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In the paper we investigate solvability of nonlinear 
optimal Thermal and Diffusion processes control 
problems defined by semi-linear parabolic equations 
when the source function nonlinearly depends on the 
controlling parameters, and nonlinear integral criterion 
of quality is minimized. We obtained the sufficient 
conditions of uniqueness of the solution of the boundary 
value problem and the adjoint boundary value problem 
of control process. It is established that optimal control 
is described as a solution of the complex structure 
nonlinear integral equation with additional condition in 
the form of the differential inequality, and the algorithm 
to determination of the optimal control was constructed. 
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I. INTRODUCTION 

N this paper we investigate the solvability of the 
nonlinear optimal control problem for the process 
described by semi-linear parabolic equations. We 

consider the case when the source function depends on 
controlling parameters, and a nonlinear integral criterion of 
quality is minimized. We obtain sufficient conditions of 
uniqueness of the solution of the boundary value problem 
and its adjoint problem. It is established that the optimal 
control is described as the solution of the complex structure 
nonlinear integral equation with additional condition in the 
form of inequality, and the construction algorithm for the 
determination of the optimal control is given. 

 
 

II. BOUNDARY PROBLEM OF CONTROLLED PROCESS AND ITS 
SOLUTION 

Let us a consider controlled process describable by scalar 

function  ,V t x , which in the region  0,TQ Q T   

satisfies a semi-linear parabolic equation in  7,16  
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and the initial conditions  

   0,V x x , x Q            (1.2) 

and the boundary conditions 
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Here  , , ,t x V t x     is a given function nonlinearly 

depending on controlled process state 

   , TV t x H Q ;    , 0,f t u t H T    is a given 

function of external source nonlinearly depending on the 

control function     0,u t H T ; Q  is bounded region 

of space nR  with piecewise smooth boundary  ;    is 

outer exterior normal at the point x  ;    g x H Q , 

   x H Q   are given functions; operator А is defined 

as 
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is elliptic in the closed domain Q Q   ;   0a x  ; 

  0c x   are bounded measurable functions; H is  Hilbert 

space; T  is a fixed constant. 

Let n   and ng  - Fourier coefficients of functions 

 x  and  g x  respectively;   nz x - be a complete 

orthonormal system of eigen functions of the following 

problem in  H Q   14  

   Az x z x  , x Q , 

  0z x  , x  ,              (1.5) 

 n - is a corresponding sequence of eigen values, where 

1n n    and lim n
n




  . 

Definition 1.1 A function    , TV t x H Q , at every 

fixed control    Tu t H Q  which satisfy nonlinear 

integral equation 
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is said to be a weak generalized solution of the boundary 
value problem (1.1)-(1.4) .  

Let us discuss the existence and the uniqueness of the 
solution of nonlinear integral equation (1.6). 

Lemma  1.1. A function 
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is the element of the space  TH Q . 

Lemma 1.2. For every    , TV t x H Q  let the 

function  ,V   is the element of the space  TH Q . Then 

the operator  0K V , defined by 
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is a mapping the space  TH Q  into itself. 

Lemma 1.3. For every control    0,u t H T  let the 

function   ,f t u t  is an element of the space  0,H T . 

Then the operator  , ,F t x u t   , defined by 
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is a mapping  from  0,H T  into  TH Q . 

Now we represent the integral equation (1.6) in the 
operator form using (1.7), (1.8) and (1.9) 

 V K V ,                     (1.10) 

where operator 

   0K V h K V F    

is a mapping the space  TH Q  into itself at any fixed 

   0,u t H T , according to Lemmas 1.1 – 1.3. 

Theorem 1.1. Let the function  , , ,t x V t x     for a 

   , TV t x H Q  be the element of the space  TH Q  

and satisfy the condition 
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Then the operator equation 1.10 has the unique solution 

in the space  TH Q  if 

0 0 1T    .                                (1.12) 

Proof. Under condition  1.11 the function 

 , , ,t x V t x     satisfies Lipschitz condition 
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By the means of the norm of the space  TH Q  
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According to the inequality 
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and by the fulfillment of the condition (1.12) the operator 

 K V  is the contracting operator for a fixed control 

   0,u t H T . Therefore the operator equation (1.10) 

in the space  TH Q  has the unique solution [12], which 

can be found by the fixed point iterations method 

   1, , , 1, 2, 3, ...,n nV t x K V t x n     

where the zero-order iteration  0 ,V t x  is an arbitrary 

element of the space  TH Q . Moreover 

an approximate solution  ,nV t x  satisfies 
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Note, that between elements of the control space 

 0,H T  and the state space  TH Q  there is one-to-one 

mapping only in if  

   ,
0, 0,

f t u
t T

u


 


                             (1.15) 

Therefore, the mapping    ,u t V t x  is one-to-one 

mapping if conditions (1.11) and (1.15) are satisfied. 
 
 

III. OPTIMAL CONTROL PROBLEM AND 
OPTIMUM CONDITIONS 

Let the controlled process  ,V t x  be described by 

boundary problem (1.1) – (1.4). 
Definition 2.1. If    , TV t x H Q  is the unique solution 

of the boundary value problem (1.1) – (1.4) corresponding 

to control    0,u t H T , then the pair 

        , , 0, Tu t V t x H T H Q  is said to be 

admissible.  
Nonlinear optimization problem. Let us consider a 

nonlinear optimal control problem. Suppose that functions 

     , , , , , ,S t x V P t u V T x     are defined and have the 

following properties: 
I. Function  , ,S t x V  is continues and differentiable 

 T

S
H Q

V


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; 
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II. Function  ,P t u t    is integrable on  0,T  and 

differentiable  0,
P

H T
u





; 

III. Function  V  is integrable on the range Q  and 

differentiable  H Q
V





. 

It is required to find an admissible pair 

        0 0, , 0, Tu t V t x H T H Q   on which the 

functional 
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is minimized. 
Definition 2.2. The admissible 

pair         0 0, , 0, Tu t V t x H T H Q  , that gives 

minimum to functional (2.1) is said to be an optimal pair. 

The control  0u t  is said to be the optimal control,, 

 0 ,V t x  is said to be the optimal process. 

Theorem 2.1. Let functions  ,P t u  and  ,f t u  be 
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pair         , , 0, Tu t V t x H T H Q   is optimal if the 

function  
 

    (2.2) 
  

 
 

 

where  ,t x  is a weak generalized solution of the 

boundary value problem 
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almost everywhere satisfy the relation 
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for [0, ]T , where D  is the open set of admissible values of 
.u  
We do not give the proof of this theorem since it follows 

from the famous theorems on the maximum principle for 
systems with distributed parameters of  [1,3-6,9,15]. 

According to (2.2) and (2.6), we get the relations: 
( , ) ( , )
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g x t x dx
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which are satisfied only for the optimal control 0 ( )u t . 

Taking into account (1.15) equality (2.7) can be rewritten in 

the form 
1
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On the basis of this equality, condition (2.8) can be 
rewritten in the form 
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Therefore the optimal control 0 ( )u t  is found from the 

system of relations (2.9) and (2.10). They are known as 
optimality conditions. 

 
IV. ADJOINT BOUNDARY PROBLEM AND ITS SOLUTION 

 
Consider boundary value problem (2.3)-(2.5), adjointed to 

the boundary value problem (1.1)-(1.4). 

Definition 3.1. A function  ( , ) Tt x H Q  , for an 

admissible pair  ( ), ( , ) (0, ) ( )Tu t V t x H T H Q   

satisfying the linear integral equation 
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is said to be the weak generalized solution of boundary 
value problem (2.3)-(2.5). 

Let us investigate the uniqueness of solutions of linear 
integral equation (3.1). 

Lemma 3.1. A function  
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is an element of the space  TH Q . 

Lemma 3.2. A function 
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is an element of the space  TH Q . 

Lemma 3.3. For a function    , Tt x H Q   the 

operator  0 , , ,G t x t x   , is defined by the formula 
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is a mapping the space  TH Q  into itself. 

     

       

, , , , , ,

, , ,
Q

t x V t x t x u t

g x t x dxf t u t P t u t





  

       





Proceedings of the World Congress on Engineering 2011 Vol I 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-18210-6-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011



Now integral equation (3.1), according to representations 
(3.2), (3.3) and (3.4), can be rewritten in the form: 

 ,G                           (3.5) 

where the operator  

   0 2 1G G y y             (3.6) 

according lemmas (3.1) - (3.3) is a mapping the space 

 TH Q  into itself. 

Theorem 3.1. If conditions (1.11) and (1.12) are fulfilled, 
then equation (3.5) has the unique solution in the space 

 TH Q . 

Proof. According to (3.6) we have an inequality: 
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from which it follows that under condition (1.12) the 
operator  G   is contracting operator. Therefore operator 

equation (3.5) in space  TH Q  has the unique solution 

[12]. It can be found by the method of fixed point iterations 
[12].  

   1, , , 1, 2,3,...,n nt x G t x n             (3.7) 

where  0 ,t x  is the arbitrary element of space  TH Q . 

The following estimations is valid for  ,n t x  

     

     
0 0

0 0
0 0

, ,

1

T

T

n H Q

n

H Q

t x t x

T
G

T

 

 
 

 

 

 


              (3.8) 

 
V. NONLINEAR INTEGRAL EQUATION OF OPTIMAL 

CONTROL 

Optimal control  0u t  can be found according to 

optimality condition (2.9) and (2.10). Taking into account 
representation (3.1), we rewrite the equality (2.9) in the 
form: 

         

       

     

1

1

1

1

, , , ,

, ,
,

,

n

n

n

T
t

n n
n t Q

T
t

n n
n t Q

T t
n n

n Q

P t u f t u S V
g e z d d

u u V

V
g e z d d

V

V T
e g z d

V

 

 



 
  

  
     


 




 




 




 



   
     


 



  


  

  

 

    

(4.1) 

where     , , , ,V t x R t x f t u t                   (4.2) 

is a solution of the nonlinear integral equation (1.6). In (4.1) 

we substitute  ,V t x  for   , , ,R t x f t u t    to obtain the 

nonlinear integral equation 

       
1

, ,
, ,

P t u f t u
B t f t u t

u u


  

      
 ,       (4.3) 

where the operator  .B  has complex structure. The 

solution of the equation (4.3), satisfying an additional 

condition (2.10) is the optimal control  0u t . Thus in the 

process of investigation of nonlinear thermal and diffusion 
processes optimal control problems, described by semi-
linear parabolic equations, there occurs a peculiar new 
problem (4.3), (2.10) of theory of nonlinear integral 
equations. This problem is not investigated enough. There 
are only a few publications by author [8-10], where the 
methodology of the solution of similar problems of the 
simpler type is suggested. According to this methodology, in 
order to investigate equation (4.3), first of all it must be 
converted. Suppose 

     
1

, ,P t u t f t u t
t

u u



             

        (4.4) 

Due to condition (2.10) this equality uniquely solved with 

respect to control  u t  and there exists function     such 

that   

   ,u t t t                          (4.5)  

According to (4.4) and (4.5) equation (4.3) can be written 
in the following form 

    , , ,t B t f t t t                          (4.6) 

This equation can be investigated by the methods of 
nonlinear analysis [12]. 

Let  t  is a solution of equation (4.6). Substitute this 

solution in to (4.5) and find control, which is the solution of 
equation (4.3). Complication, arising while optimal control 

 0u t  evaluation, is that, an additional clause (2.10) should 

be satisfied for this solution. 

If the optimal control is found, optimal process  0 ,V t x  

is found by formula (4.2). Then  0u t  and  0 ,V t x  put 

into (2.1) and calculate minimum functional value 0J u   . 

Therefore, the founding of the set of triple 

    0 0 0, , ,u t V t x J u    is the solution of optimization 

problem.  
 
VI. CASE OF APPLICATION OF THE FACTORIZATION 

METHOD 
 

Till now we have considered the optimal control problem 
when the function [ , ( )]f t u t  is monotonic of the variable 

u(t), ],0[ Tt  , condition (1.15) holds and the imaging 

( ) ( , )u t V t x  is single-valued. 

Let the function [ , ( )]f t u t  be not a monotonic function 

of a variable u(t), ],0[ Tt  . In this case the uniqueness of 

the mapping ( ) ( , )u t V t x  is lost and according to (1.6) 

the same controlled process state ( , )V t x  can be defined by 

several controls ( ) (0, )ku t H T , k=1,2,3,…, number of 

which is not countable. This is due to the fact that when 
function [ , ( )]f t u t  is not monotonic, the control space 

H(0,T) factorizes into mutually disjoint classes 

Proceedings of the World Congress on Engineering 2011 Vol I 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-18210-6-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011



   
   

   
0 1

0 1

, ( ) , ,
0,

, ( ) , 0,

k

k
f t u t f const k k k

U u t H T
k f t u t k t T

      
   

       

      
elements of which according to (1.6), determine the unique 
controlled process state V(t,x).  

Consider the following possible cases: 
 
1st case.  

Let     , ( )
0, 0,

P t u t
t T

u


 


,                           

i.e.  , ( )P t u t  is the monotonic function.  

Represent the space H(0,T) in the form 

0(0, )
k

H T U U                              

where 
k

U  is set derived from kU  by the removal of 
elements, where 

   , ( )
0, 0,

P t u t
t T

u


 


                   

and 0U  is a set of all deleted elements. On the elements of 

the set 
k

U execute the correlation  

   , ( )
0, 0,

P t u t
t T

u


 


                       

According to optimality condition (2.9) and (2.10) in this 
case we can find the element 

 *( ) , ( )u t t t  ,                            

where )(t  is a solution of the corresponding nonlinear 

integral equation (4.6). By found element *( )u t  we make 

the class of control 

     
 

  
0, | ,

,

u t H T f t u t
U u t

f t u t




       
    

  

and solve the problem of the functional minimization  

     

 

*

0 0

*

, , , ,

,

T T

Q

Q

J u S t x V t x dxdt P t u t dt

V T x dx

      

    

  



 
      

on the set *U . Whereas on the set number *U , the integral 
values 

 *

0

, , ,
T

Q

S t x V t x dxdt     and  * ,
Q

V T x dx     

is constant, the problem     *min,J u t u t U     , is 

equivalent to the problem  

    *

0

, min,
T

P t u t dt u t U                    (5.1) 

which can be solved by the optimization procedure from 
[17]. 

If 0( )u t  is a solution of (5.1) then it can exist a control 

pretending for “optimality”. The optimal process 0 ( , )V t x  

corresponding to the control 0( )u t ,  is established as a 

solution of integral equation (1.6), and the minimum value 
of 0[ ( )]J u t  calculated according to formula (2.1), and the 

solution of the control problem ( 0 ( )u t , 0 ( , )V t x , 0[ ( )]J u t ). 

  
2nd case.  

Let the    , ( )
0, 0,

P t u t
t T

u


 


 (5.2) 

Control set satisfying the relation (5.2), we denote by G0, 

i.e.  

       0

,
0, | 0, 0,

P t u t
G u t H T t T

u

           

 

In this case optimality condition (2.9) has the meaning 
only on control set 

 0 0 0,N U G H T   , 

and loose the meaning if it is empty. If  *u t  be an 

element of N. Denote by *N  the set of elements *( )u t N  

satisfying condition (2.10). Solving the problem 

   * *min, ,J u t u t N      

by the optimization method [17] we find the control  *u t  

pretending for “optimality”. The triplet (  *u t , *( , )V t x , 

 *[ ]J u t ) is also a solution of the control problem. 

Comparing the values of [ ( )]J u t  and  [ ]J u t  we find an 

unknown optimal control  0u t , optimal process ),(0 xtV  

and the minimum value of the functional 

    0 *min ,J u J u t J u t          . 
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