Proceedings of the World Congress on Engineering 2011 Vol I
WCE 2011, July 6 - 8, 2011, London, U.K.

Nonparametric ldentification of the Production
Functions

Gennady Koshkin, and Anna Kitayeva

Abstract—A class of semi-recursive kernel plug-in estimates — the conditional initial moments
of functions depending on multivariate density functionals
and their derivatives is considered. The approach enables to  p,,(x) = /ymf(y|a:)dy, H(ay,a2) = ai/as, m>1,
estimate the production function, marginal productivity and
marginal rate of technical substitution of inputs. The piecewise — m _ . _ i i
smoothed approximations of these estimates are proposed. Theﬁl}]g{) v 92() L5 () r(w) is the regression
main parts of the asymptotic mean square errors (AMSE) of ! .
the estimates are found. The results are generalized to the — the conditional central moments

production functions with the lagged values of the output.
Vin(z) = [ (y —r(x))" f(ylx)dy, 91(y) =y,

Index Terms—AImost surely convergence, kernel recursive
estimator, mean square convergence, piecewise smooth approx-

imation. 92(y) =%y gn(y) =", gmir(y) = 1;
Va(x) = D(x) is the conditional variance;
I. INTRODUCTION — the conditional coefficient of skewness

E(Y —r(@)]=)® | _ o
[DY]x)p/2 bi = ai/ar, gily) =y,

UMEROUS statistical problems (such as identification, g, (z) =
classification, filtering, prediction, etc.) are connected
to estimation of certain characteristics of the following H(a1,as,a3,a4) = (by — 3bsby + 2b3)/(bs — b3)>/?;
expressions:
— the sensitivity functions

j . or(x
J(SL’) =H ({al(x)}7 {aglj)(x)}7 1= 1>Sa J= 17m) = T](I) = a{i)7 gl(y) = 17 g2(y) =Y,
J
. (14) (15)
=H (a(z), a"(z)). 1 (L) (1)) _ %~ @18 " (1))
( (2) ( )) 1) H(al,ag,al , G5 ) @ a2 by .
Herex € R™, H(-) : Rtm*Us _ Rl is a given function,
[I. PROBLEM STATEMENT
05 _ —
o™ (2) = a(x) = (a1(2), ..., as(x)) Take the following expression as an estimate of the func-
A , , ' — 09) — d its derivatives:(19) (x)
Aoy — () A tional a(z) = a\%(z) (r = 0) and its x
™ (x) = (a (@), a CL)) ’ (r=1) at a pointx:
ai(x) = / i) f (. y)dy, i=T5, 0 (@)= 13 Zf}jZKM (—X) L@
n A i
=1t
aglj)(x) Oai(x) L i=1,s j=1m, Here Z; = (X;,Y;), i = 1,n, is the (m + 1)-dimensional
Oz; random sample from p.d.f.(-, -), (h;) is a sequence of posi-

tive bandwidths tending to 0 ds— oo, K9 (u) = K(u) =

whereg,..., g, are the known Borel functions/ = /, m ] ) ] o ] )
s IT K (u;) is am-dimensional multiplicative function which

R i=
f(-,-) is an unknown probability density function (p.d.f.) fordoles not need to possess the properties of p.d.f.,
the observed random vectaf = (X,Y) € R™*1 OK(
u)

If g;(y) =1, thena,;(z) = /f(x,y)dy = p(z), where = du; 9W) = (1), -, 9s()),
p(-) is the marginal p.d.f. of the random variah¥e, and _ , _
f(ylz) = f(z,y)/p (z) is the conditional p.d.f. al P (z) = (aﬁ?(w), e a&’;f)(x)) :

Here are the well known examples of such functions:

K1) (u)

Note that (2) can be computed recursively by
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The recursive kernel estimate pfz) (the case whem = where \ is a real numberS) is a constant independent on
1, s=1, ¢gly) =1, H(a1) = a1) was introduced by n; r,q =0, 1.

Wolverton and Wagner in [1] and apparently independently Definition 5. Let ¢,,, X1,...,X,, are vectors, and,, =
by Yamato [2], and has been thoroughly examined in [3]. ¢, (X7, ..., X,). A sequence of function§H (t,,)} belongs
The semi-recursive kernel estimates of conditional funés the classM () if for any possible valuex, ..., X,, the
tionals sequenceg|H (t,)|} is dominated by a sequence of numbers
b(z) = (b1(x),...,bs—1(x)), (Cod)), (dn) T o0oasn — 00,0 < v < o0, (pis a
constant.

Put forr,q=0,1; t,p=1,s; j=1,m:

bi(x) = ai(x) /p (x) = / 0 (5] 2)dy _ |
A=A(z) = {a(”)(x)}; Hyjy = 8H(A)/8a§”);

at a pointz are designed agy,(z) = 1)

gV (z Xz-> 1 ({al? (0)}) = HA): @) = [ 19°0)I @ 0)dy
=LA A Co Wl
iLK (m—Xi> pa(@) o0 (z) ar, () :/gt (W)gp () f(2,y) dy;
Pt hi h;
Such estimates are called semi-recursive because they can a3 ( /‘gt ¥)9p W) f(2,y) dy;
be updated sequentially by adding extra terms to both the
numerator and denominator when new observations became Lo — /K w) KD (u) du;
available. Ifg; (y) = y (s = 2), we obtain semi-recursive ker-

nel estimates of the regression line [4]- [6]. Weak and strong
universal consistency of such estimates was investigated in
[7]- [11].

m—1
Bl = Lt (L““”) aup (2);

For estimation of (1) we are going to use the following (rj)(x) _ Ly Lj)()
statistics i 1/! —~ O}
Jn(v)=H ({aﬁ[’j)(x)} , J=1m, r=0, 1) . (4) the set
Plug-in estimates (4) are often used for the estimation of {oy if Vi or=0;
ratios. There are problems connected with unboundedness Q= {1} !f VJ, r=1;
of the estimates at some points (see [12] for details). This {0,1} if 3j r=0Ar=1.

problems can be solved by make using of the p|eceW|se-|—he0rem 1 (the AMSE of the estimate/ ,,(x)). If for
smooth approximation [13] t,p=1s j=1,m, r€Q:

To(z) = 6Jn(w) . 5) 1) the functionSat,p() € No(R), sup a;t (z) < oo,
(L +dn|J n()[7) supal®(z) < oo, supa’}’ (z) < oo;
wherer >0, p>0, pr>1, (4,)|0asn — oo. * v (max(r))
2) the kernel functiork (-) € Ay , SUp ‘K(” (x)‘ <
[1l. M EAN SQUARE ERRORS oo, if Q = {0,1} then K()(-) € Ny(R), if 1 € Q then
Denote: lim K(u) = 0;
dK (u) M (r3)
sup = sup , KM (u) = ——, 3) of() € MNR), swlalV@)| < oo
T r€R™ du ; x
j su w < oo, Lt =1,m;
Tj:/UJK(U)d%J:l,?,m- o | 91,01 ... Oz, P Db 4= BT

. : 4) the sequencéh,,) € H(m + 2max(r));
D - s 1
Definition 1. A function H(-) : R®* — R' belongs to 5) H() € Na(A);

the classN, (t) (H(-) € N,(t)) if it is continuously

<~y <1/4.
differentiable up to the order at the pointt € R*. A function '?’LeiH,A(ﬁg)é gf/t\sg;:stirga&g (—x)l{,js” s
H(-) e N,,(R) if itis continuously differentiable up to the "
orderv for any z € R®.

2 —
Definition 2. A Borel function K(-) € A, (A® = A) C(Tn(@) = D D HejrHpig
t,p=1j, k=17, qeQ
|f/|K(T) )|du<ooand/K()du_1 ’Z j a*
r q

Definition 3. A Borel function K () € A AV =4,) « [S—(m+2 max(r, @) —rg + S Wi ()l (2)h2 | +
if K() € AW, T; =0,j =1,....v—1,T, # 0,  nhn

|u” K (u)|du < oo, and K (u) = K(fu) 1 3

2v
Definition 4. A sequenceh,,) € H(m +r + q) if +0 thm” max(r) T I ] ) :
(hn + 1/(nR™49)) | 0, 1 Z R} = S\h) + o(hD), Itis imp_ortant. that we do not nee_d co_ndition _6) of Theorem
n < 1 when piecewise smooth approximation (5) is used.
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Theorem 2 (the AMSE of the piecewise smooth approxi- ., (z) = I, <8VP (2) Lo (z) Lo ($)> 7

mation J,, ,(z)). Suppose that conditions 1)-5) of Theorem v\ Oy Oy Oy

1 hold and restriction 6) is replaced by

6*) J(x) = H(A(z)) #0 or 7 >4, 7 is a positive integer. i - 1 - r(z)

Then asn — 00 u?(J, () ~ u?(J ,(x)). @) T TP @)
The proofs are given in [14].

Bl,l = /y2f($7y)d2/,

IV. NONPARAMETRIC SEMFRECURSIVE IDENTIFICATION Bia=DBy1 = /yf(l‘,y)dy,
OF THE PRODUCTION FUNCTION AND ITS
CHARACTERISTICS
. . . L 2
Apply the results to estimate the production function and By o =p(x); C= /K (u)du.
its characteristics.

A. Estimation of the production function B. Estimation of the marginal productivity function

Letr(z), z = (21,72, 73) € R® be the regression model of |, the case of the marginal productivity functidh(z) =
the three-factor production function(z) = (a1(2), a2(z)),  ar(z)
(@)= [t @)y, axe) = [ fep)dy=p(o). Here w2 M o
z1 > 0 is the capital inputz, > 0 is the labor inputzs; >0 YS® the piecewise smooth approximatibi () :
is the nature inputy > 0 is a product, and (x,y) > 0 only B Tin()
if 21 >0, 23>0, 23>0, y>0. Then Tin(z) = @ +5n|;m(x)|7)p,

a dominant sequence finding difficulties force us to

"y, x—X;
K ¢ where
; h3 < hi )

Jn(x) = rn(2) = n =

1 z — X; " Y r— X
E —K ‘ Ztgan) ¢
T —

=1

(0) 1Tl(x) - n -
a1, (z) _ ara(x) Ly (=X
aznj (.’E) p’ﬂ(x) i=1 ¢ 1
Let K(u) = K(u)K(u2)K(us), K() € A,

sup | K(u)| < oo, and (h,) € H(3). To find the AMSE Y (2=Xi\~Yigan (2= Xi
wew - DBY A e DI G
of the estimater,,(z), we use Theorem 1. In view of 1)— = i Pl i @
4) conditions of the theorem functions(z), i = 1,2, no X '
and their derivatives are continuously differentiable up to the [Z ﬁK ( - z)]
orderv for any z € R?, and the function| y*f(x,y)dy is =1t ’
bounded orR®. If p(z) > 0, then condition 5) is fulfiled. KV (v) = KO (u;)K(u2)K (us). The kernel has
It seems impossible to find a majorizing sequeridg) to satisfy the additional conditionssup |[K™M(u)| <
(condition 6) of Theorem 1), since the denominator in (6) ) (@) ueR! )
may be equal to zero. In some cases we can find a majorizitty | lim K (u) = 0, K'(-) € No(R), o = 1,2; functions

. o . u|—o0
sequence according to Definition 5 with= 0 undery = 2 a1(+), as(-) and their derivatives up to the ordér + 1)

if, for example, K(-) > 0, andY < oo [15]. Forv > 2 we need to be continuous and bounded Rh the sequence
can use the piecewise smooth approximatiQr): (hy) € H(4).

()
(1+ 5n,V| T ()] T)")’

wherer >0, p>0, pr>1, §,,, = O (hZ' +1/(nh})),

Tn(x) =

C. Estimation of the marginal rate of technical substitution

(6n.,) | 0 @sn — oo. Let T;(z) = Or(z)/0x; and
In view of condition6*) of Theorem 2 it is enough to take
evenr >4, and asn — oo u%(7,(z)) = MRTS12,n(2) = Tin(2)/Ton(x)

2 CB; be the estimate of the marginal rate of technical substitution
— X P 2, 2v
B Z Hit, (53 h3 + 8, wiv (T)wpy (2)h, > + of an inputxz, with an inputz;, where the denominator
i Ty, (z) is given by (7), whereK(')(u) is replaced by

i, p=1

nh3 The piecewise smooth approximation of the estimate
MRTS12, () can be written easily. In view of condition 5)

where N dai(z) /dp ()
(@) = T, (0%ai(z) | 9ar(z) _9ay(x) of Theorem 1 the condition(x) # “ory | 0wy has to
v v oz oy oxY ’ hold in addition to the previous restrictions.
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 —1
V. NONPARAMETRIC SEMFRECURSIVE IDENTIFICATION "z: &YK Y1 Y
OF THE DYNAMIC PRODUCTION FUNCTION “ H, t his
Note that above results are given for independent obser- = T K VoV, ’
vations (random samples). The results can be generalized to Z FtK (”_th>
time series. In [16] an autoregressive heteroscedastic model t=2 ¢ 1t

satisfying geometric ergodicity conditions is considered. Thgnhere
approach allows us to estimate a dynamic production func-

4 3
tions with lagged values of the output. H, = H ho K,=TTK (Xj(n—l) - Xj(t—1)>
= it = | | ,
j=1 j=1

Suppose that a sequentE, )= _1,0,1,2,.. iS generated h(jtye

by a nonlinear homoscedastic ARX process of order s) ) )
To find the AMSE of the estimatel,, 4 (u) we use

Vi=U (Y5 s Yimin, Xe) + & =V(Ue) + & (8) Theorem 2 [16].

where X; = (Xu1,..., X are exogenous variables, — Let f(-,-) be the stationary distribution of the vector

4

Yicips o Y, Xe), 1 < i1 < dp < ... < iy isthe (U,,Y;). Suppose thats(-) € A,, K(u) = [] K(u;),
known subsequence of natural numb€is) is a sequence s
of independent identically distributed (with density positivqs;lg1 [ K (u)] < oo, the sequencéh,) € H(4), andA = —4.
on R') random variables with zero mean, finite variance,et functionsa;(u), i = 0,1, and their derivatives up to
zero third, and finite fourth moments(-) is an unknown and including the order be continuous and bounded 8rt,
nonperlo@c fqncnon b_ounded on compacts. Assume that the,ctions 2 f(u,y) dy and | y* f(u,y) dy be bounded on
process is strictly stationary.

Criteria for geometric ergodicity of a nonlinear hetR4 and, moreover, v? f(u,y) dy and |y|2+‘5f(u,y) dy
eroscedastic autoregression and ARX models which in tyrn ..o 0o ot the point. Then conditions (1)~(5) of

imply a-mixing have been given by many authors (see foIrheorem 2 [16] hold; we also suppose that condition (6)

example [17]- [21]). o
Let Y7,...,Y, be observations generated by the proE:Trggg:gm 22[[11(gl))hr<])(l)(ljdss';ogp (u) >0, then condition (7)
cess (8). The conditional expectatian(z,2) = W(u) = * t'po random variabled; are uniformly bounded, and

_ _ _ m+s H
E(Y:|U, = .“)._ E(Yt'u.)’ (@, 2) =ue R we estimate \ o select a nonnegative kernel, then it is easy to show
by the statistic, which is a semi-recursive counterpart of ﬂfﬁat W, , (u) are bounded forr — 2. By condition (8)

Nadaraya—Watson estimate [22], [23] (similarty 10 (B)): (Theorem 2 [16]), this is equivalent to the existence of a

"L Y, u—U, majorizing sequence with = 0.
Z hm+sK ( n > For v > 2 the piecewise smooth approximation solves the
=2 "t t - .
U mts (U) = — . (9) problem (see the previous section).
Z 1 K (U - Ut) In Table 1 the relative errors of the forecast (REF) obtained
— e hy with ¥, 4 (-) for each year from 1995 till 2004 are given.

This quantity may be interpreted as the predicted value bas-ls—aoéal REF is 6.68%.

on the past information. TABLE 1
Since the observations are dependent, investigation of the
estimates properties becomes much harder. For example, the
main part of the Nadaraya-Watson estimate’'s AMSE for
strongly mixing (s. m.) sequences was found only in 1999
[24]; the authors also proved that this estimate converges 2000 | 2001 | 2002 | 2003 | 2004
with probability one. 0.055| 0.047 | 0.042| 0.057 | 0.043
We proved in [16] that if the observed sequence satisfiesThe result of 1998 can be explained by 1998 Russian
the s. m. condition with a s. m. coefficiea{r) such that financial crisis ("Ruble crisis”) in August 1998. The kernel
o0 s used is the Gaussian kernel and the bandwidihis =
/ m2[o(7)] 7 dr < 00 (10) 0.175,;t'/%, whereg;, j = 1,2,3,4 are the corresponding
0 sample mean square deviations, the constant 0.17 is chosen
for some0 < § < 2, then Theorems 1-3 hold. Note that &pjectively.

(10). technical substitution are estimated in the same way on the
We apply (9) under base of (7).

Us = (Yie1, X1(t—1), Xo(t—1), X3(t-1))

Errors of Forecasts

1995 | 1996 | 1997 | 1998 | 1999
0.189 | 0.057 | 0.04 | 0.133| 0.05

) . ) i VI. CONCLUSION
to investigate the dependence of Russian Federation’s Indus_—l_h. K ¢ o ht timati
trial Production IndexY” on the dollar exchange rat&, is work presents a unifying approach to estimating

direct investmentX,, and exportXs for the period from the dynamic production function and its characteristics (the

September 1994 till March 2004. The data are available fromarginal productivity function, marginal rate of technical

http://www.gks.ru and http://sophist.hse.ru/. The estimate substitution). The approach is based on plug-in estimating
of functions depending on functionals of the joint sta-

Vo a (Yoo1, Xin—1) Xo(n—1), X3(n-1)) = tionary distribution of the vector of explanatory variables
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U = (Ye,Yeiy,o., Yo, , Xat,..., Xst), Where X; = [22] E. A Nadaraya, “On Regression EstimateSheor. Prob. App., vol.
(X14,...,Xs) are exogenous variable§; is an output 19, no. 1, pp. 147-149, 1964. o ,

duct) i . is the known subseduence of natur ] G. S. Watson, “Smooth regression analysiSankhya. Indian J.
(product),iz < ... < in, is the known subsequ ural™ satist., vol. A26, pp. 359-372, 1964.
numbers. Note that,, may be large, whilen is small. We [24] D. Bosq, N. Cheze-Payaud, “Optimal Asymptotic Quadratic Error of

assume that the proceds is a nonlinear homoscedastic  Nonparametric Regression Function Estimates for a Continuous-Time

strictly stationary ARX process, which satisfies to the s. Process from Sampled-DateBtatistics, vol. 32, pp. 229-247, 1999.
m. condition with the geometric rate. The plug-in estimates
are semirecursive, i.e., we recursively compute only the
kernel estimates of functionals (3). By using the piecewise
smooth approximations of the estimates, we have managed to
avoid the problems concerning to the majorizing sequence’s
existence needed for obtaining of the main parts of the
estimate’s AMSE.
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