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Abstract - The unsteady, incompressible boundary layer flow 
caused by an impulsively stretching surface under the influence 
of a transverse magnetic field is investigated. The partial 
differential equations governing the laminar flow, under 
boundary-layer approximations, are non-dimensionalised using 
similarity transformations and then solved numerically using an 
efficient, implicit finite-difference scheme known as Keller-box 
method. The numerical solutions are obtained for all 
dimensionless time from initial unsteady state flow to final 
steady-state, uniformly valid in the whole spatial region. The 
numerical results for the surface shear stress are compared with 
those of the analytical approach results, and they are found to be 
in good agreement. It is observed that there is a smooth transition 
from the small time solution to the large time solution. The 
magnetic field significantly affects the flow field and skin friction 
coefficient. Indeed, skin friction coefficient found to decrease 
rapidly, initially, in small time interval before attaining a steady-
state for large time.  
Keywords: Unsteady; Laminar boundary layer; impulsive – 
motion; Magnetic field.  

I. INTRODUCTION 

      Magneto-hydrodynamics (MHD) is the branch of 
continuum mechanics which deals with the study of 
electrically conducting fluids and electromagnetic forces. The 
field of MHD was initiated by Swedish  physicist, Hannes 
Alfven for which he received in 1970 the Noble prize. The 
idea of MHD is that magnetic fields can induce currents in a 
moving conductive fluid, which create forces on the fluids, 
and also change the magnetic field itself. MHD problems arise 
in a wide variety of situations ranging from the explanation of 
the origin of Earth’s magnetic field and the prediction of space 
weather to the damping of turbulent fluctuations in 
semiconductor melts during crystal growth and, even in the 
measurement of the flow rates of beverages in food industry. 
An interesting application of MHD to metallurgy lies in the 
purification of molten metals from non-metallic inclusions by 
the application of a transverse magnetic field.   
      In recent years, MHD flow problems have become more 
important industrially. Indeed, MHD laminar boundary layer 
behavior over a stretching surface is a significant type of flow 
having considerable practical applications in chemical 
engineering, electrochemistry and polymer processing.  
     In his pioneering work, Sakiadis [1] developed the flow 
field due to a flat surface, which is moving with a constant 
velocity in a quiescent fluid. Crane [2] extended the work of 
[1] for the two-dimensional problem where the surface  
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velocity is proportional to the distance from the flat surface. 
As many natural phenomena and engineering problems are 
worth being subjected to MHD analysis, the effect of 
transverse magnetic field on the laminar flow over a stretching 
surface was studied by a number of researchers [3-5]   
     The studies reported above deal with steady flows. 
However, the  flow  problem  will become unsteady due to 
impulsive change in the surface velocity of a moving 
stretching surface. The unsteady flow on a stretching surface 
is an important problem, since it is not always possible to 
maintain steady-state conditions. Pop and Na [6] and Nazar 
et.al [7] have considered the time-dependent boundary layer 
flow due to an impulsively stretching surface. Awang Kechil 
and Hashim [8] presented series solutions for unsteady 
boundary-layer flows due to impulsively stretched plate, in the 
absence of magnetic field. 
The aim of the present paper is to investigate the unsteady 
MHD boundary layer development caused by an impulsively 
stretching surface in a constant pressure viscous flow, using 
numerical approach. 
 
II. MATHEMATICAL FORMULATION 
 
     Let us consider the unsteady, laminar incompressible 
flow of a viscous electrically conducting fluid over a linearly 
stretched surface. The stretching surface is assumed to be 
electrically non-conducting. Prior to the time t=0, the surface 
is at rest in an unbounded quiescent fluid. At time t  0, the 
surface is suddenly stretched with velocity axU   along the 
distance ( )x of the surface. The impulsive change in the 
surface velocity gives rise to unsteadiness in the flow field.  
     A transverse magnetic field of uniform strength ( )B x  is 
applied in y-direction normal to the stretching surface 
throughout the fluid flow. It is assumed that the magnetic 
Reynolds number is small so that induced magnetic field is 
neglected, in comparison to the applied magnetic field. The 
boundary-layer equations based on conservation of mass and 
momentum, governing the unsteady two-dimensional flow on 
the impulsively stretching surface is: 
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subject to the boundary conditions 
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Here u and v are velocity components along x and y- 
directions, respectively; ,  and  denote, respectively, 
electrical conductivity, density and kinematic viscosity; U is 
surface velocity and a is a positive constant.   
     The problem due to impulsive motion considered here 
should be formulated mathematically in such a way that for 
small time it should be governed by Rayleigh type of equation 
and for large time, by Crane type of equation. This implies 
that we have to select a scaling of y-coordinate which behaves 
like  1 2

y t  for small time and as  1 2
a y  for large time. 

Williams and Rhyne [9] have found such similarity 
transformations and they are expresses as 
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Using the above transformations in (1) and (2), we find that 
(1) is identically satisfied and (2) becomes 
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The boundary conditions (3) becomes 
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Here  and  are the transformed dimensionless independent 
variables; t* is the dimensionless time;  is the stream 
function; f is the dimensionless stream function; f  is the 
dimensionless velocity; M is the dimensionless magnetic field 
parameter. 
The parameter of engineering interest is the skin friction 
coefficient (which indicates physically the surface shear 
 stress) given by  
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where the wall shear stress w is given by 
         (8)
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with  is the dynamic viscosity and  2Re axx   is 

 
the local Reynolds number.  
 
The unsteady case can be divided into two cases: 
 
1. Initial unsteady state flow ( = 0):-  
     When  = 0, corresponding to t* = 0, (5) becomes Rayleigh  
ordinary differential equation viz., 
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The above equation with boundary conditions (10) admits 
closed form solution and indeed, it has theexact solution  
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 is the complementary error function. 
 
2. Final steady state flow ( = 1):- 
    When  = 1, corresponding to t* +, (5) becomes Crane 
type ordinary differential equation viz.,       
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with boundary conditions (10). The exact solution of (13) is 
given by            1( ,1) 1 exp( ) (14)f        
where   211 M . 

 

III. RESULTS AND DISCUSSION 

 
The nonlinear partial differential equation (5) subject to 
boundary conditions (6) is solved numerically using an 
implicit finite-difference scheme known as Keller-box 
method, as described in [10]. This method is unconditionally 
stable and has a second order convergence. 
 The method has the following four main steps: 

 Reduce (5) to a first order equation; 
 Write the difference equations using central 

differences; 
  Linearize the resulting algebraic equations by  

Newton’s method and write them in matrix-  
               vector form; 

 Solve the linear system by block-tridiagonal-    
               elimination technique. 
To conserve the space, the details of the entire solution 
procedure of  Keller-box method are not presented here. 
      Numerical computations were carried out for different 
values of the magnetic parameter M. The step size  in -
direction and the position of  the edge of the boundary layer 
∞ have been adjusted to maintain the necessary accuracy. The 
values of  between 0.001 to 0.1 were used so that numerical 
solutions obtained are independent of  chosen, at least to 
four decimal places. However, a uniform grid =0.01 was 
found to be satisfactory for a convergence criterion of 10-5 
which gives accuracy to four decimal places. On other hand, 
the boundary layer thickness ∞ between 6 to 10 was chosen 
where the infinity boundary-conditions are achieved.    
     In order to assess the accuracy of our method, the 
numerical values of (0, )f  for the range 0    1 obtained in 
this study, in the absence of magnetic field (M = 0), have been 
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compared in Table 1, with those of  Awang Kechil and 
Hashim[8]. Our numerical results are in good agreement with 
those of [8]. 
 Table 1. Comparison of (0, )f   with those of  
                Awang Kechil and Hashim [8] when M=0.0 

 
 
 
 
 
 
 
 
 
 
 

Further, we have compared our analytical solutions (exact 
solutions) of surface shear stress [ (0, )f  ] for the steady state 
flow (ξ=1.0), in Table 2, in the presence of magnetic field M 
(0 M 1). It is clear from the Table 2 that numerical results 
obtained by the Keller-box method are almost identical with 
those of exact solutions. Further, it is found that (0, )f   
increases with the increase of magnetic field M. This is 
because when M increases, the Lorentz force produces more 
resistance to the transport phenomena which leads to the 
deceleration of the flow, enhancing the surface shear stress.    
 Table 2. Comparison of surface shear stress (0 , )f   
                with exact solution (Analytical solution) 
 
 
 
                          
     
                          
 
 
 
 
 
The variation of dimensionless velocity profile ( , )f    is 
illustrated in Fig.1, for different times, under the influence of 
uniform magnetic field M (M = 0.5).  
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       Fig.1 Velocity profiles for various values of  (M = 0.5) 

It is evident from this figure that increase in  results in the 
reduction of momentum boundary layer thickness and thereby 
enhancing the velocity gradient at the surface.  Further, the 
velocity profiles decrease monotonically with the distance 
from the surface and finally become zero for away from it, 
satisfying the boundary conditions asymptotically, and thus 
supporting the numerical results obtained.  
 
 
        The effect of magnetic field parameter (M) on the skin 
friction coefficient [Cf(Rex)1/2] is shown in Fig 2. At  = 0 
(i.e., at t*= 0, at the start of impulsive motion), the velocity is 
independent of M, while the effect of M becomes more 
important as    increases. For a fixed    ( > 0), Cf(Rex)1/2  

decrease with the magnetic parameter M and the effect of M 
becomes most significant at         = 1.0(i.e., as t* ∞) when 
the steady state is reached.  Further, the skin friction 
coefficient strongly depending on , (See (7)) is found to 
decrease rapidly in a small time interval (0<<0.4) after the 
start of the impulsive motion and reach the steady state near  
= 0.7. There is a smooth transition from the small-time 
solution (unsteady state) to the large-time solution (steady 
state).  
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          Fig. 2. Effect of magnetic field (M) on skin friction coefficient  
 

0 1 2 3 4 5
0.0

0.5

1.0



3

 =  0.7

 

 
f '



M = 0.0, 0.5, 1.0

           
         Fig. 3 Effect of magnetic field on velocity profiles 
 

 Present Results Awang Kechil 
and Hashim [8] 

0 -0.5643740 -0.5643740 
0.1 -0.6106120 -0.6150550 
0.3 -0.7115610 -0.7115696 
0.5 -0.8004117 -0.8018198 
0.7 -0.8873160 -0.8856581 
0.8 -0.9200550 -0.9252701 
0.9 -0.9623398 -0.9633761 
1.0 -1.0000000 -1.0000000 

 ξ  = 1.0 
M Present Results Exact solution 
0.0 -1.000000 -1.000000 
0.2 -1.095881 -1.095440 
0.4 -1.183360 -1.183215 
0.5 -1.224865 -1.224740 
0.6 -1.265045 -1.264911 
0.8 -1.341854 -1.341640 
1.0 -1.414519 -1.414213 
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     The effect of magnetic field on the corresponding velocity 
profile ( , )f    is shown in Fig 3. When =0.7 (i.e., when 
steady state is reached), the magnetic field increases the 
velocity gradient at the surface resulting in the reduction of 
momentum boundary layer thickness. 
 

 
IV. CONCLUSIONS 

 
     Numerical solutions of unsteady laminar boundary-layer 
flow caused by an impulsively stretching surface in the 
presence of a transverse magnetic field have been obtained. 
The present numerical results are compared with those of the 
analytical approach results and found them in good agreement. 
The magnetic field exerts significant influence on skin friction 
coefficient and reduces the momentum boundary layer 
thickness. There is a smooth transition from the small-time 
solution to the large-time solution.  

ACKNOWLEDGEMENT 

Authors thank the anonymous referee for his constructive 
suggestions, which have improved the earlier version of this 
work. 
One of the authors A.H. Srinivasa thanks Principal and the 
Management of Maharaja Institute of Technology, Mysore-
571 438 for their kind support. The authors are thankful to 
PET Research Foundation and the Department of 
Mathematics, PES College of Engineering, Mandya-571 401 
for providing excellent facilities for research. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

REFERENCES 
 
[1] B.C. Sakiadis, “Boundary-layer behavior on continues solid surfaces: II. 

The boundary-layer on continuous flat surface,” AIChE J.vol. 7, 1961, 
pp. 221-225. 

[2] L. Crane, “Flow past a stretching plate”. Z. Angew Math Phys(ZAMP), 
vol.21, 1970, pp.645-647. 

[3] K.B. Pavlov, “Magnetohydrodynamic flow of an incompressible viscous 
fluid caused by the deformation of a plane surface”. Magn. Gidrondin, 
vol.4, 1974, pp.146-152. 

[4] A. Chakrabarthi, A.S. Gupta, “A note on MHD flow over a stretching 
permeable surface”. Q.Appl.Math.vol. 37, 1979, pp. 73-78. 

[5] T. Chiam, Magneto hydrodynamic boundary layer flow due to a                                             
continuous moving flate plate. Comput. Math. Appl. vol. 26, 1993,  
pp.1-8. 

[6] I Pop and T.Y. Na “Unsteady flow past a stretching sheet”. Mech. 
Research Communications. vol.23, 1996, pp. 413-422. 

[7] N. Nazar, N. Amin, I. Pop, “Unsteady boundary-layer flow due to a 
streching surface in a rotating fluid. Mech. Res. Commun.vol.31, 2004, 
pp. 413-422. 

[8] S. Awang Kechil and I. Hashim, “Series solution for unsteady boundary 
layer flows due to impulsively stretching plate”. Chinese Physics 
Letters, vol.24, 2007, pp.139-142.  

[9] J. C.Williams and Rhyne, “Boundary layer development on a wedge 
impulsively sent into motion. SIAM J. Appl.Math. vol. 38, 1980, pp. 
215-224. 

[10] H.B. Keller, “A new difference scheme for parabolic problems”. In 
J.Bramble(Ed.). Numerical solutions of partial differential equations. vol 
II. Academic Press, New York, 1970. 

 
 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

Proceedings of the World Congress on Engineering 2011 Vol I 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-18210-6-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011




