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Abstract—Recursive formulae for the terminal cost distribu-
tion in a scalar linear discrete-time system with noise corrupted
measurements are obtained. The system is subject to a linear
saturated control strategy. The initial state and the estimator
error distributions are assumed to be known. An example,
inspired by an interception problem, is presented.

Index Terms—linear discrete-time system, robust transferring
strategy, noisy measurements, terminal state distribution.

I. I NTRODUCTION

V ARIOUS real life control problems (including inter-
ception) can be formulated as a problem of transfer-

ring a controlled system to a prescribed hyperplane in the
state space at a prescribed time in the presence of noise
corrupted measurements and unknown bounded disturbance
by bounded control [1], [2], [3], [4]. This problem can be
reduced to a scalar one, where the new state variablez
is the distance between a current point on the trajectory
of the uncontrolled system motion and the hyperplane. By
this scalarization, the problem of transferring to a prescribed
hyperplane becomes a problem of robust transferring to zero.

Several classes of deterministic feedback strategiesu =
u(t, z(t)) that robustly transfer a scalar system from some
domain of initial positions to zero, are known if perfect state
information is available. Among such robust transferring
strategies are differential game based bang-bang strategies
[1], [2], as well as various linear, saturated linear and weakly
nonlinear strategies (see e.g. the works of the authors [3], [5],
[6], [7], [8], [9]).

In real life applications, the state information is corrupted
by measurement noise and only part of the state variables
can be directly measured. This fact impedes significantly the
practical implementation of theoretically robust transferring
strategies. Moreover, an estimator, restoring and filtering
the state variables, becomes an indispensable component of
the control loop. Due to the noisy measurements and the
uncertain disturbance the control functionu(t, z(t)) receives,
instead of the exact value ofz(t), a random estimator output
ẑ(t) = z(t) + η(t), where η(t) is the estimation error.
As the consequence, the terminal value ofz becomes a
random variable with an a-priori unknown distribution. In
order to appreciate the extent of performance deterioration
of a deterministic robust transferring strategy by using such
a stochastic data, the distribution of the terminal value ofz
has be found.
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In the current practice, such a distribution is obtained,
for any given estimator/strategy combination and specified
disturbance and noise models, by a large set of Monte
Carlo simulations (see e.g [10], [11]). Such a-posteriori test
is absolutely necessary for validation purpose, but cannot
be applied for an insightful control system design. There
is an obvious need for an analytical a-priori estimate of
the strategy performance as a part of the integrated control
system design.

State estimates in the presence of deterministic informa-
tion errors were obtained in [12] and [13]. In [13], such
estimates are used to construct a robust control of a dy-
namic system with inexact state information. In interception
problems, the scalar state variablez is the zero-effort miss
distance and its terminal value is actual miss distance itself.
Under some general linear assumptions without taking into
account the system dynamics, the miss distance distribution
was investigated in [14]. In the case of linear intercep-
tor strategies, the dependence of the miss distance on the
measurement noises was analyzed, by means of the adjoint
approach in [15] and [16]. Unfortunately, this approach can
be applied only in the case of non saturated linear strategies.

In this paper, the system dynamics is modeled by a
discrete-time scalar linear equation controlled by asaturated
linear transferring strategy. For the sake of simplicity, it is
assumed that the system is disturbance free. Assuming that
the distributions ofz0 and the estimation errorηn are known,
a recurrence formula for the distribution ofzn+1 is obtained.
The random variablezn+1 is the linear combination of two
dependent random variables - the statezn at the previous
time step and the control variableun, nonlinearly depending
on zn via the saturation function. This makes the problem
to be mathematically nontrivial.

II. PROBLEM STATEMENT

A. Original Control Problem

Consider the controlled system

Ẋ = A(t)X + b(t)u + c(t)v + f(t), (1)

whereX ∈ Rn is the state vector;t ∈ [t0, tf ], X(t0) = X0,
tf is a fixed time instant,t0 ∈ [0, tf ); the matrix function
A(t) and the vector functionsb(t), c(t), f(t) are differen-
tiable for a sufficient number of times on the interval[0, tf ].
The scalar controlu and disturbancev are assumed to be
measurable on[t0, tf ) and satisfying the constraints

|u(t)| ≤ 1, |v(t)| ≤ 1, t ∈ [t0, tf ). (2)

The target set is the hyperplaneD = {X ∈ Rn | dT X+d0 =
0}, whered ∈ Rn is a prescribed non-zero vector,d0 is a
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prescribedscalar, the superscriptT denotes the transposition.
The control objective is to guaranteeX(tf ) ∈ D against any
admissible disturbance functionv(t).

By the transformation of the state variable in (1),

z = z(t,X) =

dT
(
Φ(tf , t)X +

tf∫

t

Φ(tf , τ)f(τ)dτ
)

+ d0, (3)

the system (1) is reduced to the scalar one

ż = h1(t)u + h2(t)v, z(t0) = z0, (4)

where h1(t) = dT Φ(tf , t)b(t), h2(t) = dT Φ(tf , t)c(t),
z0 = z(t0, X0), Φ(t, t0) is the fundamental matrix of the
homogeneous systeṁX = A(t)X. The control objective
becomes to guaranteez(tf ) = 0.

It is assumed that the control is given by a saturated linear
strategy

u(t, z) = sat(K(t)z), (5)

where

sat(y) =





1, y > 1,
y, |y| ≤ 1,
−1, y < −1,

(6)

the gain functionK(t) satisfies the conditions (given e.g.
in [9]), guaranteeing that the linear strategyu = K(t)z is
robust transferring. For the sake of simplicity, in the sequel
it is assumed thatv(t) ≡ 0, t ∈ [0, tf ].

B. Discrete-Time Estimation Problem

Define the division of the interval[0, tf ]: 0 = t0 < t1 <
. . . < tN = tf , wheretn+1−tn = ∆t, n = 0, . . . , N−1. As
a simplified model of system (4), consider the discrete-time
equation without the disturbance:

zn+1 = zn + bnun, (7)

where for the simplest Euler approximation of the differential
equation (4),bn = ∆th1(tn). The control is

un = sat(kn(zn + ηn)), (8)

where kn = K(tn) is the control gain andηn is the
estimation error. The probability density functionsfz0(x) of
z0 and fηn

(x) of ηn, n = 0, 1, . . . , N − 1, are assumed to
be known. The problem is to obtain the probability density
functionfzN (x). Note that since the random variableszn and
un are dependent, the distribution function ofzn+1 cannot
be calculated by using the convolution formula.

III. SOLUTION

Due to (7) – (8), the distribution function ofzn+1 is

Fzn+1(x) = P (zn+1 < x) =

p1P (kn(zn + ηn) > 1) + p2P (|kn(zn + ηn)| ≤ 1)+

p3P (kn(zn + ηn) < −1), (9)

wherep1, p2 andp3 are the conditional probabilities

p1 = P (zn + bn < x
∣∣∣ kn(zn + ηn) > 1), (10)

p2 =

P ((1 + bnkn)zn + bnknηn < x
∣∣∣ |kn(zn + ηn)| ≤ 1), (11)

p3 = P (zn − bn < x
∣∣∣ kn(zn + ηn) < −1). (12)

Thus, the problem is reduced to calculating the conditional
probabilities (10) – (12).

A. Calculation ofp1 and p3

By using (10) and the formula for the probability of the
product of dependent events,

p1 = p̃1P (zn < x− bn)
/

P (zn + ηn > 1/kn), (13)

where

p̃1 = P
(
zn + ηn > 1/kn

∣∣∣ zn < x− bn

)
. (14)

Let calculate the conditional probabilitỹp1.
First, instead of the eventzn < x − bn, consider the

eventzn ∈ (a, x − bn), wherea is a negative number with
sufficiently large absolute value:

p̃1a = P
(
zn + ηn > 1/kn

∣∣∣ zn ∈ (a, x− bn

)
. (15)

Note that
p̃1 = lim

a→−∞
p̃1a. (16)

Let divide the interval(a, x − bn) into M subintervals
of equal length∆x = (x − bn − a)/M : xj = a + j∆x,
j = 0, 1, . . . ,M . Then, since the eventszn ∈ (xj , xj+1),
j = 0, . . . , M − 1, are mutually exclusive,

p̃1a ≈
M−1∑

j=0

P
(
zn ∈ (xj , xj+1)

∣∣∣ zn ∈ (a, x− bn)
)
×

P
(
zn + ηn > 1/kn

∣∣∣ zn ∈ (xj , xj+1)
)
. (17)

Let start with calculating the first conditional probability
under the sum in (17). Note that

P
([

zn ∈ (xj , xj+1)
]
&

[
zn ∈ (a, x− bn)

])
=

P
(
zn ∈ (xj , xj+1)

∣∣∣ zn ∈ (a, x− bn)
)
P (zn ∈ (a, x− bn)).

(18)
From the other hand,

P
([

zn ∈ (xj , xj+1)
]
&

[
zn ∈ (a, x− bn)

])
=

P
(
zn ∈ (a, x− bn)

∣∣∣ zn ∈ (xj , xj+1)
)

︸ ︷︷ ︸
=1

P (zn ∈ (xj , xj+1))

= P (zn ∈ (xj , xj+1)). (19)

From (18) – (19),

P
(
zn ∈ (xj , xj+1)

∣∣∣ zn ∈ (a, x− bn)
)

=

P (zn ∈ (xj , xj+1))
/

P (zn ∈ (a, x− bn)). (20)

For sufficiently small∆x, the second conditional proba-
bility under the sum in (17) can be approximated as

P
(
zn + ηn > 1/kn

∣∣∣zn ∈ (xj , xj+1)
)
≈

P
(
zn + ηn > 1/kn

∣∣∣ zn = x̄j

)
= P

(
ηn > 1/kn − x̄j

)
,

(21)
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wherex̄j = (xj + xj+1)/2.
Due to (17) and (20) – (21),

p̃1a ≈ 1
P (zn ∈ (a, x− bn))

M−1∑

j=0

P
(
zn ∈ (xj , xj+1)

)
×

P
(
ηn > 1/kn − x̄j

)
=

1
x−bn∫

a

fzn(y)dy

M−1∑

j=0

xj+1∫

xj

fzn(y)dy

∞∫

1/kn−x̄j

fηn(y)dy, (22)

wherefzn(y) and fηn(y) are the probability density func-
tions of the random variableszn andηn, respectively. Since

xj+1∫

xj

fzn(y)dy ≈ fzn(x̄j)∆x, (23)

the equation (22) can be rewritten as

p̃1a ≈ 1
x−bn∫

a

fzn(y)dy

M−1∑

j=0


fzn(x̄j)

∞∫

1/kn−x̄j

fηn(y)dy


 ∆x,

(24)
Hence,

p̃1a =

lim
M→∞

M−1∑
j=0


fzn(x̄j)

∞∫

1/kn−x̄j

fηn(y)dy


 ∆x

x−bn∫

a

fzn(y)dy

=

x−bn∫

a


fzn(s)

∞∫

1/kn−s

fηn(y)dy


 ds

x−bn∫

a

fzn
(y)dy

. (25)

By virtue of (16),

p̃1 =

x−bn∫

−∞


fzn(s)

∞∫

1/kn−s

fηn(y)dy


 ds

x−bn∫

−∞
fzn

(y)dy

. (26)

Due to (13) and (26),

p1 =

x−bn∫

−∞


fzn(s)

∞∫

1/kn−s

fηn(y)dy


 ds

∞∫

1/kn

fzn+ηn(y)dy

. (27)

Therandom variableszn andηn are independent. Therefore,

fzn+ηn(y) = fzn(y) ∗ fηn(y) =

∞∫

−∞
fzn(y − s)fηn(s)ds.

(28)
Finally,

p1 =

x−bn∫

−∞


fzn(s)

∞∫

1/kn−s

fηn(y)dy


 ds

∞∫

−1/kn




∞∫

−∞
fzn(y − s)fηn(s)ds


 dy

(29)

Calculation of p3 is similar to the calculation ofp1,
resulting in

p3 =

x+bn∫

−∞


fzn(s)

−1/kn−s∫

−∞
fηn(x)dx


 ds

−1/kn∫

−∞




∞∫

−∞
fzn(x− s)fηn(s)ds


 dx

(30)

B. Calculation ofp2

Consider the casebn ≥ 0. By definition of the conditional
probability,

p2 =
P

(
(zn, ηn) ∈ R(x)&(zn, ηn) ∈ Q

)

P
(
(zn, ηn) ∈ Q

) =

P
(
(zn, ηn) ∈ S(x)

)/
P

(
(zn, ηn) ∈ Q

)
, (31)

where (see Fig. 1)

R(x) , {(zn, ηn) : ηn < −Azn + B(x)} , (32)

A = 1 +
1

bnkn
, B(x) =

x

bnkn
,

Q , {(zn, ηn) : −zn − 1/kn ≤ ηn ≤ −zn + 1/kn} ,
(33)

S(x) , R(x)
⋂

Q. (34)

The straight lineηn = −Azn +B(x) (the upper boundary
of the setR(x)) intersects the straight linesηn = −zn±1/kn

(boundaries of the setQ) at zn = x± bn. Thus, the setS(x)
can be represented as

S(x) = S1(x)
⋃

S2(x), S1(x)
⋂

S2(x) = ∅, (35)

where
S1(x) =

{
(zn, ηn) : zn < x− bn,

−zn − 1/kn ≤ ηn ≤ −zn + 1/kn

}
, (36)

S2(x) =
{

(zn, ηn) : zn ∈ [x− bn, x + bn],

−zn − 1/kn ≤ ηn ≤ −Azn + B(x)
}

. (37)

Therefore,
P

(
(zn, ηn) ∈ S(x)

)
=
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Fig. 1. SetsR(x) andQ for bn > 0

P
(
(zn, ηn) ∈ S1(x)

)
+ P

(
(zn, ηn) ∈ S2(x)

)
. (38)

Similarly to the calculation ofp1, by discretization and
limiting,

P
(
(zn, ηn) ∈ S1(x)

)
=

x−bn∫

−∞


fzn(s)

−s+1/kn∫

−s−1/kn

fηn(y)dy


 ds, (39)

P
(
(zn, ηn) ∈ S2(x)

)
=

x+bn∫

x−bn


fzn(s)

−As+B(x)∫

−s−1/kn

fηn(y)dy


 ds. (40)

By virtue of (31), (33) and (39) – (40),

p2 =
1

Cn





x−bn∫

−∞


fzn(s)

−s+1/kn∫

−s−1/kn

fηn(y)dy


 ds+

x+bn∫

x−bn


fzn(s)

−As+B(x)∫

−s−1/kn

fηn(y)dy


 ds





, (41)

where

Cn =

1/kn∫

−1/kn




∞∫

−∞
fzn

(y − s)fηn
(s)ds


 dy. (42)

If bn < 0, similarly to (41), it is obtained that

p2 =
1

Cn





x+bn∫

−∞


fzn(s)

−s+1/kn∫

−s−1/kn

fηn
(y)dy


 ds +

x−bn∫

x+bn


fzn

(s)

−s+1/kn∫

−As+B(x)

fηn
(y)dy


 ds





. (43)

C. Calculation offzn+1(x)
For bn ≥ 0, by substituting (27), (30) and (41) into (9)

and by simplifying the obtained expression,

Fzn+1(x) =

x−bn∫

−∞
fzn(s)ds+

x+bn∫

x−bn


fzn(s)

−As+B(x)∫

−∞
fηn(y)dy


 ds. (44)

Similarly, for bn < 0,

Fzn+1(x) =

x+bn∫

−∞
fzn(s)ds+

x−bn∫

x+bn


fzn(s)

∞∫

−As+B(x)

fηn(y)dy


 ds. (45)

By simple algebra it is shown that differentiating (44) and
(45) with respect tox yields the same expression for the
probability density function ofzn+1:

fzn+1(x) = fzn(x−bn)+fzn(x+bn)

−x−1/kn−bn∫

−∞
fηn(y)dy−

fzn(x− bn)

−x+1/kn+bn∫

−∞
fηn(y)dy+

1
bnkn

x+bn∫

x−bn

[fzn(s)fηn(−As + B(x))]ds. (46)

The probability density functionfzN (x) is obtained by
applying the recurrence formula (46)N times.

IV. INTERCEPTIONEXAMPLE

In this example, a planar engagement between two objects
(pursuer and evader) is considered. It is assumed that the
dynamics of each object is expressed by a first-order transfer
function with the time constantsτp and τe, respectively.
The velocitiesVp and Ve and the bounds of the lateral
acceleration commandsamax

p and amax
e of the objects are

constant. Subject to the assumption of small aspect anglesϕp

andϕe, the engagement is modeled by the system (1), where
X1 is the relative separation between the objects, normal to
the initial line-of-sight;X2 is the relative normal velocity;
X3 and X4 are the lateral accelerations of the evader and
the pursuer, respectively;tf = r0/(Vp +Ve), wherer0 is the
initial range between the objects;

A(t) ≡




0 1 0 0
0 0 1 −1
0 0 −1/τe 0
0 0 0 −1/τp


 , (47)

b(t) ≡ (0, 0, 0, amax
p /τp)T , c(t) ≡ (0, 0, amax

e /τe, 0)T ,
(48)

f(t) ≡ 0, X0 = (0, X20, 0, 0)T , X20 = Veϕe(0)−Vpϕp(0).
(49)
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The controls of the pursueru and the evaderv are the
normalized lateral acceleration commands, satisfying the
constraints (2). The objective of the pursuer is to nullify
the miss distance|X1(tf )|, i.e. in the target hyperplane,
d = (1, 0, 0, 0)T , d0 = 0.

In the scalarized system (4),z0 = tfX20,

h1(t) = −h(t; τp, a
max
p ), h2(t) = h(t; τe, a

max
e ), (50)

where h(t; τ, amax) = τamaxΨ((tf − t)/τ), Ψ(ξ) =
exp(−ξ) + ξ − 1 > 0, ξ > 0. The new state variablez
is the well-known zero-effort miss distance [15]. The target
point is (tf , 0).

The pursuer strategy is given by (5) with the gain function

K(t) = 2/(tf − t)3. (51)

The scalar system was approximated by the discrete-time
equation (7), wherebn = ∆th1(tn), ∆t = 0.01 s. In this
example,tf = 4 s, N = 400, τp = 0.2 s, amax

p = 30 m/s2.
It is assumed that the initial valuez0 and the estima-

tion errorsηn are gaussian:z0 ∼ Gauss(0.5, 0.1), ηn ∼
Gauss(µn, σn), n = 0, . . . , N − 1. The values ofµn and
σn were obtained from a realistic Monte Carlo simulation
with noisy line-of-sight measurements and an estimator in
the control loop. The cumulative distribution function of the
miss distance|zN | is calculated as

F|zN |(x) = FzN
(x)− FzN

(−x), (52)

whereFzN
(x) =

x∫

−∞
fzN

(ξ)dξ.

In Fig. 2, the cumulative distribution of|zN |, obtained by
2000 Monte Carlo runs of the discrete-time system (4) and
by using (52) based on (46), applied400 times. It is seen
that two curves match very accurately.

0 0.02 0.04 0.06 0.08
0

0.2

0.4

0.6

0.8

1

x

F|zN |(x)

 

 

Monte Carlo
Theoretic

Fig. 2. Simulative and theoretic distribution functions of|zN |

V. CONCLUSIONS

The problem of evaluating the probability distribution of
the final state of a scalar discrete-time system is solved.
In this problem, it is assumed that the state information is
corrupted by an error with known distribution and the initial
state distribution is also known. The control is realized by
a saturated linear strategy. The formulation is motivated by

various real-life control problems, and, especially, by the
interception problem, where validating robust transferring
deterministic strategies in realistic stochastic environment is
of a high practical importance.

The problem is mathematically nontrivial, because the
evaluation of the sum of two dependent random variables
is required. The solution is based on proper discretization of
some conditional probabilities. The resulting formula allows
to evaluate the final state distribution without carrying out a
great amount of Monte Carlo simulation runs.
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