
 

 
Abstract—Efficient and effective supplier selection and order 

allocation are important issues to be considered for designing 
flexible and highly competitive supply chains which maximize 
the manufacturer’s total profit and ensure stable material 
flows.  This paper proposes a novel methodology for solving an 
integrated supplier selection and order allocation problem that 
arises in the design of a multi-product supply chain, with 
particular reference to the influence of customer flexibility. A 
new mixed integer programming model incorporating the 
characteristics of the problem is developed to assist the 
manufacturer in the decision making processes.  Due to the 
complexity and the NP-Hard nature of the proposed model, a 
novel hybrid algorithm based on the strengths of constraint 
programming (CP) and simulated annealing (SA) is developed 
to solve this challenging problem.  The performance of the 
proposed algorithm is tested with a set of randomly generated 
test problems. Comparison with the computational results 
obtained by ILOG OPL clearly shows that the hybrid algorithm 
can locate profit-effective solutions with less computational 
efforts.   
 

Index Terms—Constraint programming, customer flexibility, 
simulated annealing, supplier selection, order allocation 
 

I. INTRODUCTION 

ITH increasing product variety and escalating demand 
volatility, maintaining an efficient and flexible supply 

chain has become more critical for most enterprises. In 
addition, it has been observed that customers are often 
indifferent to certain product specifications and are often 
willing to accept less desirable products given certain price 
discounts [7]. This flexible customer behavior brings 
additional degree of freedom in promising customer orders 
and arranging available production resources. Indeed, the 
purpose of achieving high service level and low 
manufacturing cost in such dynamic supply chain 
environment imposes a major challenge in the order 
commitment process, which mainly consists of supplier 
selection and order allocation problems.  

In this connection, this paper takes a new perspective to 
tackle the challenge of matching various customer 
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requirements and available production resources in a 
multi-product supply chain by integrating customer 
flexibility into the order commitment process. The objective 
is to propose a novel methodology to assist the manufacturer 
in deciding the production quantities of all the product 
variants and the corresponding order allocations among 
selected suppliers. A new mathematic model in the form of a 
mixed integer programming (MIP) model is firstly developed 
to represent the basic characteristics of the research problem.  

Constraint programming (CP) [2] is a powerful 
programming technique for solving large combinatorial 
problems. Its success has been demonstrated in solving large 
scale problems such as job shop scheduling problems, graph 
coloring problems. By efficient propagation and 
backtracking methods, the search space can be drastically 
reduced and feasible solutions can be obtained very quickly. 
However, the capability of CP in locating the global optimal 
solutions is inferior as compared to other meta-heuristic 
algorithms, such as simulated annealing, genetic algorithms, 
etc.  

On the other hand, simulated annealing [6], a generic 
probabilistic meta-heuristic based on the manner in which 
liquids freeze or metals re-crystallize in the process of 
annealing, has been widely accepted and employed for global 
optimization problems due to its solution quality.  The major 
shortcoming of simulated annealing, however, is the huge 
computational time required due to lack of good initial 
solutions and to its sequential nature of slow annealing 
process within the large solution space.  

To solve the proposed problem, which is NP-hard by 
nature, a novel hybrid algorithm based on the strengths of 
both constraint programming technique and the simulated 
annealing algorithm is developed. A good feasible solution is 
firstly obtained quickly by constraint programming. Then 
simulated annealing is used to guide the search path to find 
the optimal solution. Unlike the traditional SA, in which the 
neighborhood solutions are obtained using local search 
methods, in the proposed hybrid algorithm, the neighborhood 
solutions are obtained using the constraint programming 
approach. The performance of the algorithm is further 
improved by memorizing the useful information which 
causes the infeasible solutions, thus reducing the solution 
space drastically.  

The rest of this paper is organized as follows: Section 2 
describes the problem scenario under investigation and 
presents the formulation of the mathematical model. The 
newly developed hybrid CP-SA algorithm is then detailed in 
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Section 3. Section 4 presents extensive computational results 
obtained from solving a set of randomly generated test 
problems and demonstrate the efficiency of the proposed 
hybrid algorithm. Finally, Section 5 concludes this research.  

 

II. PROBLEM STATEMENT AND MODEL FORMULATION 

A. Problem Statement 

Fig.1 describes the supply chain network under 
consideration.  
 

 
 

Fig.1 Supply chain network 
 

As shown in Fig.1, a manufacturer aims to meet different 
needs of customers by producing multiple families of 
products, with multiple product variants in each family. 
These product families share common and non-common 
modules, such as raw materials and parts. With limited 
capacity of suppliers, it is important to determine the supply 
quota among different supplier groups for manufacturing 
multiple products. The problem is further complicated by the 
multiple selection criteria for selecting suppliers such as: 
price, quality, on-time delivery and trust [3]. The objective of 
this paper is therefore to: 

1) Determine the production quantity of each product 
variant 

2) Select the most suitable suppliers based on the selection 
criteria and their capacity and split the orders among 
these suppliers  

3)  Maximize the manufacturer’s profit 

B. Model Formulation 

This section presents the development of a new mixed 
integer programming mathematical model describing the 
characteristics of the research problem. A manufacturer aims 
to produce n  families of products to satisfy the customer 
demands in a multiple period planning horizon. Each product 
family has nI  product variants (for example: different 
colors, sizes etc.) to cater for different customer 
requirements, and utilizes L  “AND modules” and K  “OR 
modules” provided by m  capacity-constrained suppliers. To 
characterize the product structure, a genetic-bill-of-material 
(GBOM) method (see [5]) is adopted.  

 
To facilitate the presentation, the notations are firstly listed 

as follows.  
Indices:  

k  OR module  

kS  number of options for OR module k  

ks  option s of module k  
l  AND module 

n product family 
nI  number of product variants in family n  

ni product variant i of family n  
m supplier 
 time period 
T number of all time periods  

 
 
Parameters:  

niksz 1 if ks  is used for product ni , 0 otherwise 
'
nlz  1 if l is used for product ni ,0 otherwise 

mksV  capacity of supplier m  for ks  in period  

mlG  capacity of supplier m  for l in period   

mks
  supplier m ’s selling price for ks  in period 

  

mlb   Supplier m ’s selling price for l  in period   
nQ   market demand for family n in period  

BOMnk  units of k needed to produce one unit of  final 
product variant in family n  

'BOMnl  units of l needed to produce one unit of final 
product variant in family n  

Fni  fixed cost for marking down the less 

desirable 

product ni  

niC   production cost for one unit of 
product ni  

niS  setup cost for one unit of product variant ni  

mB  supplier m ’s minimum budget in period   

mT    supplier m ’s trust level in period   

mO  transaction cost of supplier m in period  

1np  retail price for the ideal variant of family n  in 
period  

nip  retail price for the product ni  in period   

ksH  inventory holding cost for ks  
'
lH  inventory holding cost for l  

niHH  inventory holding cost for product ni  

md  late delivery days of m  in period   

niTP  unit tardiness penalty for product ni  per day 

QP  quality penalty for one unit of the modules 
per 

percent below 100% 

mksQL  quality level of ks  procured from m  in 
period   

'
mlQL  quality level of l  procured from m  in period 

  

mks
 1if m  is capable of providing ks  in period , 

0 otherwise 
'
ml
 1if m  is capable of providing l  in period , 

0 otherwise 
 
Continuous variables: 

niQ  quantity of product ni produced in period   

niA  quantity of product ni sold in period  
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mksx  order quantity of ks from m  in period  
'
mlx   order quantity of l from m  in period   

ksI         inventory level of ks in period  
'
lI   inventory level of l in period  

niII   inventory level of product ni in period  

 
Binary variables: 

mksy  1 if ks  is procured from supplier m  in period 
 , 0 otherwise 

'
mly   1 if l  is procured from supplier m  in period 

 , 0 otherwise 

mY   1 if supplier m  is selected in period  , 0 
otherwise 

ni
  1 if product ni  is produced in period  , 0 

otherwise 

ni
  1 if product ni  is sold in period  , 0 otherwise 

 
Mathematical model:  
Objective: 
Maximize:  Total profit = Total revenue - Total costs 

Total Revenue = 
1 1 1

nT N I

ni ni ni
n i

A p  




  
  

Total costs=
9

1

Costc
c
  

Cost1:   
Total purchasing cost of modules= 

1 1 1 1 1 1 1

kSM K T M L

mks mks ml ml
m k s m l

x x b   

 




      

   

Cost2:   
Total transaction cost with both the module suppliers = 

1 1

M

m m
m

O Y 





 
  

Cost3:   
Cost incurred by the efforts in promotion, advertising, to lure 

the customer to buy the products = 
1 1 1

nN I

ni ni ni
n i

Q F 






  
  

Cost4:   

Total quality penalty= 1 1 1 1

1 1 1

(1 )

(1 )

kSM K

mks mks
m k s

T M L

ml ml
m l

QP QL x

QP QL x

 



 





   

  

 

  




 

Cost5:   

Total tardiness penalty= 
1 1 1

nN I

ni ni
n i

TP PD






  

  , 

where 

   'max arg max ,arg max
m m

niks mks m nl ml m
d d

PD z y d z y d
 

    
     

 
 

Cost6:   
Total inventory holding cost for the modules = 

' '

1 1 1 1 1

kSK T L

ks ks l l
k s l

I H I H 

 



    

   

Cost7: 

Total inventory holding cost for the final products= 

1 1 1

nN I

ni ni
n i

II HH





  
  

Cost 8: 

Total production cost = 
1 1 1

nT N I

ni ni ni
n i

Q C 




  
  

Cost 9: 

Total production setup cost= 
1 1 1

nT N I

ni ni
n i

S




  
  

Subject to: 
0 ,   , , ,mks mksx V m k s                                                      (1) 

0 ,   , ,t t
ml mlx G m l t                                                           (2) 

1 1 1

, , , , ,
kSK L

mks mks ml ml m
k s l

x x b B m k s l     
  

                      

(3) 

1

1 1 1

,

, , , , , ,

nM N I

ks mks niks ni ni nk
m n i

I x z Q BOM

m k s n i

   

 



  

 

  

                               (4) 

1

1 1 1

, , , , ,
nM N I

ks mks niks ni ni nk
m n i

I x z Q BOM m k s n i   

  

    (5)

'( 1) ' ' '

1 1 1

,

, , , , ,

n

nl

M N I

l ml nl ni ni
m n i

I x z Q BOM

m l n i

   

 



  

 

  

  (6)

'( 1) ' ' '

1 1 1

, , , ,
nM N I

l ml nl ni ni nl
m n i

I x z Q BOM m l n i   

  

    (7) 

1

, , ,
nI

n
ni ni

i

A Q n i   


                                                            (8) 

1 , , ,ni ni niQ II A n i                                                               (9) 

1 1 1 1 1

, , ,
n nT I T I T

n
ni ni ni ni

i i

Q A Q n i    

  

  
    

                           (10) 

1 , , ,ni ni ni niII II Q A n i                                                     (11) 
0 0, 0, ,T
ni niII II n i                                                           (12) 

1 ( )ni n nip p u                                                                   (13) 

min(1, ), , , ,mks mksy x m k s                                                       (14) 
' 'min(1, ), , ,ml mly x m l                                                        (15) 

'min(1, ), , , , ,m mks mlY y y m k s l                        

(16)                                            
min(1, ), , ,ni niQ n i                                                         (17) 

min(1, ), , ,ni niA n i                                                       (18) 

0 , , , ,mks mksx M m k s                                                (19) 
' '0 , , ,ml mlx M m l                                                      (20) 

 
The objective function is to maximize the manufacturer’s 
total profit. Constraints (1) and (2) indicate that the suppliers 
have limited capacity for the OR and AND modules. 
Constraint (3) represents the lowest purchasing amount 
required by the suppliers. Constraints (4)-(7) imply the 
relationship between available resources and the production 
quantity of the final products over the planning horizon, i.e., 
BOM constraints. The demand satisfaction requirement and 
the relationship between the production and sale quantity of 
the final products are governed by constraints (8)-(10). 
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Constraints (11) and (12) ensure that the inventory balances 
the final products. Price discounts for the less desirable 
product variants with customer flexibility considerations are 
given in equation (13), where 1

t
np  is the retail price for the 

ideal product variant,  and   refer to price elasticity and 

utility elasticity, respectively. Constraints (14)-(18) govern 
that , , , ,t t t t t

mks ml m ni niy y Y    are 0,1  integer variables. 

Constraints (19) and (20) govern the procurement of modules 
from suppliers, where M is a large positive number.  
 

C. An Illustrative Example 

A simple numerical example is presented to illustrate how 
the proposed integrated supplier selection and order 
allocation problem can be formulated and applied in a 
multi-product supply chain.   
Consider a manufacturer who aims to produce two families 

of products to meet different customer needs. The customers 
have specifications regarding the shape, color and material 
used for the products.  
 

 

AND modules OR modules

Denotation:

Options of modules

PF1

L1

PF2

L1 K3K1 K2

K11

K12

K21

K22

K23

K2K1

K11

K12

K21

K22

K23

K31

K32

1 2

1

12

1
1

2111

 
Fig.2 GBOM for Two Product Families 

 
As shown in Fig.2, a three-level GBOM is used to depict 

the product structure of the product families. The maximum 
number of the OR modules in the lowest level is set to 3, as 
indexed by 1, 2, 3K K K . These modules embody the shape, 
color and material requirements of the specific modules, 
respectively. There is only one AND module ( 1L ) in the 
lowest level. The details of the three OR modules are given as 
below.  

 
Module 1K  Module 2K  Module 3K  

11:K rectangula
r 

21:K green 31:K plastics 

12 :K circular 22 :K yellow 32 :K steel 
 23 :K white  

 
   Hence, the total numbers of variants in each product 
families can be calculated as 2 3 , 2 3 2  , respectively.  
Using the proposed hybrid algorithm, the solutions to this 
example can be obtained as follows.  
 
Production quantities of product variants:  
In product family 1, only two variants are produced, i.e., 

1 1
11 1485, 48Q Q  , 

The product variants produced in family 2 are: 
1 1
22 2540, 57Q Q  . 

The production quantities of all the other variants are zero.  
 
Order quantity of OR and AND modules: 

 Supplier
1 

Supplier
2 

Supplier
3 

K11 267 0 0 
K12 0 96 0 
K21 73 100 0 
K22 0 0 0 
K23 0 0 57 
K31 0 54 50 
K32 0 0 80 
L1 200 0 63 

 

III. HYBRID ALGORITHM  

The problem described by the proposed mixed integer 
programming model is NP-hard, which needs to be solved by 
an efficient computational method. Hence, this section 
focuses on the development of a new hybrid algorithm based 
on the strengths of both constraint programming and 
simulated annealing.  

A. Notations  

The following notations are firstly listed to facilitate the 
presentation of the algorithm. 

 
t temperature iteration index  

( 0,1,..., _t max t ) 

dN  set of indices for all the product variants 

d  index for the product variants, dd N  

eN  Ne is the set of indices for all the feasible 
solutions in an iteration.  
Ne is also the Markov chain length of  
simulated annealing 

e index for a complete feasible solution, ee N  

_E Best  optimal solution among all the feasible 

sequences within an iteration (local optimum) 

_T Best  optimal solution among all the iterations 

 (global optimum) 

 

B. Basic Steps of the Hybrid CP-SA 

 
The basic procedures of the hybrid CP-SA algorithm are 

then outlined as follows.  
 
Step 1: Set t =0, set the initial temperature of simulated 

annealing as min max
0

0

Cost Cost

ln 
Tem

Pac


 , here 

minCost and maxCost are the minimum and maximum bounds 

of problem complexity, the initial acceptance probability 

0Pac is set very close to 1. The resulting high initial 

temperature provides a high degree of randomness and most 
of the movements are accepted in the initial stage. Set 0e  .  
 
Step 2: Select an input node d  (product variant) for 
constraint programming based on the retail price, 
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i.e., * arg max  (Price )
d

d
d N

d


 , set * 1d  . Generate the value of 

1
tQ  within the feasible range bounded by demand, capacity of 

raw materials. 
 
Step 3: Search for a complete feasible solution  
a) if dd N , then let 1d d  , use constraint 

programming algorithm to generate the value for t
dQ , reduce 

the search space.  
b) else if dd N , then one complete feasible solution 

 1 2, ,...,
d

t t t t
e Nq Q Q Q has been found. Initialize this solution 

as the current optimal solution. _ t
eE Best q , 1e e  .  

 
Step 4:  
Generate a neighborhood solution starts from 1d d   using 
the constraint programming algorithm. 
 
Step 5: Compare the two solutions using the proposed SA 
algorithm.  
a) if the neighborhood solution replaces the current optimal 

solution, i.e.,
exp( ( ) ( _ ))t

e

t

Fitness q Fitness E Best

Tem


 
 , 

where  is a real number randomly generated between 0 and 

1, then 1d d  ,generate another neighborhood solution 
starting from d using constraint programming approach, 

1e e  ; 
b) else if the neighborhood solution doesn’t replace the 
current optimal solution,  
then 1d d  , generate another neighborhood solution 
starting from d using constraint programming approach, 

1e e  . 
 
Step 6: If ee N , then repeat Step 5 until ee N , then let  

1t t  , update _T Best , then go to step 7.  

 
Step 7: Calculate the temperature of the new iteration, i.e., 

1t tTem Tem  , set  0e  . Here  is the cooling rate of the 

proposed simulated annealing algorithm, which belongs to 
(0,1). The cooling rate   is dependent on the variance 

(
1tTemVar ) of the objective function values provided by the 

feasible solutions at the temperature 1tTem  . The mean value 

and variance (
1tTemVar ) of the objective function values is 

calculated as follows:  

1

1
( )

| |t

t
Tem e

e Ne

Mean Fitness q
Ne

 

                                                                         

1 1

21
( ( ) )

| |t t

t
Tem e Tem

e Ne

Var Fitness q Mean
Ne 

 

   

The definition of [8] for cooling rate   is then applied: 

 
11

1

1 ln(1 ) / 3
tt TemTem Var







 

                                                                                    

where  is a control rate and experimentally determined as 
0.01. Repeat steps 2-5 until ee N .  

 

IV. TEST PROBLEMS AND COMPUTATION RESULTS 

A. Test Problems 

 The effectiveness of the proposed hybrid CP-SA 
algorithm is demonstrated by solving a set of randomly 
generated test problems and by comparing the results 
obtained with those obtained by using ILOG OPL.  

In the integrated supplier selection and order allocation 
problem for multi-product manufacturing, the number of 
product families considered ranges from 4 to 8. Each 
product family has a unique product structure depicted in 
its GBOM. The number of suppliers are randomly 
generated within the ranges [2,6]. The number of time 
periods is randomly generated within the range [1,6]. 20 
test problems are used in the experiments.  

 
The algorithm is programmed in C++ and run on a 

Pentium IV 3.2 GHz computer with 512M Ram.  
 

B.  Computation Results and Discussions 

       Figure 3 shows the convergence behavior of the 
proposed hybrid CP-SA algorithm when the iteration number 
ranges from 10 to 100 and the values for 0Pac and eN are 

determined as 0.99 and 60, respectively.  
              

 
Fig 3. Average objective values in different iterations 

 
 

  Table 1 summarizes the best and the average of the best 
solutions obtained by running the proposed hybrid algorithm 
5 times. The average computation times needed to achieve 
the best solutions are also included.   
 
  The results in the table 1 show that, the proposed hybrid 
CP-SA algorithm can locate near-optimal solution obtained 
by ILOG OPL with less computation cost. For small and 
middle scale problems, the differences are within 0.8% and 
1.5% as compared to the optimal solutions obtained by ILOG 
OPL, respectively. For large scale cases, the hybrid algorithm 
can find better solutions (bold numbers) with less 
computational cost. The “---“indicates there is no solution 
found after running ILOG for the times listed in the table. 
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Table 1 Computation Results  
No 
 

CP-SA ILOG 
avg best time solution time 

1 6230942 6253590 0.16s 6297116 0.38s 
2 865834 878028 0.27s 878439 0.48s 
3 811032 816235 0.35s 821093 0.52s 
4 1089033 1089037 0.45s 1089733 0.82s 
5 544283 544611 0.66s 545163 1.04s 
6 1198525 1204146 0.75s 1216688 1.61s 
7 1403233 1409490 0.95s 1433080 1.82s 
8 1422288 1426626 0.92s 1481515 2.58s 
9 592299 592369 1.10s 597152 2.88s 
10 2369706 2557677 1.25s 2557999 3.09s 
11 1352883 1353818 1.33s 1380407 3.72s 
12 17278360 17301138 5.35s 17467460 13.9s 
13 1352883 1380142 6.35s 1389411 17.3s 
14 1710104 1714143 8.00s 1738481 24.3s 
15 1531070 1542378 20.3s 1558840 44.5s 
16 1779720 1808741 15.5s --- 160s 
17 2165533 2184312 16.2s --- 200s 
18 1556391 1558840 30.0s --- 300s 
19 934288 937744 35.0s --- 360s 
20 1271565 1284232 60.0s --- 400s 
 
    

V. CONCLUSIONS 

In this paper, a novel mixed integer programming model 
has been formulated for solving the integrated supplier 
selection and order allocation problem that occurs in the 
design of a multi-product supply chain operating under a 
multi-period manufacturing scenario. A new hybrid CP-SA 
algorithm has also been developed by combining the 
strengths of both constraint programming and simulated 
annealing for solving this complex problem. In the hybrid 
algorithm, CP has been used to generate the initial feasible 
solution and SA has been used to guide the search path. 
Unlike traditional SA, CP has been used to generate the 
neighborhood solutions for SA. Useful information obtained 
from CP helps to reduce the search space. The proposed 
algorithm has been tested with a set of randomly generated 
test problems. Indeed, the proposed methodology has been 
shown to be efficient and effective for making optimal 
decisions on supplier selection and order allocation. 
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