
 

 
Abstract— An analytical method for computing the 
stresses was developed to predict bearing strength of pinned 
loaded composite joints using the characteristic curve model. 
Unlike conventional method that involved bearing test and 
both tensile tests to failure of notched and notched plates, the 
characteristic length in compression and tension that defines 
the characteristic curve was evaluated from stress functions 
without experimental tests. Two different graphite/epoxy 
laminates were used in the analysis to evaluate the joint 
strength for different joint configurations. The available 
experimental data in literature was used to validate the 
obtained results and the method of analysis was confirmed 
adequate by the good agreement between the experimental 
data and the analytical results.  
 
Index Terms—Bearing, Experimental, Stress functions, Pinned 
loaded. 

I. INTRODUCTION 

OMPOSITE materials offer the advantage of high specific 
strength and stiffness; in recent years they have been 

used extensively in aerospace structures, space vehicles and 
robotics structures. However, mechanically fastened joints 
that are needed for fitting component parts usually constitute 
a region of weakness that can lead to premature failure of 
structures. Based on the understanding that the engineering 
performance of a composite structure depends on its joints 
rather than the component members, the stresses and failure 
associated with mechanical joining of composites has 
received much attention. Mechanically fastened joints 
include bolted, riveted and pinned joints. These joints are 
susceptible to high stress concentrations which occur around 
and in the vicinity of the hole and are often the cause of 
unexpected failure in composite structures containing joints 
[1-16]. Therefore, adequate design of mechanical joint 
requires correct determination of the stresses, bearing 
strength and mode of failures of the joint. Wang et al.[3] 
investigated the possibility of changing the bolt and hole 
shapes from circular to elliptical in order to reduce bearing 
stress, and thereby increase the joint strength, especially 
when it is not possible to increase the hole diameter due to 
insufficient edge distance. Their analysis showed that the 
bearing stress at the joint hole can be significantly reduced 
by changing the bolt shape to elliptical. Chang et al. 
developed [11] characteristic length method for the failure 
analysis of composite joints and it is still currently used.  
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 The conventional methods of determining characteristic 
length for failure analysis of composite joints usually 
involve bearing test and, tensile test of notched and 
unnotched plate to failure, which often leads to materials 
waste. In an attempt to prevent materials waste and thereby 
save cost, Kweon et al. [15] utilized the finite element 
method to determine the characteristic lengths for failure 
analysis of composite joints without characteristic length 
tests. The investigation showed how both compressive and 
tensile characteristic lengths can be numerically determined 
without bearing and tensile tests, respectively, and found the 
method to be very efficient in analyzing different joint 
configurations. The failure loads and modes based on 
numerically calculated characteristic lengths are also 
validated by the test results for composite joints with good 
agreement.  
 Based on the fact that a considerable amount of 
computational effort and time is often saved when an 
existing analytical solution is utilized in preference to any 
available finite element model, an analytical model for 
evaluating the characteristic lengths without tests is 
proposed in the present investigation. Thus an analytical 
method for computing the stresses in pinned loaded 
composite joints is presented based on Lekhnitskii’s [5] 
complex stress functions, which satisfies the displacement 
boundary conditions along the hole contour. It was shown in 
this study that compressive and tensile characteristic length 
can be analytically determined without bearing test from 
stress functions based on the new definition [15] for 
characteristic length. The present study investigated the 
influence of joint configurations on the bearing strength. In 
the analysis, it was assumed that the pin is rigid and 
frictionless, with the diameter of the hole on the orthotropic 
plate equals to the diameter of the pin. Additionally, the 
contact boundary is assumed to span through half of the hole 
circumference. 
 In this study, the stresses obtained from stress functions 
are utilized to predict the bearing strength of pin loaded 
composite joints using Yamada-Sun failure criterion along 
the characteristic curve. The characteristic length in 
compression and tension obtained analytically without 
testing are utilized to construct the characteristic curve 
model. 
 

II. CHARACTERISTIC LENGTH METHODS 

 Several strength prediction methods for composite joints 
have been proposed, including stress concentration 
coefficient, damage zone model based on fracture energy 
and progressive failure analysis, and failure area index 
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(FAI). However, one of the most common and efficient 
methods of predicting the strength is the characteristic 
length method. This method was proposed by Whiney and 
Nuismer [1, 7], and it has been further developed by Chang 
et al. [11]. For this method, both the characteristics length in 
tension, Rt and compression, Rc must be determined by 
stress analysis associated with the results of bearing and 
tensile tests on notched and unnotched plates before 
employing an appropriate failure theory along the 
characteristic curve, rc as shown in Figure 1. This 
characteristic curve which was first proposed by Chang et 
al. [11] can be expressed as 
 
ݎ ൌ ݀  ܴ௧  ሺܴ௧ െ ܴሻܿ(1) ߠݏ 

where x and y are equal to rccosθ and rcsinθ respectively. 
 By definition, the characteristic length (in tension or 
compression) is the distance from the edge of hole boundary 
over which the plate must be critically stressed to initiate 
sufficient flaw that can cause failure. 

 
Fig. 1. Schematic Diagram for the Characteristic curve 
 

 This analytical method entails the determination of stress 
distributions within the plate and at the pin-plate interface. 
In order to demonstrate the practical application of 
characteristic length method, Whitney-Nuismer’s point 
stress criterion [7] and Yamada failure criterion [12] are 
used to predict the joint’s strength. 
 In this study, the CPL1 plate [15] with layers 
[±453/90/±452/04/90/04//±452/90/±453] was utilized. The 
notation “±45” is used to represent a plain weave 
graphite/epoxy layer. The lamina thicknesses of the 
unidirectional and woven fabric layers are 0.114 mm and 
0.198 mm, respectively. The unidirectional layers are from 
the USN125 graphite/epoxy prepreg by Hankook Fiber 
Glass. The DMS2288 graphite/epoxy woven fabrics are by 
Sunkyong. Another typical example utilized in this analysis 
is AS4/3502 graphite/epoxy laminate having the stacking 
sequence [(0/±45/90/0ത)]s and diameter  6.35 mm;  lamina 
thickness h and width w, of 0.127 mm  and 38.1 mm, 
respectively [4]. A typical example of the joint configuration 
of this pin loaded plate is shown in Figure 2. The material 
properties of the laminates and joint configurations are as 
given in Tables I and II.  It should be noted that the ‘rs’ in 
joint identification codes WDrs  shown in Tables II  and III 
can be interpreted  as w/d=rs. 

 
 
 
 
 
 
 
 
 
 
Fig. 2.  The configurations of the joint 

TABLE I 
THE MATERIAL PROPERTIES OF COMPOSITE MATERIALS [4, 15] 

Properties Type of Material 
USN 125 DMS 

2288 
AS4/3502 

E1 (GPa) 131 65 124.11 
E2 (GPa) 8.2 65 9.722 
G12 (GPa) 4.5 3.6 3.744 
υ12 0.281 0.058 0.28 
Xc (MPa) 1400 692.9 1406.60 
Xt (MPa) 2000 959 1778.93 
Yc (MPa) 130 692.9 238.57 
Yt (MPa) 61 959 53.506 
S12 (MPa) 70 65 102.05 

 
TABLE II 

GEOMETRIES OF COMPOSITE JOINTS [3, 15] 
 
Plate 

 
Joint 
ID 

Hole-
diameter, 
d mm 

 
Width, 
w (mm) 

Edge-
distance, 
e mm 

 
w/d 

 
e/d 

CPL1 WD20 9.53 19.00 13.40 2.0 1.4 

WD25 9.53 23.80 13.40 2.5 1.4 

WD28 9.53 26.80 13.40 2.8 1.4 

WD35 9.53 33.40 13.40 3.5 1.4 

WD40 9.53 38.00 13.40 4.0 1.4 

AS4/ 

3502 

WD60 6.35 38.10 38.10 6.0 6.0 

 
Compressive characteristic length 
 The conventional method of determining characteristic 
length for failure analysis of composite joints usually 
involves a bearing test.  As stated earlier, for the 
characteristic length method of predicting joint strength, 
compressive characteristic length is an important parameter 
that must be determined. In this analysis, the no-bearing test 
method introduced by Kweon et al. [15] is employed, using 
analytical techniques for the determination of compressive 
characteristic length. 
 Although Whitney and Nuismer [19] suggested the 
characteristic length to be a material constant, several 
authors have shown that this value depends on specimen 
geometry [8,18]. To determine the characteristic length in 
compression, the approach proposed by Keweon [15] was 
used. This method utilizes an arbitrary applied load to 
compute the mean bearing stress defined by: 
 

ߪ ൌ
ܲ
ൗܪܾ      (2) 

where Pm is the applied load and H the laminate thickness. 
The compressive characteristic length Rc, as showed in 
Figure 2, is the distance from the front hole-edge to a point 
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where the local compressive stress by the arbitrarily applied 
load is the same as the mean bearing stress.  
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  Schematic diagram of the compressive characteristic 
length and normal stress distribution pattern 
  
For the case where the plate is loaded as shown in Fig. 2, the 
stress functions can be expressed in the form [6]: 

∅ଵሺݖଵሻ ൌ ଵ݈߫݊ܣ  ൫1 ൗܦ2 ൯ሾሺݑଵݍଶ െ ଶሻ߫ଵଵݒ݅
ିଶ 

 ሺݑଶݍଶ െ ଶሻ ߫ଵଶݒ݅
ିଶሿ             (3b) 

 ∅ଶሺݖଶሻ ൌ ଶ݈߫݊ܤ  ൫1 ൗܦ2 ൯ሾሺݑଵݍଵ െ ଵሻ߫ଶଵݒ݅
ିଶ 

 ሺݑଶݍଵ െ ଵሻ ߫ଶଶݒ݅
ିଶሿ      (3a) 

and the stresses in rectangular co-ordinate expressed as: 
௫ߪ ൌ 2ܴ݁ሼߤଵ

ଶ∅ଵ
′ ሺݖଵሻ  ሺߤଶ

ଶ∅ଶ
′ ሺݖଶሻሽ                                                     

߬௫௬ ൌ െ2ܴ݁ሼሺߤଵ∅ଵ
′ ሺݖଵሻ  ଶ∅ଶߤ

′ ሺݖଶሻሽ                                                                                 
௬ߪ ൌ 2ܴ݁ሼ∅ଵ

ᇱ ሺݖଵሻ  ∅ଶ
ᇱ ሺݖଶሻሽ (4) 

where 
z1=x+μ1y; z2=x+μ2y 

and μ1and μ2 are roots of characteristics 
equation 
ܽଵଵߤ

ସ  ሺ2ܽଵଶ  ܽሻߤ
ଶ  ܽଶଶ ൌ 0                 (5) 

 
and aij are the laminate elastic compliance. 
 
To demonstrate the applicability of this method for the case 
of analytical solution, arbitrary compressive loads Pm were 
used to evaluate the characteristic length in compression for 
the laminate CPL1 given in Table I.  Figure 3 shows the 
mean bearing stresses and normal stress distributions from 
hole edge due to the applied loads Pm of magnitudes 10.3, 8 
and 6 kN; and the corresponding characteristic length 
Rc=3.479 mm for the laminate with major diameter equal to 
9.53 mm. It can be seen on Figure 3 that for the different 
magnitude of arbitrary load used in the analysis, the 
evaluated compressive characteristic length is 3. 479 mm. 
Similar analysis was also performed for laminate AS43502 
shown in Table I and the result presented in Table III. 

 
 

Fig. 3. Compressive characteristic length without bearing test for CPL1 

laminate with WD=20 

 
Tensile characteristic length 
 It has been stated that joints evaluation by characteristic 
length method also requires the determination of tensile 
characteristic length. Since the tensile strength of notched 
laminate and unnotched laminate must be known a priori, 
the conventional method involves the experimental tensile 
test to failure of notched and unnotched   laminate. This 
method often leads to materials waste and a great deal of 
time is also required for testing. The present method utilized 
a new definition for tensile characteristic [15] to obtain 
characteristic length in tension. An arbitrarily tensile load 
Qm is applied to the notched plate at infinity and the stress 
functions are used to obtain the stress distribution within the 
plate. Figure 4 shows the stress distribution of an infinite 
plate with a through-to-thickness hole subjected to 
distributed tensile loads per unit area, qm at infinity. The 
tensile stress would be highest at the side edges of the hole, 
and decreases further away from the side edges of the hole 
as shown in this figure. 

 
Fig. 4.  Schematic diagram of the tensile characteristic length and stress 
distribution pattern 

 
 In this analysis, the Lekhnitskii’s [5] complex stress 
functions are utilized to approximate the solution to the 
normal stress distribution σx (0,y) in an infinite orthotropic 
plate with an open hole loaded in tension. These functions 
can be expressed as 

∅ଵሺݖଵሻ ൌ െ
୧୯ౣୟ

ଶሺఓభିఓమሻ

ୟି୧ఓభ

௭భାටభ
మିሺୟమାఓభ

మమሻ

  (6) 

∅ଶሺݖଶሻ ൌ
୧୯ౣୟ

ଶሺఓభିఓమሻ

ୟି୧ఓమ

௭మାටమ
మିሺୟమାఓమ

మమሻ

   (7) 

where a is the radius of the hole and 
௫ߪ ൌ ݍ  2Reሼߤଵ

ଶ∅ଵ
ᇱ ሺݖଵሻ  ሺߤଶ

ଶ∅ଶ
ᇱ ሺݖଶሻሽ (8a)                   

߬௫௬ ൌ െ2ܴ݁ሼሺߤଵ∅ଵ
ᇱ ሺݖଵሻ  ଶ∅ଶߤ

ᇱ ሺݖଶሻሽ (8b)                   
௬ߪ ൌ 2ܴ݁ሼ∅ଵ

ᇱ ሺݖଵሻ  ∅ଶ
ᇱ ሺݖଶሻሽ (8c) 

 The point stress criterion [7] can be applied to Equation 
8a to compute the tensile characteristic length at which 
failure analysis of the joint should be evaluated. The 
criterion defines the tensile characteristic length as the 
distance from the side-edge of the hole to a point where the 
local tensile stress by the arbitrarily applied load Qm is the 
same as the mean tensile stress, defined by σmt. This can be 
expressed as 
,௫ሺ0ߪ ሻݕ ൌ  ௧ (9)ߪ
where, 
ݕ ൌ ݎ  ܴ௧; ܳ ൌ ௧ߪ ሺWhሻ andݍ ൌ Q୫/ሺWെ dሻh (10) 
For conventional method, the value of tensile characteristic 
length can only be determined when the data for the notched 
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and unnotched laminate strength are known. However, the 
present analytical method, offers the advantage of 
computing the value of tensile characteristic length without 
experimental testing.  To demonstrate the applicability of 
this method, the arbitrary loads Qm of magnitude 12, 8 and 6 
kN, respectively were used to compute the tensile 
characteristic length for graphite/epoxy plates with layers 
[±453/90/±452/04/90/04//±452/90/±453] and a hole of 9.53 
mm in diameter. The stress distribution and the calculated 
value of tensile characteristic length for w/d= 2.0 is shown 
in Figure 5. Similarly, this analysis is repeated for the CPL1 
with various widths and also for [(0/±45/90/0ത)]s  plate. The 
computed tensile characteristic lengths are shown in Table 
III.  
 

TABLE III 
THE COMPUTED CHARACTERISTIC LENGTHS FOR 

GRAPHITE/EPOXY PLATES 

Plate WD Rc, mm Rt, mm 
 CPL1 20 3.479 0.900 

25 3.479 1.470 
28 3.479 1.790 
35 3.479 2.490 
40 3.479 2.940 

[(0/±45/90/0ത)]s 60 0.810 3.272 

[(0/±45/03)]s 60 2.00 2.98 
 
 

 
 
 
Fig. 5. Tensile characteristic length without experimental test for CPL1 

laminate with WD=20 

 

III. JOINT STRENGTH AND FAILURE ANALYSIS 

 The present study utilized a compact analytical 
technique that utilized the thickness of the plate as a 
parameter. The composite plate is considered to be 
homogeneous and infinite with a circular hole loaded by a 
rigid pin. In addition, the pin has the same diameter as the 
hole and the friction at the region of pin-plate contact is 
considered to affect the loading condition. The load Fr 
applied in x direction is assume to cause a displacement of 
co in its own direction and c1 at the ends of contact boundary. 
It is assumed that the hole deforms into an ellipse under the 
action of the pin load Fr, which is also resisted by distributed 
load at infinity as shown in Figure 6. For the linear case of 
zero clearance, contact between the plate and the pin spans 

through half of the hole’s circumference. Since the results 
from [3] have shown that the no-slip region within the 
contact boundary is zero degrees and this point is located at 
the point of symmetry, therefore the boundary conditions of 
the geometry shown in Figure 6 can be expressed as follow 
 
Contact Region: -π/2 ≤θ≤π/2 
ݑ ൌ ܿ  and ݒ ൌ θ ݐܽ        0 ൌ 0                                      (11) 
ݑ ൌ ܿଵ and ݒ ൌ 0     at ߠ ൌ ߨ

2ൗ     (12) 

ሺܿ െ ߠሻcosݑ ൌ  (13)      ߠsinݒ
ݑ ൌ ߠଵcos2ݑ   (15)  ߠଶcos4ݑ
ݒ ൌ ߠଵsin2ݒ   (16)   ߠଶsin4ݒ
where u1, u2, v1 and v2 are the unknowns to determine from 
boundary conditions.  
where u and v are the displacements along x and y axes 
respectively. 
In this analysis, frictionless condition is assumed at the 
contact boundary and this condition can be expressed as 
߬ఏ ൌ 0          (17) 
No-contact region: π/2 ≤θ≤3π/2 
The condition for the no-contact surface can be expressed as 
ߪ ൌ 0        (18) 
 ߬ఏ ൌ 0         (19) 
Similarly, using Equations 15 and 16 to also satisfy the 
above displacement boundary conditions, the unknown ui 
and vi can be expressed as 

ଵݑ  ൌ
ሺܿ െ ܿଵሻ

2
ൗ  , ଶݑ  ൌ ଶݒ ൌ

ሺܿ  ܿଵሻ
2
ൗ   and ݒଵ     ൌ

 
ሺ3ܿ  ܿଵሻ

2
ൗ      (20) 

Lekhnitskii [5] has shown that if the known boundary 
displacement at the contour of the opening can be expressed 
in the form  

∗ݑ ൌ ߙ  ሼߙߪ
  ߪതߙ

ିሽ

∞

ୀଵ

 

∗ݒ ൌ ߚ  ∑ ൛ߚߪ
  ߪߚ̅

ିൟஶ
ୀଵ    (21) 

 
and the components of the resultant forces that cause the 
displacement are given, then the stress functions can be 
expressed by the following relations 

߶ଵ ൌ ln߫ଵܣ  ቂߙതଵݍଶ െ ଶଵߚ̅ 
ଵ

ଶ
߱ሺܾ݅ݍଶ  ଶሻቃܽ

ଵ

చభ


 
ଵ


∑ ൛ߙതݍଶ െ ଶൟߚ̅
ஶ
ୀଶ ߫ଵ

ି      (22a) 

߶ଶ ൌ ln߫ଶܤ െ ቂߙതଵݍଵ െ ଵଵߚ̅ 
ଵ

ଶ
߱ሺܾ݅ݍଵ  ଵሻቃܽ

ଵ

చమ
െ

ଵ


∑ ൛ߙതݍଵ െ ଵൟߚ̅
ஶ
ୀଶ ߫ଶ

ି        (22b) 

In Equations 21 and 22, ߪ ൌ ݁ఏand ω=0. Bars represent 
conjugate values, αm and βm 

are known coefficients that 
depend on the load distribution at the opening edge, α0, β0 
are arbitrary constants, D is p1q2-p2q1, and ζk is the mapping 
function given by  

߫ ൌ
௭ೖേට௭ೖ

మିఓೖ
మమ

ିఓೖ
  ݇ ൌ 1,2   (23) 

where ߤ (k = 1,2) are the roots of the characteristic 
Equation 5.  
The sign of the square-root term in Equation 23 is chosen so 
that that magnitude of the mapping function is greater or 
equal to one; that is the domain of the plate is mapped onto 
the exterior of the unit circle. Additionally, the constants A 
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and B of Equation 22 can be obtained from the following 
relations [5] 
ܣ ൌ

൫ܲ ൗ݅ܪߨ ൯   ൫ߤଵ̅ߤଵ  ଶߤଵߤ  ଶߤଵ̅ߤ െ ൫
ܽଵଶ

ܽଶଶൗ ൯ߤଵߤଶ̅ߤଵ̅ߤଶ൯/

൫ሺߤଵ െ ଵߤଵሻሺߤ̅ െ ଵߤଶሻሺߤ െ  ଶሻ൯   (24a)ߤ̅
ܤ ൌ

൫ܲ ൗ݅ܪߨ ൯   ൫ߤଶ̅ߤଶ  ଶߤଵߤ  ଵߤଶ̅ߤ െ ൫
ܽଵଶ

ܽଶଶൗ ൯ߤଵߤଶ̅ߤଵ̅ߤଶ൯/

൫ሺߤଶ െ ଶߤଶሻሺߤ̅ െ ଶߤଵሻሺߤ െ  ଵሻ൯   (24b)ߤ̅
 
where as previously indicated bars represent conjugate 
values, aij are the laminate elastic compliance and H is the 
thickness of the plate. 
By expressing σ in Equation 21in terms of trigonometric 
function defined by 

cos݊ߠ ൌ
ఙାఙష

ଶ
;  sin݊ߠ ൌ

ఙିఙష

ଶ
     (25) 

and comparing Equations 15 and 16 with 21, the stress 
functions of Equation 22 can be expressed as [19] 

∅ଵሺݖଵሻ ൌ ln߫ଵܣ  ൫1 ൗܦ4 ൯ሾ൫ሺܿ െ ܿଵሻݍଶ െ ݅ሺ3ܿ 

ܿଵሻଶ൯߫ଵ
ିଶ  ൫ሺܿ  ܿଵሻݍଶ െ ݅ሺܿ  ܿଵሻଶ൯ ߫ଵ

ିଶሿ (26) 
 

 ∅ଶሺݖଶሻ ൌ ln߫ଶܤ െ ൫1 ൗܦ4 ൯ሾ൫ሺܿ െ ܿଵሻݍଵ െ ݅ሺ3ܿ 

ܿଵሻଵ൯߫ଶ
ିଶ െ ൫ሺܿ  ܿଵሻݍଵ െ ݅ሺܿ  ܿଵሻଵ൯ ߫ଶ

ିଶሿ   (27)                                           
 
where  
ଵ ൌ ܽଵଵߤଵ

ଶ  ܽଵଶ and ଶ ൌ ܽଵଵߤଶ
ଶ  ܽଵଶ  (28a)             

ଵݍ  ൌ ܽଵଶߤଵ 
ܽଶଶ

ଵൗߤ  and ݍଶ ൌ ܽଵଶߤଶ  
ܽଶଶ

ଶൗߤ     (28b) 

 
Additionally, the stresses in rectangular co-ordinates can be 
expressed as 
௫ߪ ൌ 2Reሼߤଵ

ଶ∅ଵ
ᇱ ሺݖଵሻ  ሺߤଶ

ଶ∅ଶ
ᇱ ሺݖଶሻሽ    (29a) 

߬௫௬ ൌ െ2Reሼሺߤଵ∅ଵ
ᇱ ሺݖଵሻ  ଶ∅ଶߤ

ᇱ ሺݖଶሻሽ  (29b) 
௬ߪ ൌ 2Reሼ∅ଵ

ᇱ ሺݖଵሻ  ∅ଶ
ᇱ ሺݖଶሻሽ   (29c) 

 
The stresses in rectangular co-ordinates can be transformed 
to polar co-ordinates using the transformation matrix 


cosଶߠ sinଶߠ 2sinߠcosߠ
sinଶߠ cosଶߠ െ2sinߠcosߠ

െsinߠcosߠ sinߠcosߠ cosଶߠ െ sinଶߠ

൩  (30) 

  
 The prescribed displacements co and c1 can be obtained 
by utilizing frictionless condition at the contact region 
within the hole boundary.  Therefore at the end of contact 
boundary, we have 
 
߬ఏ ൌ 0                           at ߠ ൌ േ(31)   2/ߨ 
and expressing Equation 17 in resultant form, it can be 
expressed as  
 

 ߬ఏ
ഏ

మ


ߠ݀ݎ ൌ 0        (32) 

Substituting the stresses into the equations above before 
solving the two equations simultaneously yields: 
 
ܿ ൌ ሺ9݊ܨ݃  ݇ሺ10  21݊ሻ െ ሺ݇ߨܪଵଶሻ/4ߥ10

ଶሺ5 

13݊  3݊ଶሻ  ݇ሺ12݊ଶ  ݊ሺ7 െ ଵଶሻߥ13 െ ଵଶሻߥ10 
ଵଶሺെ7݊ߥ   ଵଶሻሻ     (33)ߥ5
ܿଵ ൌ ሺ݇ሺെ10ܨ݃ െ 11݊ሻ െ 19݊  ሺ݇ߨܪଵଶ/4ߥ10

ଶሺ5 

13݊  3݊ଶሻ  ݇ሺ12݊ଶ  ݊ሺ7 െ ଵଶሻߥ13 െ ଵଶሻߥ10 

ଵଶሺെ7݊ߥ   ଵଶሻሻ     (34)ߥ5
 
 

 

 
Figure 6.  Schematic representation of composite joint under loading 

 

where the parameters k, n and g are materials constant of the 
plate expressed as 

݇ ൌ െߤଵߤଶ ൌ ሺܧଵ ⁄ଶܧ ሻଵ ଶ⁄                                                        
݊ ൌ െ݅ሺߤଵ  ଶሻߤ ൌ ሾ2ሺ݇ െ ଵଶሻߥ  ଵܧ ⁄ଵଶܩ ሿ

ଵ
ଶൗ     (35) 

݃ ൌ ሺ1 െ ଶଵሻߥଵଶߥ ⁄ଶܧ   ݇ ⁄ଵଶܩ      
 
Utilizing Equations 33-35, the unknown coefficients ui and 
vi of the stress functions required to compute the stresses can 
be obtained from Equation 20 when the geometric 
parameters of the hole are known. The stress results 
computed from the above analytical method along the 
characteristic curve shown in Figure 1 were used in failure 
analysis to predict the joint strength.  Additionally, Yamada-
Sun failure criterion was used to test condition for first ply 
failure at any point along the characteristic curve. This 
criterion can be expressed as [12] 
           ሺߪଵ ܺ ⁄ ሻଶ  ሺ߬ଵଶ ܵ⁄ ሻଶ ൌ ݁ଶ    (36) 
where σ1 and τ12 are longitudinal compressive and shear 
stresses, respectively. Xc the ply longitudinal compressive 
strength and S the ply shear strength. In this model, failure is 
expected to occur when the value of e is either equal or 
greater than unity. The computer code that was used to test 
for the failure load was written in Mathematica. The failure 
of the joint can be characterized by three types of failure 
modes depending on the failure location, θf [11] namely: 
0°  ߠ  15°: Bearing mode 
30°  ߠ  60°: Shear െ out mode 
75°  ߠ  90°: Net െ tension mode 
 Additionally, the concept of finite-width correction 
factor developed by Tan [9] was utilized to correct the 
infinite assumption of the plate.  By definition, finite-width 
correction factor (FWC) is a scale factor which is applied to 
multiply the notched infinite plate solution to obtain the 
notched finite-plate result based on the assumption that the 
normal stress profile for a finite plate is identical to that for 
an infinite except for a FWC factor. This correction factor is 
given by the relationships 
 

ಮ


ேߪ
ஶ ൌ  ே        (37)ߪ

 
where, σN and σN ∞ denote the notched strength for finite and 
infinite plate, respectively, and KT/KT

∞ is the FWC factor.  
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KT and KT
∞ denote the stress concentration at the opening 

edge on the axis normal to the applied load for a finite plate 
and an infinite plate, respectively. This factor is expressed 
by the relationship [11] 
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    (38) 

 

்ܭ
ஶ ൌ 1  ට

ଶ

మమ
ቀඥሺܣଵଵܣଶଶሻ െ ଵଶܣ 

భభమమିభమ
మ

ଶలల
ቁ  (39) 

In Equation 39 Aij denotes the effective laminate in plane 
stiffnesses. 
 

IV. RESULTS AND DISCUSSION 

 Two different Graphite/epoxy plates were used in this 
study to predict the strength of composite joints. Table IV 
data as displayed in Figure 7 shows the failure loads as 
compared with the experimental results from [15] for CPL1 
joints with various ratios of width-to diameter (w/d).  As 
mentioned before, the Yamada-Sun failure criteria were 
used to evaluate the failure of the joints. The results from 
this table showed that the predicted loads for different joint 
configurations are in agreement with experimental data.  It 
is depicted on this table that the model slightly under 
predicts the failure load in most of the geometries except 
WD40 joints. Keweon et al. [9] stated that for each joint 
configuration, seven specimens were tested and they 
computed the coefficient of variation defined as standard 
deviation over the mean failure load to be 6.1 percent. Even 
though the range for the experimental failure load due to 
material variability cannot be computed from coefficient of 
variation, the present results still correlate well with 
experimental data and this shows that the present analytical 
model is adequate for the analysis of the joint strength. It 
can be seen from Table IV that failure load increases with 
increased width to diameter ratio. Also documented in 
Figure 8 is the failure loads for AS43502 joints with 
stacking sequence [(0/±45/90/0ത)]s. There was no available 
experimental data for this joint but the present result was 
compared with result from Wang [4] as shown in this figure.  
The difference between the two results might be caused by 
the fact that Wang [4] used only tensile characteristic 
distance around the hole to evaluate the joint strength in lieu 
of characteristic curve model that requires both 
characteristic length in tension and compression.  
 

 
TABLE IV 

FAILURE LOADS AND MODES FOR CPL1 JOINTS 

 
Joint ID 

Failure Load,  
KN 

Present Exp 

WD20  8.85 9.8 

WD25  9.3 10.1 

WD28  9.6 10.5 

WD35  10.2 10.5 

WD40  10.65 10.6 

 
 
 
 

 
Fig. 7.  Failure loads as compared with the experimental data from [15] 

 

 
 
 
Fig. 8.  Failure load for AS4/3502 joint with stacking sequence  
[(0/±45/90/0ത)]s 

 

V. CONCLUSION 

 Stress analysis was performed to predict the failure 
strength of pin loaded composite joints using Yamada-Sun 
failure criterion and the characteristic curve model. Unlike 
the conventional method that requires bearing test and 
tensile test of plates with and without hole, the characteristic 
dimensions that define the characteristic curve were 
obtained by stress analysis associated with no-bearing and 
also without tensile tests of the plate. The analytical result 
and available experimental data in literature for different 
laminated composite joint configurations were used to 
validate the present results. The method of analysis was 
proved adequate by the good agreement between the results 
found in literature and the present analytical results. The 
strength of the joints was also found to increase with width 
to diameter ratio.  
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