod gaits. Results related to the effects of angular 
stroke on average power consumption and specific 
resistance during turning of the robot with wave gaits of two 
different duty factors are presented in Tables VI and VII, 
respectively. For a given angular velocity, both average 
power consumption and specific resistance are found to 
increase with angular stroke for both tripod and tetrapod 
gaits. Moreover, for a particular angular stroke, average 
power consumption and specific resistance are seen to be 
higher for tripod gait than that of tetrapod gait for both 
approaches 1 and 2. It is interesting to observe that approach 
2 has provided more energy efficient solutions compared to 
approach 1 for all angular strokes. Tetrapod gaits are found 
to be more energy-efficient compared to tripod gaits. 

IV. CONCLUSIONS 

An attempt has been made to minimize energy 
consumption of a hexapod robot during turning motion on 
flat terrain. An energy consumption model has been derived 
for statically stable wave-turning gaits by minimizing 
dissipating power for optimal foot force distribution and 
minimizing total energy expenditure for optimal selection of 
turning gait parameters, namely angular velocity, angular 
stroke and duty factor.  It is important to mention that 
approach 2 (that is, minimization of norm of joint torques) 
is seen to be more energy efficient compared to approach 1 
(that is, minimization of norm of feet forces) for both duty 
factors. The variations of average power consumption and 
specific resistance with angular velocity and angular stroke 
have been studied for turning motion of hexapod robot with 
two different duty factors. In order to minimize total energy 
consumption, the angular velocity should be as high as 
possible and angular stroke should be as low as possible, but 
without violating dynamic constraints of the joint motors.  

TABLE VI 
VARIATIONS OF AVERAGE POWER CONSUMPTION WITH ANGULAR 

STROKE DURING TURNING MOTION  

 Angular 
Stroke 
(deg.) 

Average power consumption (in Watts) 

Tripod gait (=1/2) Tetrapod gait (=2/3) 

Approach 
1 

Approach 
2 

Approach 
1 

Approach 
2 

8.0 0.3724 0.3107 0.2836 0.2569 
7.0 0.3614 0.2951 0.2781 0.2472 
6.0 0.3529 0.2800 0.2741 0.2380 
5.0 0.3465 0.2656 0.2714 0.2294 
4.0 0.3418 0.2519 0.2699 0.2215 
3.0 0.3384 0.2391   

Angular velocity=2 deg./sec,  Turning radius=1 m 

 

TABLE VII 
VARIATIONS OF SPECIFIC RESISTANCE WITH ANGULAR STROKE 

DURING TURNING MOTION  

 Angular 
Stroke 
(deg.) 

Specific resistance 

Tripod gait (=1/2) Tetrapod gait (=2/3) 

Approach 
1 

Approach 
2 

Approach 
1 

Approach 
2 

8.0 0.3107 0.2593 0.2366 0.2144 
7.0 0.3016 0.2462 0.2321 0.2063 
6.0 0.2945 0.2336 0.2287 0.1986 
5.0 0.2891 0.2216 0.2264 0.1914 
4.0 0.2852 0.2101 0.2252 0.1848 
3.0 0.2824 0.1995   

Angular velocity=2 deg./sec,  Turning radius=1 m 

 

 
TABLE IV 

VARIATION OF AVERAGE POWER CONSUMPTION WITH ANGULAR 

VELOCITY DURING TURNING MOTION  

 Angular 
Velocity 
(deg/sec) 

Average power consumption (in Watts) 

Tripod gait (=1/2) Tetrapod gait (=2/3) 

Approach 
1 

Approach 
2 

Approach 
1 

Approach 
2 

0.5 0.3520 0.2228 0.2722 0.1731 
1.0 0.3521 0.2407 0.2726 0.1938 
1.5 0.3527 0.2600 0.2728 0.2156 
2.0 0.3529 0.2800 0.2741 0.2380 
2.5 0.3535 0.3004 0.2760 0.2610 
3.0 0.3544 0.3210 0.2848 0.2787 
3.5 0.3555 0.3419   
4.0 0.3631 0.3569   

Angular stroke=6°,  Turning radius=1 m 

TABLE V 
VARIATION OF SPECIFIC RESISTANCE WITH ANGULAR VELOCITY 

DURING TURNING MOTION 

 Angular 
Velocity 
(deg/sec) 

Specific resistance 

Tripod gait (=1/2) Tetrapod gait (=2/3) 

Approach 
1 

Approach 
2 

Approach 
1 

Approach 
2 

0.5 1.1849 0.7437 0.9099 0.5777 
1.0 0.5892 0.4016 0.4542 0.3234 
1.5 0.3923 0.2892 0.3035 0.2398 
2.0 0.2945 0.2336 0.2287 0.1986 
2.5 0.2360 0.2005 0.1842 0.1742 
3.0 0.1971 0.1786 0.1584 0.1550 
3.5 0.1695 0.1630   
4.0 0.1515 0.1489   

Angular stroke=6°,  Turning radius=1 m 
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APPENDIX 

Dynamics of Swing Leg  
The swing leg of a legged robot can be studied from the 

dynamics point of view as a 3-DOF robotic manipulator 
with a foot as end-effector of the latter. Systematic 
derivation of the Lagrange-Euler equations yields the torque 
expressions as follows: 

i iτ = [M(θ)θ+ H(θ,θ) + G(θ)]   

It can be written in a summation form as 
n n n
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    θ θ θ   ,  i=1, 2, 3. 

where Mik is the inertia matrix, hikm is the Coriolis and 
centripetal forces matrix, Gi is the gravity loading vector 
and n is the number of joints. The terms: Mik, hikm and Gi 
can be obtained as follows: 
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Here, g = [gx    gy     gz    0] is the acceleration due to gravity 
with respect to the reference coordinate system. Now, Uij 
and Uijk can be obtained as follows: 
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