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Abstract—A class of semi-recursive kernel plug-in estimates
of functions depending on multivariate density functionals
and their derivatives is considered. The approach enables to
estimate the production function, marginal productivity and
marginal rate of technical substitution of inputs. The piecewise
smoothed approximations of these estimates are proposed. The
main parts of the asymptotic mean square errors (AMSE) of
the estimates are found. The results are generalized to the
production functions with the lagged values of the output.

Index Terms—Almost surely convergence, kernel recursive
estimator, mean square convergence, piecewise smooth approx-
imation.

I. I NTRODUCTION

NUMEROUS statistical problems (such as identification,
classification, filtering, prediction, etc.) are connected

to estimation of certain characteristics of the following
expressions:

J(x) = H
(
{ai(x)}, {a(1j)

i (x)}, i = 1, s, j = 1,m
)

=

= H
(
a(x), a(1j)(x)

)
. (1)

Herex ∈ Rm, H(·) : R(m+1)s → R1 is a given function,

a(0j)(x) = a(x) = (a1(x), . . . , as(x)) ,

a(1j)(x) =
(
a
(1j)
1 (x), . . . , a(1j)

s (x)
)

,

ai(x) =
∫

gi(y)f(x, y)dy, i = 1, s,

a
(1j)
i (x) =

∂ai(x)
∂xj

, i = 1, s, j = 1,m,

whereg1, . . . , gs are the known Borel functions,
∫

≡
∫
R1

,

f(·, ·) is an unknown probability density function (p.d.f.) for
the observed random vectorZ = (X, Y ) ∈ Rm+1.

If gi(y) ≡ 1, thenai(x) =
∫

f(x, y)dy = p (x), where

p (·) is the marginal p.d.f. of the random variableX, and
f(y|x) = f(x, y)/p (x) is the conditional p.d.f.

Here are the well known examples of such functions:
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— the conditional initial moments

µm(x) =
∫

ymf(y|x)dy, H(a1, a2) = a1/a2, m ≥ 1,

g1(y) = ym, g2(y) = 1; µ1(x) = r(x) is the regression
line;

— the conditional central moments

Vm(x) =
∫

(y − r(x))mf(y|x)dy, g1(y) = y,

g2(y) = y2, . . . , gm(y) = ym, gm+1(y) = 1;

V2(x) = D(x) is the conditional variance;
— the conditional coefficient of skewness

β1(x) =
E((Y − r(x))|x)3

[D(Y |x)]3/2
, bi = ai/a1, gi(y) = yi−1,

H(a1, a2, a3, a4) = (b4 − 3b3b2 + 2b3
2)/(b3 − b2

2)
3/2;

— the sensitivity functions

Tj(x) =
∂r(x)
∂xj

, g1(y) = 1, g2(y) = y,

H
(
a1, a2, a

(1j)
1 , a

(1j)
2

)
=

a
(1j)
1

a2
− a1a

(1j)
2

a2
2

= b
(1j)
2 .

II. PROBLEM STATEMENT

Take the following expression as an estimate of the func-
tional a(x) = a(0j)(x) (r = 0) and its derivativesa(1j)(x)
(r = 1) at a pointx:

a(rj)
n (x) =

1
n

n∑
i=1

g(Yi)
hm+r

i

K(rj)

(
x−Xi

hi

)
. (2)

Here Zi = (Xi, Yi), i = 1, n, is the (m + 1)-dimensional
random sample from p.d.f.f(·, ·), (hi) is a sequence of posi-
tive bandwidths tending to 0 asi →∞, K(0j)(u) = K(u) =
m∏

i=1

K(ui) is a m-dimensional multiplicative function which

does not need to possess the properties of p.d.f.,

K(1j)(u) =
∂K(u)
∂uj

, g(y) = (g1(y), . . . , gs(y)) ,

a(rj)
n (x) =

(
a
(rj)
1n (x), . . . , a(rj)

sn (x)
)

.

Note that (2) can be computed recursively by

a(rj)
n (x) = a

(rj)
n−1(x)−

− 1
n

[
a
(rj)
n−1(x)− g(Yn)

hm+r
n

K(rj)

(
x−Xn

hn

)]
. (3)

This property is particularly useful when the sample size is
large since (3) can be easily updated with each additional
observation.
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The recursive kernel estimate ofp (x) (the case whenm =
1, s = 1, g(y) = 1, H(a1) = a1) was introduced by
Wolverton and Wagner in [1] and apparently independently
by Yamato [2], and has been thoroughly examined in [3].

The semi-recursive kernel estimates of conditional func-
tionals

b(x) = (b1(x), . . . , bs−1(x)),

bi(x) = ai(x)/p (x) =
∫

gi(y)f(y|x)dy

at a pointx are designed as(gs(x) = 1)

bn(x) =

n∑
i=1

g(Yi)
hm

i

K
(

x−Xi

hi

)
n∑

i=1

1
hm

i

K
(

x−Xi

hi

) =
an(x)
p n(x)

=
a
(0j)
n (x)

a
(0j)
sn (x)

.

Such estimates are called semi-recursive because they can
be updated sequentially by adding extra terms to both the
numerator and denominator when new observations became
available. Ifg1(y) = y (s = 2), we obtain semi-recursive ker-
nel estimates of the regression line [4]– [6]. Weak and strong
universal consistency of such estimates was investigated in
[7]– [11].

For estimation of (1) we are going to use the following
statistics

J n(x) = H
({

a(rj)
n (x)

}
, j = 1,m, r = 0, 1

)
. (4)

Plug-in estimates (4) are often used for the estimation of
ratios. There are problems connected with unboundedness
of the estimates at some points (see [12] for details). This
problems can be solved by make using of the piecewise
smooth approximation [13]

J̃n(x) =
J n(x)

(1 + δn|J n(x)|τ )ρ
, (5)

whereτ > 0, ρ > 0, ρτ ≥ 1, (δn) ↓ 0 asn →∞.

III. M EAN SQUARE ERRORS

Denote:

sup
x

= sup
x∈Rm

, K(1)(u) =
dK(u)

du
,

Tj =
∫

ujK(u)du, j = 1, 2, . . . .

Definition 1. A function H(·) : Rs → R1 belongs to
the classNν(t) (H(·) ∈ Nν(t)) if it is continuously
differentiable up to the orderν at the pointt ∈ Rs. A function
H(·) ∈ Nν(R) if it is continuously differentiable up to the
orderν for any z ∈ Rs.

Definition 2. A Borel functionK(·) ∈ A(r), (A(0) = A)

if
∫
|K(r)(u)| du < ∞, and

∫
K(u) du = 1.

Definition 3. A Borel functionK(·) ∈ A(r)
ν , (A(0)

ν = Aν)
if K(·) ∈ A(r), Tj = 0, j = 1, . . . , ν − 1, Tν 6= 0,∫
|uνK(u)|du < ∞, andK(u) = K(−u).

Definition 4. A sequence(hn) ∈ H(m + r + q) if

(hn + 1/(nhm+r+q
n )) ↓ 0,

1
n

n∑
i=1

hλ
i = Sλhλ

n + o(hλ
n),

whereλ is a real number,Sλ is a constant independent on
n; r, q = 0, 1.

Definition 5. Let tn, X1, . . . , Xn are vectors, andtn =
tn(X1, . . . , Xn). A sequence of functions{H(tn)} belongs
to the classM(γ) if for any possible valuesX1, . . . , Xn the
sequence{|H(tn)|} is dominated by a sequence of numbers
(C0d

γ
n) , (dn) ↑ ∞ as n → ∞, 0 ≤ γ < ∞, C0 is a

constant.
Put for r, q = 0, 1; t, p = 1, s; j = 1,m :

A = A(x) =
{

a(rj)(x)
}

; Htjr = ∂H(A)/∂a
(rj)
t ;

H
({

a(rj)
n (x)

})
= H(An); as+(x) =

∫
|gs(y)|f(x, y)dy;

at, p(x) =
∫

gt (y)gp (y) f(x, y) dy;

a1+
t, p(x) =

∫
|gt (y)gp (y)| f(x, y) dy;

L(r, q) =
∫

K(r)(u)K(q)(u) du;

B(r, q)
t, p = L(r, q)

(
L(0, 0)

)m−1

at, p (x);

ω
(rj)
iν (x) =

Tν

ν!

m∑
l=1

∂ νa
(rj)
i (x)
∂xν

l

;

the set

Q =

 {0} if ∀j r = 0;
{1} if ∀j r = 1;
{0, 1} if ∃j r = 0

∧
r = 1.

Theorem 1 (the AMSE of the estimateJ n(x)). If for
t, p = 1, s, j = 1,m, r ∈ Q :

1) the functionsat, p (·) ∈ N0(R), sup
x

a1+
t, p (x) < ∞,

sup
x

a1+
t (x) < ∞, sup

x
a4+

t (x) < ∞;

2) the kernel functionK(·) ∈ A(max(r))
ν , sup

x

∣∣∣K(r)(x)
∣∣∣ <

∞, if Q = {0, 1} then K(r)(·) ∈ N0(R), if 1 ∈ Q then
lim

|u|→∞
K(u) = 0;

3) a
(rj)
t (·) ∈ Nν(R), sup

x
| a(rj)

t (x)| < ∞,

sup
x

∣∣∣∣∣ ∂ νa
(rj)
t (x)

∂xl∂xt . . . ∂xq

∣∣∣∣∣ < ∞, l, t, . . . , q = 1,m;

4) the sequence(hn) ∈ H(m + 2 max(r));
5) H(·) ∈ N2(A);
6) {H(An)} ∈ M(γ), 0 ≤ γ ≤ 1/4.
Then AMSE of the estimateJ n(x) asn →∞

u2(J n(x)) =
s∑

t, p=1

m∑
j, k=1

∑
r, q∈Q

HtjrHpkq×

×

[
S−(m+2 max(r, q))

B(r, q)
t, p

nhm+r+q
n

+ S2
ν ω

(rj)
tν (x)ω(qk)

p ν (x)h2ν
n

]
+

+O

([
1

nh
m+2 max(r)
n

+ h2ν
n

] 3
2
)

.

It is important that we do not need condition 6) of Theorem
1 when piecewise smooth approximation (5) is used.
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Theorem 2 (the AMSE of the piecewise smooth approxi-
mation J̃n, ν(x)). Suppose that conditions 1)–5) of Theorem
1 hold and restriction 6) is replaced by
6∗) J(x) = H(A(x)) 6= 0 or τ ≥ 4, τ is a positive integer.
Then asn →∞ u2(J̃n(x)) ∼ u2(J n(x)).

The proofs are given in [14].

IV. N ONPARAMETRIC SEMI-RECURSIVE IDENTIFICATION

OF THE PRODUCTION FUNCTION AND ITS

CHARACTERISTICS

Apply the results to estimate the production function and
its characteristics.

A. Estimation of the production function

Let r(x), x = (x1, x2, x3) ∈ R3 be the regression model of
the three-factor production function,a(x) = (a1(x), a2(x)),

a1(x) =
∫

yf(x, y)dy, a2(x) =
∫

f(x, y)dy = p (x). Here

x1 > 0 is the capital input,x2 > 0 is the labor input,x3 > 0
is the nature input,y > 0 is a product, andf(x, y) > 0 only
if x1 > 0, x2 > 0, x3 > 0, y > 0. Then

Jn(x) = rn(x) =

n∑
i=1

Yi

h3
i

K
(

x−Xi

hi

)
n∑

i=1

1
h3

i

K
(

x−Xi

hi

) =

=
a
(0j)
1n (x)

a
(0j)
2n (x)

=
a1n(x)
p n(x)

. (6)

Let K(u) = K(u1)K(u2)K(u3), K(·) ∈ Aν ,
sup

u∈R1
|K(u)| < ∞, and (hn) ∈ H(3). To find the AMSE

of the estimatern(x), we use Theorem 1. In view of 1)–
4) conditions of the theorem functionsai(z), i = 1, 2,
and their derivatives are continuously differentiable up to the

orderν for any z ∈ R3, and the function
∫

y4f(x, y)dy is

bounded onR3. If p (x) > 0, then condition 5) is fulfilled.
It seems impossible to find a majorizing sequence(dn)
(condition 6) of Theorem 1), since the denominator in (6)
may be equal to zero. In some cases we can find a majorizing
sequence according to Definition 5 withγ = 0 underν = 2
if, for example,K(·) ≥ 0, andY < ∞ [15]. For ν > 2 we
can use the piecewise smooth approximationr̃n(x):

r̃n(x) =
rn(x)

(1 + δn, ν | rn(x)| τ )ρ
,

whereτ > 0, ρ > 0, ρτ ≥ 1, δn, ν = O
(
h2ν

n + 1/(nh3
n)
)
,

(δn, ν) ↓ 0 asn →∞.
In view of condition6∗) of Theorem 2 it is enough to take

evenτ ≥ 4, and asn →∞ u2(r̃n(x)) =

=
2∑

i, p =1

HiHp

(
S−3

CBi, p

nh3
n

+ S2
ν ωiν(x)ωpν (x)h2ν

n

)
+

+O

([
1

nh3
n

+ h2ν
n

]3/2
)

,

where

ω1ν(x) =
Tν

ν!

(
∂ νa1(x)

∂xν
1

+
∂ νa1(x)

∂xν
2

+
∂ νa1(x)

∂xν
3

)
,

ω2ν(x) =
Tν

ν!

(
∂ νp (x)

∂xν
1

+
∂ νp (x)

∂xν
2

+
∂ νp (x)

∂xν
3

)
,

H1 =
1

p (x)
, H2 = − r(x)

p2 (x)
; B1,1 =

∫
y2f(x, y)dy,

B1, 2 = B2,1 =
∫

yf(x, y)dy,

B2, 2 = p (x); C =
∫

K2(u)du.

B. Estimation of the marginal productivity function

In the case of the marginal productivity functionT1(x) =
∂r(x)
∂x1

a dominant sequence finding difficulties force us to

use the piecewise smooth approximationT̃1n(x) :

T̃1n(x) =
T1n(x)

(1 + δn|T1n(x)| τ )ρ
,

where

T1n(x) =


n∑

i=1

Yi

h4
i

K(11)

(
x−Xi

hi

)
n∑

i=1

1
h3

i

K
(

x−Xi

hi

) −

−

n∑
i=1

Yi

h3
i

K
(

x−Xi

hi

) n∑
i=1

Yi

h4
i

K(11)

(
x−Xi

hi

)
[

n∑
i=1

1
h3

i

K
(

x−Xi

hi

)]2

 , (7)

K(11)(u) = K(1)(u1)K(u2)K(u3). The kernel has
to satisfy the additional conditions:sup

u∈R1
|K(1)(u)| <

∞, lim
|u|→∞

K(u) = 0,K(α)(·) ∈ N0(R), α = 1, 2; functions

a1(·), a2(·) and their derivatives up to the order(ν + 1)
need to be continuous and bounded onR3; the sequence
(hn) ∈ H(4).

C. Estimation of the marginal rate of technical substitution

Let Tj(x) = ∂r(x)/∂xj and

MRTS12, n(x) = T1n(x)/T2n(x)

be the estimate of the marginal rate of technical substitution
of an input x2 with an input x1, where the denominator
T2n(x) is given by (7), whereK(11)(u) is replaced by
K(12)(u) = K(u1)K(1)(u2)K(u3).

The piecewise smooth approximation of the estimate
MRTS12, n(x) can be written easily. In view of condition 5)

of Theorem 1 the conditionr(x) 6= ∂a1(x)
∂x2

/
∂p (x)
∂x2

has to

hold in addition to the previous restrictions.

Proceedings of the World Congress on Engineering 2011 Vol I 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-18210-6-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011



V. NONPARAMETRIC SEMI-RECURSIVE IDENTIFICATION

OF THE DYNAMIC PRODUCTION FUNCTION

Note that above results are given for independent obser-
vations (random samples). The results can be generalized to
time series. In [16] an autoregressive heteroscedastic model
satisfying geometric ergodicity conditions is considered. The
approach allows us to estimate a dynamic production func-
tions with lagged values of the output.

Suppose that a sequence(Yt)t=...,−1,0,1,2,... is generated
by a nonlinear homoscedastic ARX process of order(m, s)

Yt = Ψ(Yt−i1 , . . . , Yt−im
, Xt) + ξt = Ψ(Ut) + ξt, (8)

whereXt = (X1t, . . . , Xst) are exogenous variables,Ut =
(Yt−i1 , . . . , Yt−im , Xt), 1 ≤ i1 < i2 < ... < im is the
known subsequence of natural numbers,(ξt) is a sequence
of independent identically distributed (with density positive
on R1) random variables with zero mean, finite variance,
zero third, and finite fourth moments,Ψ(·) is an unknown
nonperiodic function bounded on compacts. Assume that the
process is strictly stationary.

Criteria for geometric ergodicity of a nonlinear het-
eroscedastic autoregression and ARX models which in turn
imply α-mixing have been given by many authors (see for
example [17]– [21]).

Let Y1, . . . , Yn be observations generated by the pro-
cess (8). The conditional expectationΨ(x, z) = Ψ(u) =
E(Yt|Ut = u) = E(Yt|u), (x, z) = u ∈ Rm+s we estimate
by the statistic, which is a semi-recursive counterpart of the
Nadaraya–Watson estimate [22], [23] (similarly to (6)):

Ψn, m+s (u) =

n∑
t=2

Yt

hm+s
t

K
(

u− Ut

ht

)
n∑

t=2

1
hm+s

t

K
(

u− Ut

ht

) . (9)

This quantity may be interpreted as the predicted value based
on the past information.

Since the observations are dependent, investigation of the
estimates properties becomes much harder. For example, the
main part of the Nadaraya-Watson estimate’s AMSE for
strongly mixing (s. m.) sequences was found only in 1999
[24]; the authors also proved that this estimate converges
with probability one.

We proved in [16] that if the observed sequence satisfies
the s. m. condition with a s. m. coefficientα(τ) such that∫ ∞

0

τ2[α(τ)]
δ

2+δ dτ < ∞ (10)

for some0 < δ < 2, then Theorems 1–3 hold. Note that a
s. m. coefficient with the geometric rate satisfies condition
(10).

We apply (9) under

Ut = (Yt−1, X1(t−1), X2(t−1), X3(t−1))

to investigate the dependence of Russian Federation’s Indus-
trial Production IndexY on the dollar exchange rateX1,
direct investmentX2, and exportX3 for the period from
September 1994 till March 2004. The data are available from:
http://www.gks.ru and http://sophist.hse.ru/. The estimate

Ψn, 4 (Yn−1, X1(n−1), X2(n−1), X3(n−1)) =

=

n−1∑
t=2

Kt

Ht
YtK

(
Yn−1 − Yt−1

h1t

)
n−1∑
t=2

Kt

Ht
K

(
Yn−1 − Yt−1

h1t

) ,

where

Ht =
4∏

j=1

hjt, Kt =
3∏

j=1

K

(
Xj(n−1) −Xj(t−1)

h(j+1)t

)
.

To find the AMSE of the estimateΨn, 4 (u) we use
Theorem 2 [16].

Let f(·, ·) be the stationary distribution of the vector

(Ut, Yt). Suppose thatK(·) ∈ A ν , K(u) =
4∏

i=1

K(ui),

sup
u∈R1

|K(u)| < ∞, the sequence(hn) ∈ H(4), andλ = −4.

Let functionsai(u), i = 0, 1, and their derivatives up to
and including the orderν be continuous and bounded onR 4;

functions
∫

y2f(u, y) dy and
∫

y4f(u, y) dy be bounded on

R 4; and, moreover,
∫

y2f(u, y) dy and
∫
|y|2+δf(u, y) dy

be continuous at the pointu. Then conditions (1)–(5) of
Theorem 2 [16] hold; we also suppose that condition (6)
(Theorem 2 [16]) holds. Ifp (u) > 0, then condition (7)
(Theorem 2 [16]) holds too.

If the random variablesYt are uniformly bounded, and
we select a nonnegative kernel, then it is easy to show
that Ψn, 4 (u) are bounded forν = 2. By condition (8)
(Theorem 2 [16]), this is equivalent to the existence of a
majorizing sequence withγ = 0.

For ν > 2 the piecewise smooth approximation solves the
problem (see the previous section).

In Table 1 the relative errors of the forecast (REF) obtained
with Ψn, 4 (·) for each year from 1995 till 2004 are given.
Total REF is 6.68%.

TABLE 1

Errors of Forecasts
1995 1996 1997 1998 1999
0.189 0.057 0.04 0.133 0.05

2000 2001 2002 2003 2004
0.055 0.047 0.042 0.057 0.043

The result of 1998 can be explained by 1998 Russian
financial crisis (”Ruble crisis”) in August 1998. The kernel
used is the Gaussian kernel and the bandwidthshjt =
0.17σ̂jt

−1/8, whereσ̂j , j = 1, 2, 3, 4 are the corresponding
sample mean square deviations, the constant 0.17 is chosen
subjectively.

The marginal productivity function and marginal rate of
technical substitution are estimated in the same way on the
base of (7).

VI. CONCLUSION

This work presents a unifying approach to estimating
the dynamic production function and its characteristics (the
marginal productivity function, marginal rate of technical
substitution). The approach is based on plug-in estimating
of functions depending on functionals of the joint sta-
tionary distribution of the vector of explanatory variables
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Ut = (Yt, Yt−i1 , . . . , Yt−im , X1t, . . . , Xst), where Xt =
(X1t, . . . , Xst) are exogenous variables,Yt is an output
(product),i2 < ... < im is the known subsequence of natural
numbers. Note thatim may be large, whilem is small. We
assume that the processYt is a nonlinear homoscedastic
strictly stationary ARX process, which satisfies to the s.
m. condition with the geometric rate. The plug-in estimates
are semirecursive, i.e., we recursively compute only the
kernel estimates of functionals (3). By using the piecewise
smooth approximations of the estimates, we have managed to
avoid the problems concerning to the majorizing sequence’s
existence needed for obtaining of the main parts of the
estimate’s AMSE.

REFERENCES

[1] C. T. Wolverton and T. J. Wagner, “Recursive estimates of probability
densities,”IEEE Trans. Syst. Sci. and Cybernet., vol. 5, no. 3, pp. 246–
247, 1969.

[2] H. Yamato, “Sequential estimation of a continuous probability density
function and mode,”Bulletin of Mathematical Statistics, vol. 14, pp.
1–12, 1971.

[3] E. J. Wegman and H. I. Davies, “Remarks on some recursive estimates
of a probability density function,”Ann. Statist., vol. 7, no. 2, pp. 316-
327, 1979.

[4] J. A. Ahmad and P. E. Lin, “Nonparametric sequential estimation of a
multiple regression function,”Bull. Math. Statist., vol. 17,no. 1–2, pp.
63–75, 1976.

[5] Buldakov, V.M. and G.M. Koshkin, “On the recursive estimates of a
probability and a regression line,”Problems Inform. Trans., vol. 13, pp.
41–48, 1977.

[6] L. Devroye and T. J. Wagner, “On theL1 convergence of kernel
estimates of regression functions with applications in discrimination,”
Z. Wahrsch. Verw. Gebiete, vol. 51, pp. 15–25, 1980.
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