
 
 

 

 
Abstract- This paper is devoted to the design of a 
vaccination strategy for a SEIR model with 
incomplete knowledge about the populations. The 
design is oriented towards the measurement and 
use of the infectious population in the design of the 
vaccination rule with the eventual incorporation of 
an observer to deal with uncertain model state 
knowledge. The observer is not necessarily 
parameterized with the exact known parameters of 
the epidemic model. 
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I. INTRODUCTION 
Important control problems nowadays related to Life 
Sciences are the control of ecological models  like, for 
instance, those of population evolution (Beverton-Holt 
model, Hassell model, Ricker  model etc.) via the online 
adjustment of the species environment carrying capacity,  
that of the population growth or that of the regulated 
harvesting quota as well as the disease propagation via 
vaccination control.  In a set of papers, several variants and 
generalizations of the Beverton-Holt model (standard 
time–invariant, time-varying parameterized, generalized 
model or modified generalized model) have been 
investigated at the levels of stability, cycle- oscillatory 
behavior, permanence and control through the manipulation 
of the carrying capacity (see, for instance,  [1-5]). The design 
of related control actions has been proved to be important in 
those papers at the levels, for instance, of aquaculture 
exploitation or plague fighting. On the other hand, the 
literature about  epidemic mathematical models is exhaustive 
in many books and papers. A non-exhaustive list of 
references is given in this manuscript, cf. [6-14] (see also the 
references listed therein). The sets of models include the most 
basic ones, [6-7] as follows: a) SI- models where not 
removed- by – immunity population is assumed. In other 
words, only susceptible and infected populations are 
assumed,.b) SIR models, which include susceptible plus 
infected plus removed- by –immunity populations,      
c)SEIR- models where the infected populations is split into 
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two ones (namely, the “ infected” which  incubate the disease 
but do not still have any disease symptoms and the “ 
infectious” or “ infective” which do have the external disease 
symptoms). Those models have also two major variants, 
namely, the so-called “pseudo-mass action models”, where 
the total population is not taken into account as a relevant 
disease contagious factor and the so-called “true-mass action 
models”, where the total population is more realistically 
considered as an inverse factor of the disease transmission 
rates).  There are many variants of the above models, for 
instance, including vaccination of different kinds : constant 
[8], impulsive [12], discrete – time etc., incorporating point 
or distributed delays [12-13], oscillatory behaviours  [14-18] 
etc. . On the other hand, variants of such models  become  
considerably simpler for the illness transmission among 
plants [6-7]. It is assumed that SEIR – model is of the 
true-mass action type.  
 

II .THE MODEL 
Let S (t) be the “susceptible” population of infection at time t, 
E (t) the “ infected” ( i.e. those which incubate the illness but 
do not still have any symptoms) at time t, I (t ) is the “ 
infectious” ( or “infective”) population at time t, and  R (t) is 
the “ removed –by- immunity ” ( or “ immune”) population at 
time t. Consider the  true-mass action SEIR-type  epidemic 
model:  

         
      tVtN
tN

tItS
tRtStS  1      (1) 

     
     tE
tN

tItS
tE                                  (2) 

       tEtItI                                        (3) 

             tVtNtItRtR   1         (4) 

subject to initial conditions   000  SS , 

  000  EE ,   000  II and   000  RR  under  

the vaccination constraint   00 RR:V .  In the above 

SEIR – model, N is the total population,   is the rate of 

deaths from causes unrelated to  the infection,   1,0 takes 

into account the number of deaths due to the infection,   is 
the rate of losing immunity,   is the transmission constant ( 

with the total number of infections per unity of time at time t  

being 
   

 tN

tItS
 ), 1  and 1 are, respectively,  the 

average durations of the latent and infective periods. If 
 then neither the natural increase of the population nor 

the loss of maternal lost of immunity of the newborns is taken 
into account. If   such a lost of immunity is considered.  

All the above parameters are nonnegative. Note the 
following: 
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  a) 0  since, otherwise, the average duration of the 

latent period is infinity and the infectious are unrelated to the 
infected from (3) 
  b) 0  since, otherwise, the average duration of the 

infectious period is infinity and the whole immune 
population is not dynamically coupled to the infectious one. 
  c) If 0  then the mortality by causes unrelated to the 

disease is not taken into account. If    then neither the 

loss of maternal immunity of the newborns nor the natural 
increase of the population are considered. If 0 then it is 

assumed that there is no mortality directly caused by the 
disease.  
  d) It is nonsense to eventually fix to zero the disease 

transmission constant   since this would decouple the 

infected dynamics from the susceptible one. 
 e) Some particular modelling variants ( so- called pseudo 

mass-action  type models) fix to unity the whole population 
N(t) in (1)- (4). This modelling  strategy  does not consider 
that the disease transmission of few susceptible and infected 
among large population  numbers  moderates the disease 
evolution as the SEIR- model (1)-(4) ( so called mass action – 
type models ) does. The mass action models are based of the 
mass action principle from Chemical kinetics following 
Guldberg and Waage (1864) which reads as follows:  “For a 
homogeneous system, the rate of the chemical reaction is 
proportional to the active masses of the reacting substances” 
, [15]. 
The total population is )()()()()( tRtItEtStN  ; 

 0Rt . By summing up both sides of (1)-(4), one gets: 

   )()()( tItNtN                                           (5) 

If 0 then the population is considered to remain 

constant through time; i.e.  0);0()( RtNtN so that: 

 

0)0()0()0()0()()()()(  RIEStRtItEtS   

  0Rt  .The next result establishes that if the infection 

collapses after a finite time then the whole susceptible plus 
immune populations converge asymptotically to the whole 
population even in the event that this one has not a finite 
limit. 

Assertion 1. Assume that 0;0)()( tttItI   . Then, 

0)()(  tEtE  ; 0tt  and     0)(  tNtRtS  as 

t  and )( tN is uniformly bounded for all time if  . 

If furthermore     then 

      0lim tNNtRtS
t




. If 0  then, 

irrespective of the initial conditions,  the overall population is 
constant  if   , the overall population diverges if    

and the overall population asymptotically converges to zero 
if   . 

Proof:  It follows that 0)()(  tEtE  ; 0tt   for some 

finite 0t  from (3) and (2) so that one gets from (1) and (4): 

          00000 tNtRtStRtS    

     tRtS

             dNetRtSe t
t

ttt   
0

0
00  

                   dNet
t

t 
0

      t  as    

           t
t

tt dtNee
0

0
0                         

    0
00 tNe)t(N gtt    as t  

so that, if  , then  

     0)(  tNtRtS  as t  and )( tN is uniformly 

bounded for all time since it is a continuous function which is 
the unique time-differentiable solution of an ordinary 
differential equation which cannot possess finite escape 
times.  
    )()( 0tNtNtRtS   as t  if   

and )( tN is uniformly bounded for all time 

     )(tNtRtS  as t  if   

If, in addition, 0  then      )t(NtN    and the 

overall population is constant  if   diverges  if    

and converges to zero if    irrespective of the initial 

conditions.                                                                          
 
The following result extend Assertion 1 to the case when I (t)  
vanishes asymptotically. 
 

Assertion 2. Assume that 0)()(  tItI  as t . If 

0  then,   0tE  and     )(tNtRtS   as t . 

 
Proof: The solution of (3) satisfies  

             dEeIetI t tt   
0

0  

       dEet t 
0

; 0t  

Proceed by contradiction by assuming that the claim 
  0tE as t  is false. Then, since E(t) is everywhere 

continuous in 0R  because  it satisfies the differential 

equation (2), one has that for any given 0t , there exist 
some real constants   0 t ,   0,  t , 

  0,11  tTT and    122 ,, TtTT  such 

that   tE ;  21 , TtTt   for the given 0t  so 

that: 

         dEeTtI Tt
Tt

Tt



 2

1
2

2  

       dTtEeTT TT
10

12 12  
   

    01:),,,( 12
21  


TTeTTtm 


  

which contradicts   0tI as t  from Assertion 1 so 

that   0tE as t ,since     )t(NtRtS   as 

t , from Assertion 1.                                                      

It has been proven in previous papers (see, for instance, [16]) 
that the vaccination control law has to  take values in  10 ,  

for all time in order to ensure that the SEIR – model (1)-(4) is 
a positive dynamic system in the sense that for any set of 
nonnegative initial conditions  all the components of the 
trajectory solution  of (1) – (4 ) are nonnegative for all time. 
This has to be accomplished with for coherency of the 
mathematical problem with the real problem at hand. On the 
other hand,  it is assumed that the whole set of parameters 
parameterizing the SEIR – model (1) –(4) is not known then 
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they should be estimated online to synthesize the vaccination 
law  1,0: 0 RV  based on those estimations. Assertions 1- 

2  dictate that if the infection collapses in some way then the 
whole population of susceptible plus immune asymptotically 
converge to the whole population even if that one has not a 
finite limit as time tends to infinity.  This feature motivates 
fixing the adaptive control objective as to synthesize a 
vaccination law such that the infectious population is 
asymptotically regulated to zero to achieve the  sum of the 
susceptible plus the immune asymptotically track the whole 
population as a result. 
 

III. STABILITY AND POSITIVITY RESULTS 
The vaccination strategy has to be implemented so that the 
SEIR model be positive in the usual sense that none of the 
populations, namely, susceptible, infected, infectious and 
immune be negative at any time. This requirement follows 
directly from the nature of the problem at hand. This section 
investigates  conditions for positivity of the SEIR model 
(1)-(4). First , assume the  constant population constraint  (5) 
with 0,  implying directly: 

0)0()0()0()0()()()()(  RIEStRtItEtS   

;  0Rt                                                                        (6) 

is used in (1), (3)-(4) to eliminate the infected population E(t) 
leading to: 
 

              tVNtS
N

tI
tRtStS 






  1    

                                                                                          (7) 

       )()( tRtSNtItI                   (8)                                       

         tVNtItRtR                            (9) 

 
for any given real constant    )(sup/

0
tIN

t
 . It is 

possible to rewrite (7)-(9) in a compact form as a dynamic 

system of state  TtRtItStx )(),(,)()(  , output 

)()()( tRtSty  and whose input is  appropriately  related to 

the vaccination function as    TtVtVtu )(,)(1 . This 

leads to: 
       tuENtxAtx 13  

+
    















  21 eNtxE

N

tI                           (10.a)                                  

             tuENtxA 13 + 

+
    
























  2131 eNtxEE

N

tI       (10.b)                   

             tuENtxA 13  

+
       















  21 etyNtxE

N

tI          (10.c) 

             tVeNtxA 3  

+         














  )(1121 tVeNetyNtxE

N

tI     

                                                                                    (10.d) 

   txety T
13                                                              (11) 

where ie  is the i-th unit Euclidean column vector in 3R  

with its i-th component being  equal to one and the other two 

components being zero, ije  having the i-th and j-th 

components being one and the remaining one being zero ,  so 

that  1,0,131 Te , and  

    13: EAA     

 
 

 
 






















0

00

0

:A             (12) 





































000

101

000

0

0

: 1313
T

T

T

eE  ;    

















1

0

0

0
01

,: 3113 eeE   





































000

000

001

0

0:
1

1
T

T

Te

E                                            (13) 

Simple inspection of (10)-(13) yields the following positivity 
result by taking into account that 0)( tE  if the reduced 

system (7)-(9) is positive by direct calculation of  the solution  
of  (2) for 00   , : 

 
Theorem 1. Assume that   0  ,,,min  and that 

a vaccination function     1,0,0
0

 RPCV  is used. 

Then, all the solutions of the SEIR model (1)-(4) satisfy 
   N,)t(R,)t(I,)t(E,tS 0 ;  0Rt  if 0 and 

0   or if  0  and 0  . Furthermore, 

either   0)t(R,)t(I,)t(E,tS,)t(N as t  (i.e. the 

total population asymptotically extinguishes)  with all the 
populations being  uniformly bounded  or  all the partial and 
total populations are bounded and the infection does not 
asymptotically vanishes in the second cased with   0  

and 0 . 

 
Proof: Note that  matrix A in (12) is a Metzler under the 
given constraints. Then, the dynamic system  (10) is positive 
with   )(R)(I)(E)(SN)(NtN 00000  ; 

 0Rt  if 0 and 0   or if  0   and 

0 . Then,    ))()()(max0 tItEtS ;  0Rt . 

Now, from (4),  0)( RtR ;  0Rt . This implies 

   NtRtItEtS ,0)(,)(,)(,  ;  0Rt since 

)t(R)t(I)t(E)t(S)(NN  0 ;  0Rt .  If 

 0   and 0  then   0tN  and the proof remains 

valid with  the changes   )()()()( tRtItEtStN  , 

 0Rt  and       tNtRtItEtS ,0)(,)(,)(,   ; 

 0Rt .   The last part is proven by contradiction. Assume 

that 0)t(I ;  0Rt  with  0  and 0 . Then 

  0)(  tItN  ;  0Rt if   0tI  so that  

  0)(,)(,,)( tRtEtStN as t  with (12) being a 

positive system since  0R)t(R . Then  0)t(I  as 
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t (since   0)(,)(,,)( tRtEtStN as t ) 

contradicting the assumption that  0)( tI ;  0Rt .                                                                                                                       

 
Remark 1. The positivity property is an essential tool to 
discuss the stability of the SEIR- model since all the partial 
populations are upper-bounded by the total population N(t) 
for all time.  It is also essential for appropriate description of 
the real problem through the mathematical model.                                           
 
Corollary 1. Assume that  . Then, the SEIR-model 

(1)-(4) is stable. 

Proof:   0tN ;  0Rt  from (5) so that N(t) is 

monotone decreasing then it is  uniformly bounded 
)0()( NtN  ;  0Rt .                                                                                                                                                          

Define indicator binary functions  1,0: 0  Ri  

defined as      


 

 
otherwise

tNif
titi

0

01
1:


 and 

   


 


otherwise

tNif
ti

0

01 
.  

Thus, Corollary 1 extends directly  as follows: 
 
Corollary 2. Assume that 

          


 diNiNt

t
0

suplim  . Then, 

the SEIR-model (1)-(4) is stable.                                                                                                                                                         
 

IV.VACCINATION RULES 
An useful vaccination control function is one with the goal of  
decreasing appropriately the numbers of susceptible, infected 
and infectious while including the nonlinear term involving 
the product S(t)I(t) of susceptible and infectious in (1) . One 
has to cope with two major practical problems, namely: 
1. The parameters of the SEIR model (1)-(4) are not usually 
known precisely even if the model is considered valid for a 
particular study. 
2. The only populations being directly measurable with a 
certain accuracy degree for any time are the total population 
N (t) and the infectious one I (t). For the remaining 
populations what it can be said is that 

)()()()()( tItNtRtEtS   at any time. It could be 

calculated from the differential system (1)-(4) in the case that 
the model parameters and the initial conditions are fully 
known. Otherwise,  they could be estimated from parameter 
and initial condition estimated. 
 
The general SEIR- model (1)-(4) may be compacted as the 
following dynamic system of state 

   TtRtItEtSt )(,)(,)(),(:x and measurable output 

being the infectious population , i.e.    tIt :y :  

 

     ttt ωxAx    ;      tt T xey 3                       (14) 

where  

 T0,1,0,0:3 e

    TtVtN
tN

tItS

tN

tItS
tVtNt 








 )()(,0,

)(

)()(
,

)(

)()(
)(1)(: ω

                                                                                        (15) 

 and  

 
 
   


























100

00

000

00

:A               (16) 

Using the time-derivative operator dtdD /: in  (14) , it may 

be more compactly  rewritten as  
 

     tDt ωAIx 1    

       tDetetIt TT ωAIxy 1
33)(                   (17) 

subject to    TRIES )0(,)0(,)0(),0(:0 x with I being 

the  44  identity matrix. Since 

       
  )D(M

)t,D(N

DDet

tDAdje
tDe I

T
T

0

031
3 




 

AI

ωAI
ωAI  

;  0Rt                                                                      (18) 

then  
   
   


A
ωAI

DIDet
tDAdje T

)t(I 3  

      













4

1
3

1

i
ii tDAdj

DIDet
ωAI

A
 

 A
DIDet

1
 

      
          

      





















4

1
3 01

i

TtVtN,,
tN

tItS
,tVtN

tN

tItS
DAdj AI

                                                                                        (19) 
with  
 

 AI  DDet:)D(M 0  

         DDDD   

Since the calculation of the adjoint matrix involves matrix 
transposition then the third column of  AI D  has to be 

checked in view of (19) as follows;(a)  the (3,1) transpose, 
i.e. the (1,3)- adjoint determinant of  AI D  is zero by 

inspecting (16); (b) the (2,3)  adjoint determinant of 
 AI D  is     DD  and (c)  the (4,3) – 

adjoint determinant is zero. The (3,3) adjoint has not to be 
calculated since   03 tω  for all time. Thus, one gets from 

(19): 

)()(0 tIDM
   

  







tN

tItS
DNI )(0 ;  0Rt         (20)   

where     DD)D(NI 0  

Since   





DD
:

)D(M

)D(N

)D(M

)D(N II

0

0  after 

removing the stable polynomial cancellation      
   DD , Eq. 20 is equivalent to  

     txvtIDM I ,0)()(
   

  







tN

tItS
DNI )(       (21)    

where     t
I

t
II ecectv    21 is a real function 

which takes into account the contribution to the solution of 
(21) from nonzero initial conditions of (20) which has been 
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neglected by the zero-pole cancellation 
)(

)(

)(

)(

0

0

DM

DN

DM

DN II   

which vanishes exponentially as t  with 

 )0(xcc IiIi   for i=1,2 being two real constants subject to  

 021 III vcc    (i =1,2). 

 
The vaccination control below is nonnegative for all time  if  
it belongs to the interval  10,  for all time 

 

            NgtItSktRktIktSk
N

tV  ˆˆˆˆˆ
ˆ
1

5431
  

                                                                                         (22) 
The above hat superscripts on the various populations denote 
their estimates through some available observer in the case 
when the population amounts are not perfectly known.  The 
following vaccination nonnegative control  combined  of (9) 
and (22) may be used when the positivity of the observer and 
the saturation of the vaccination to unity are not imposed: 

 
   

        










otherwise,NgtÎtŜktR̂ktŜk
Nˆ

tViftV
tV

541
1

01



   

                                                                                         (23) 

              NgtÎtŜktR̂ktÎktÊktŜk
Nˆ

:tV  54321
1



                                                                                        (24) 
Simulations results about the above vaccination laws are in 
progress and seem to be promising. It seems to be, in general, 
promising the potential application of some control theory 
techniques, [17-21] to epidemic models to design the 
vaccination rules. 
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