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Distribution of Terminal Cost Functional In
Discrete-Time Controlled System with
Noise-Corrupted State Information
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Abstract—Recursive formulae for the terminal cost distribu- In the current practice, such a distribution is obtained,
tion in a scalar linear dls;rete-tlme system Wlth noise corrup_ted for any given estimator/strategy combination and specified
measurements are obtained. The system is subject to a “neardisturbance and noise models, by a large set of Monte

saturated control strategy. The initial state and the estimator - - .
error distributions are assumed to be known. An example, Carlo simulations (see e.g [10], [11]). Such a-posteriori test

inspired by an interception problem, is presented. is absolutely necessary for validation purpose, but cannot
Index Terms—linear discrete-time system, robust transferring .be appl:)eq for an (ljns%lghtful Conltrql slystem d.eggn' Theref
strategy, noisy measurements, terminal state distribution. IS an obvious need for an analytical a-priori estimate o

the strategy performance as a part of the integrated control
system design.
State estimates in the presence of deterministic informa-

VARIQUS real life control problems (including inter-ion errors were obtained in [12] and [13]. In [13], such
V' ception) can be formulated as a problem of transfeggtimates are used to construct a robust control of a dy-
ring a controlled system to a prescribed hyperplane in thg mic system with inexact state information. In interception
state space at a prescribed time in the presence of NQisgplems, the scalar state variablds the zero-effort miss
corrupted measurements and unknown bounded disturbagtgance and its terminal value is actual miss distance itself.
by bounded control [1], [2], [3], [4]. This problem can be&ynger some general linear assumptions without taking into
reduced to a scalar one, where the new state variableyccoynt the system dynamics, the miss distance distribution
is the distance between a current point on the trajectapys investigated in [14]. In the case of linear intercep-
of the uncontrolled system motion and the hyperplane. B, sirategies, the dependence of the miss distance on the
this scalarization, the problem of transferring to a prescribegbasurement noises was analyzed, by means of the adjoint
hyperplane becomes a proble_m o_f robust transferring_to Z€nroach in [15] and [16]. Unfortunately, this approach can
Several classes of deterministic feedback strategies e applied only in the case of non saturated linear strategies.
u(t, z(t)) that robustly transfer a scalar system from some |, this paper, the system dynamics is modeled by a
domain of initial positions to zero, are known if perfect stalgjscrete-time scalar linear equation controlled bsaturated
|nforma_1t|on is a_va|labl_e. Among such robust transfernngl_near transferring strategy. For the sake of simplicity, it is
strategies are differential game based bang-bang strategies med that the system is disturbance free. Assuming that

[1], [2], as well as various linear, saturated linear and weakjite gistributions of, and the estimation erray, are known,
nonlinear strategies (see e.g. the works of the authors [3], [glyecurrence formula for the distribution f .1 is obtained.

6l (71, 18], [9D). . o The random variable,, , ; is the linear combination of two
In real life applications, the state information is corruptegependem random variables - the stajeat the previous

by meas.urement noise and pnly pgrt of the §ta_t? variablgs o step and the control variablg,, nonlinearly depending
can be directly measured. This fact impedes significantly the, », via the saturation function. This makes the problem
practical implementation of theoretically robust transferring pa mathematically nontrivial.

strategies. Moreover, an estimator, restoring and filtering

the state variables, becomes an indispensable component of [I. PROBLEM STATEMENT

the control loop. Due to the noisy measurements and the Original Control Problem

uncertain disturbance the control functioft, z(t)) receives,

instead of the exact value eft), a random estimator output

2(t) = =z(t) + n(t), where n(t) is the estimation error. X = A(t)X + b(t)u + c(t)v + f(t), 1)

A e Comseence, e I e Ohecomes S shereX € R is the stte vecton < 7, X() — Xo
" t¢ is a fixed time instantt, € [0,t); the matrix function

order to appreciate the extent of performance deteriorati #) and the vector functions(t), c(t), () are differen-
of a deterministic robust transferring strategy by using su ble for a sufficient number of ti’mes ’on the interyalt .

a stochastic data, the distribution of the terminal value OfThe scalar controk and disturbance are assumed to be

has be found. measurable offty, t;) and satisfying the constraints

V.Y. Glizer and V. Turetsky (corresponding author, e-mail: turet-
skyl@braude.ac.il) are with Department of Mathematics, Ort Braude Col- |“(t)‘ <1, |U(t)| <1 te [t07 tf)- (2)
lege, P.O.B. 78, Karmiel 21982, Israel. . T

J. Shinar is with Faculty of Aerospace Engineering, Technion - Israg—lhe target set s th_e hyperpla‘i_?e: {X eR" ‘ d X"'df) =
Institute of Technology, Haifa, 32000, Israel 0}, whered € R™ is a prescribed non-zero vectal; is a

I. INTRODUCTION

Consider the controlled system
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prescribedscalar, the superscrifit denotes the transposition. P((1 + bpky,)zn + bpknn, < @ ’ |kn(zn + 1) < 1), (11)

The control objective is to guarantéé&(t;) € D against any
admissible disturbance functiar(t).
By the transformation of the state variable in (1),

z=2z(t,X)=

ty

a" (@(ty,1)X +/®(tf,7)f(7)d7> + do,
t
the system (1) is reduced to the scalar one

Z2=hi(t)u+ ho(t)v, 2(to) = 20, (4)
where hi(t) = dT®(ts,t)b(t), ha(t) = dT®(tg,t)c(t),

zo = z(to, Xo), <I>(t,t0') is the fundamental matrix of the
homogeneous systedf = A(t)X. The control objective

becomes to guarantegt ) = 0.

p3 = Plen — by <z ] k(2 + 1) < —1). (12)

Thus, the problem is reduced to calculating the conditional
probabilities (10) — (12).

©) A. Calculation ofp; and ps3

By using (10) and the formula for the probability of the
product of dependent events,

p1=p1 Pz, <x— bn)/P(zn +nn > 1/ky), (13)

where

B = P(zn o > 1k (14)

Zn <177bn).

Let calculate the conditional probabilify; .

It is assumed that the control is given by a saturated linearFirst, instead of the event, < z — b,, consider the

strategy
u(t, =) = sat (K (1)z), 5)
where
1, y>1,
sat(y) =49 ¥, |yl <1, (6)
-1, y< -1,

eventz, € (a,xz — b,), wherea is a negative number with
sufficiently large absolute value:

ﬁla:P(zn+nn>1/kn zne(a,m—bn>. (15)
Note that
pr=lim pi. (16)

the gain functionK(¢) satisfies the conditions (given e.g. et divide the interval(a,z — b,) into M subintervals

in [9]), guaranteeing that the linear strategy= K(t)z is

of equal lengthAz = (x — b, — a)/M: z; = a + jAxz,

robust transferring. For the sake of simplicity, in the sequel— ¢ 1, ... 1. Then, since the events, € (2, 2j11),

it is assumed that(t) =0, ¢t € [0,¢].

B. Discrete-Time Estimation Problem

Define the division of the intervdD,t;]: 0 =ty < 1 <
... <ty =ty wheret, 1 —t, =At,n=0,..., N—-1. As

a simplified model of system (4), consider the discrete-time

equation without the disturbance:

@)

Zn+1 = Zn + bnuna

where for the simplest Euler approximation of the differential

equation (4)b,, = Ath4(t,). The control is
Up = sat(ky (20 +7n)), (8)

where k,, = K(t,) is the control gain andy, is the
estimation error. The probability density functiofig (z) of

zo and f,, (z) of n,, n =0,1,...,N — 1, are assumed to
be known. The problem is to obtain the probability density,

function £, (z). Note that since the random variablgsand
u, are dependent, the distribution function gf,; cannot
be calculated by using the convolution formula.

IIl. SOLUTION

Due to (7) — (8), the distribution function af,; is
F....(x)=Plzpy1 <z) =

P1P(kn(2n +1n) > 1) + p2P(|kn(2n +1n)] < 1)+

pSP(kn(Zn + nn) < _1)7 9
wherep,, po andps are the conditional probabilities
p1=P(zn+by <z | kn(zn+m0) > 1), (10)

P2 =
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j=0,...,M — 1, are mutually exclusive,
M-—1
Dla = P(zn € (zj,x41) ‘ zn € (a,z — bn)> X
7=0

P(z0+ 10 > 1/kn (17)

zn € (x4, mj+1)>.

Let start with calculating the first conditional probability
under the sum in (17). Note that

P({zn S (./,Cj,xj+1):|&|:zn € (a,x — b")D =
P(zn € (zj,41) ’ zn € (a,z — bn))P(zn € (a,x —by)).

(18)
From the other hand,

P({zn e (mj,xjﬂ)}&{zn € (a,x — bn)D =

(zn € (a,x —by) ‘ Zn € (xj,xj+1)) P(z, € (zj,2j41))

=1

P(zn € (zj,2541))- (19)
From (18) — (19),
P(zn € (zj,xj41) ‘ zZn € (a,z — bn)) =
P(z, € (xj,a:j+1))/P(zn € (a,z —by)). (20)

For sufficiently smallAz, the second conditional proba-
bility under the sum in (17) can be approximated as

P(zn 0 > 1k

Zn € (%’#%H)) ~

P(zn + 0 > 1k,

Zp = :E]-) = P(nn >1/k, — xj?z,l)

WCE 2011



Proceedings of the World Congress on Engineering 2011 Vol I
WCE 2011, July 6 - 8, 2011, London, U.K.

Where:fj = ((L’j + £Cj+1)/2.

Due to (17) and (20) — (21),

T (e e i)

P> 1/kn :zj) =

/fz > /f

plaNP(znG amfb

—1
fo.(W)dy, (22)
1/kn—Z;

where f., (y) and f, (y) are the probability density func-
tions of the random variables, and,,, respectively. Since

Tjt1

[ty = 1., (@A, (23)
the equation (22) can be rewritten as
1 M-—1
Pla P Z fa (2 / foa(y)dy | Az,
7=0 s
[ rwiy k=
’ (24)
Hence
M-—1 3
J\}lm Z on (i‘J) fnn (y)dy A,:L'
~ 1/kn—2;
Pla = b, =
| £y
x—by, o)
[ |t [ fwiy] as
a 1/ky—s
pr (25)
fon (y)dy
By virtue of (16)
x—b, oo
[ [ ] as
- —00 1/kn—s
= P (26)
fa (y)dy
Dueto (13) and (26),
x—b, 0o
[ @ [ sy as
—o0 1/kn—s
pr = — (27)
/ Jentna ()dy
1/kn
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Therandom variables,, andn,, are independent. Therefore,

Forins (0) = For (9) * fon () = / For(y— $) o ()ds
- (28)
Finally,
x—by oo
/ for(8) / fo )y | ds
pr=—o L Uk (29)
/ [ / fo >fn,z<>ds] dy
—1/ky, L=o©

Calculation of ps is similar to the calculation ofpy,
resulting in

—1/kn—s

/ fan(@)da | ds
o
/ [ [ o= (s)ds] i

B. Calculation ofp,

Consider the cask, > 0. By definition of the conditional
probability,

fzn
(30)

p3:

P((z0:m) € R(@)&(z0m0) € Q)

P2 = =
i P((zn,nn) € Q)
P((zmnn )/P( (Zn,Mn) € Q) (31)
where (see Fig. 1)
R(z) £ {(znsmn) © M < —Azp + B(2)}, (32)
x
A:1+b B(a:):bnkn,
é{(znynn) : Zn *1/kn Snn S *zn+1/kn}7
(33)
2)[@. (34)

The straight liney,, = — Az, + B(x) (the upper boundary
of the setR(z)) intersects the straight lineg, = —z, +1/k,
(boundaries of the s&p) at z,, = x +b,,. Thus, the sef(x)
can be represented as

)| Sa(x), z)()Sa2(x) =0,  (35)
where
$1(@) = {(zsmn) : 20 < = b,
zn—l/kngnng—znﬂ/kn}, (36)
Sa(z) = {(zn,nn) D 2Zp € [x — b, T+ by,

—zn — U/ky, <mp < —Az, + B(:l:)} (37)

Therefore,
P((enmn) € S(@)) =
WCE 2011
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-1 . z — by T+ b,
-2 -1 0 1 2,2

n

Fig. 1. SetsR(z) and@ for b, >0

P((zn,nn) € Sl(a?)) + P((zn,nn) € SQ(:U)). (38)

C. Calculation of ., (x)

For b, > 0, by substituting (27), (30) and (41) into (9)
and by simplifying the obtained expression,

z—by,
F..,.(z) = / fo (s)ds+
z+b,, —As+B(z)
fo(5) / o )dy| ds.  (48)
T—by, —00
Similarly, for b,, < 0,
x+by,
F....(z) = / S (8)ds+
r—by, o)
/ fo (5) / Fo()dy| ds. (45)
z+bn —As+B(z)

By simple algebra it is shown that differentiating (44) and

Similarly to the calculation ofp;, by discretization and (45) with respect tar yields the same expression for the

limiting,
P((zn,nn) e Sl(x)) -

z—by, —s+1/kn
/ for(s) / fody|ds,  (39)
—o0 —s—1/kn,

P((201m0) € Sa(x)) =

x4b, —As+B(x)
£ (s) / o ()dy| ds.  (40)
o—b, —s—1/kn

By virtue of (31), (33) and (39) — (40),

1 z—b, —s5+1/kn
p=gt [ @ [ | ds
" —0o0 —s—1/kn
z+b, —As+B(x)
/ fo(s) / o dy| dsS, @41
z—by, —s—1/kn

where

1/kn T oo
C, = / [/ fon(y = S)fn,L(S)ds] dy. (42)

—1/k, L=oo

If b, <0, similarly to (41), it is obtained that

z+b, —s+1/kn
1
=g [ e [ famay|ds
" —00 —s—1/ky,
z—b, —s5+1/kn
/ for(8) / Fo()dy| dsb . (43)
T+bp, —As+B(z)
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probability density function ot 1:

—2—1/ky—bnp
Forn@) = for(@—bo) 4 fo (-+by) / Fo (0~
—x+1/kn+by
Fo@—b2) / Fon )y
1 r+b, )
i [ U O (s 4 B@)ds. (4
r—by,

The probability density functionf,, (z) is obtained by
applying the recurrence formula (46) times.

IV. INTERCEPTIONEXAMPLE

In this example, a planar engagement between two objects
(pursuer and evader) is considered. It is assumed that the
dynamics of each object is expressed by a first-order transfer
function with the time constants, and 7., respectively.
The velocitiesV,, and V., and the bounds of the lateral
acceleration commands,** and a¢'** of the objects are
constant. Subject to the assumption of small aspect aggles
andy., the engagement is modeled by the system (1), where
X is the relative separation between the objects, normal to
the initial line-of-sight; X, is the relative normal velocity;

X3 and X, are the lateral accelerations of the evader and
the pursuer, respectively; = ry/(V, + V.), wherer is the
initial range between the objects;

0 1 0 0
[0 0 1 —1
AD=10 0 —1fr. 0 | @D
00 0 —1/7
b(t) = (0,0,0,a2* /)", c(t) = (0,0,a™/7.,0)7,
(48)
f) =0, Xo=(0,X2,0,0)", Xa0 = Vepe(0)—Vpip(0).
(49)
WCE 2011
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The controls of the pursuew: and the evadew are the

various real-life control problems, and, especially, by the

normalized lateral acceleration commands, satisfying theerception problem, where validating robust transferring
constraints (2). The objective of the pursuer is to nullifgeterministic strategies in realistic stochastic environment is
the miss distanceX;(ts)|, i.e. in the target hyperplane,of a high practical importance.

d=(1,0,0,0)", dy = 0.
In the scalarized system (&) =t X20,

ha(t) = —=h(t; 7p, ap™),  ha(t) = h(t; 7e, a2*),

€

where h(t;7,a™) = 1a™>U((ty — t)/7), Y(E)
exp(—§) + & —1 > 0, ¢ > 0. The new state variable

(50)

The problem is mathematically nontrivial, because the
evaluation of the sum of two dependent random variables
is required. The solution is based on proper discretization of
some conditional probabilities. The resulting formula allows
to evaluate the final state distribution without carrying out a
great amount of Monte Carlo simulation runs.

is the well-known zero-effort miss distance [15]. The target
point is (t5,0).
The pursuer strategy is given by (5) with the gain functiorh]

K(t)=2/(t; —t)*. (51)

The scalar system was approximated by the discrete—tin{ze]
equation (7), wheré,, = Ath;(t,), At = 0.01 s. In this

example,ty =45, N = 400, 7, = 0.2 s, alf™ = 30 m/s’. (3]
It is assumed that the initial valug, and the estima-
tion errorsn, are gaussianzy ~ Gauss(0.5,0.1), n, ~ [4]

Gauss(pin,0,), n = 0,...,N — 1. The values ofu,, and
o, Were obtained from a realistic Monte Carlo simulation
with noisy line-of-sight measurements and an estimator is]
the control loop. The cumulative distribution function of the
miss distancezy | is calculated as

(6]

F“ZN|(‘T) = FZN ({L‘) - F, <_«T)7 (52)
whereF. (z) = / fan (E)dE. (7]
(8]

In Fig. 2, the cumulative distribution 9|, obtained by
2000 Monte Carlo runs of the discrete-time system (4) ando]
by using (52) based on (46), applidd0 times. It is seen
that two curves match very accurately.

[10]
B (z
lzn ]
:E’ | (11]
’/
0.8/ J ---Monte Carlo| | [12]
— Theoretic
0.61 J 1
/ [13]
0.4r /' 1 [14]
0.2’ 7 [15]
% 002 004 006 008,
Fig. 2. Simulative and theoretic distribution functions |efy |

V. CONCLUSIONS

The problem of evaluating the probability distribution of
the final state of a scalar discrete-time system is solved.
In this problem, it is assumed that the state information is
corrupted by an error with known distribution and the initial
state distribution is also known. The control is realized by
a saturated linear strategy. The formulation is motivated by
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