
 

 
Abstract—Existing Block Backward Differentiation 

Formulae (BBDF) of different orders are collected based on 
their competency and accuracy in solving stiff ordinary 
differential equations (ODEs). The strategy to fully utilize the 
formulae is optimized using variable step variable order 
approach. The improved performances in terms of accuracy 
and computation time are presented in the numerical results 
with different sets of test problems. The comparison is made 
between the proposed method and MATLAB’s suite of 
ordinary differential equations (ODEs) solvers namely ode15s 
and ode23s. 
 

Index Terms— Numerical Analysis, Initial Value Problem, 
Ordinary Differential Equations, Stiff ODEs, BBDF methods  
 

I. INTRODUCTION 

OTIVATED by applied problems arise from physical, 
biological and physical phenomenon, there are 

numbers of researches commenced to devise effective and 
very accurate methods to solve stiff ODEs [1]. Gear’s 
method which is associated with backward differentiation 
formula (BDF) in [2] has presented promising results in 
certain point of comparison. Some popular codes based on 
BDF include LSODE and VODE. The most recent code 
associated with BDF is called MEBDF presented in [3] has 
also discussed its performance on a large set of stiff tests 
problems. Because of a broad class of problems occurred in 
applied sciences [4]-[7], the methods are developed giving 
rigorous results in terms of accuracy and computation time.  

The study of numerical methods for solving stiff initial 
value problems for ODEs is said to have reached a certain 
maturity. Many in recent papers have tried to describe and 
compare some of the best codes available [8]. Because of 
that, there now exist some excellent codes which are both 
efficient and reliable for solving these particular classes of 
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problems. A crucial component in developing an efficient 
ODE solver is by taking into accounts their accuracy, rate of 
convergence, and computation time. This is of great 
importance in situation example in astronomy, when long-
term, very accurate and reliable numerical solution is 
sought. 

The study on BBDF was first introduced in [9] 
demonstrates the competency of computing concurrent 
solution values at different points. Consequently, study in 
[10] is extended in a way that the accuracy is improved by 
increasing the order of the method up to order 5 [11]. Thus, 
BBDF of order 3 to 5 are collected and we introduce 
variable step variable order approach to its strategy in 
choosing the stepsize. We are interested to compare the 
numerical results obtained with stiff ODEs solvers available 
in Matlab; ODE15s and ODE23s. 

The problems considered in this paper are for the 
numerical solution of the initial value problem, 

 

                         ),( yxfy                                (1) 

 

with given initial values 0)( yay   in the given interval 

],[ bax .  

 

II. DERIVATION OF EXTENDED BLOCK BACKWARD 

DIFFERENTIATION FORMULAE METHOD 

A. Construction of Extended Block Backward 
Differentiation Formulae method 

 
 

 

Fig 1. Extended BBDF method of order (P3-P5) 

 

Numerical Solution of Extended Block 
Backward Differentiation Formulae for Solving 

Stiff ODEs 

S. A. M. Yatim, Z. B. Ibrahim, K.I. Othman and M. B. Suleiman 

M

Proceedings of the World Congress on Engineering 2012 Vol I 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19251-3-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



 

Two values of 1ny  and 2ny  were computed 
simultaneously in block by using earlier blocks with each 
block containing a maximum of two points (Fig 1). The 
orders of the method (P3, P4 and P5) are distinguished by 
the number of backvalues contained in total blocks. The 
ratio distance between current ( nx ) and previous step ( 1nx ) 
is represented as r and q in Fig 1. In this paper, the step size 
is given selection to decrease to half of the previous steps, 
or increase up to a factor of 1.9. For simplicity, q is 
assigned as 1, 2 and 10/19 for the case of constant, halving 
and increasing the step size respectively. The zero stability 
is achieved for each of these cases and explained in the next 
section. 

We find approximating polynomials )(xPk , by means of 

a k-degree polynomial interpolating the values of y at given 
points are )( 3,3  nn yx , )( 2,2  nn yx , )( 1,1  nn yx …, 

),( 22  nn yx .  
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The interpolating polynomial of the function )(xy  using 
Lagrange polynomial in (2) gives the following corrector for 
the first point p

ny 1 , and second point p
ny 2  . The resulting 

Lagrange polynomial for each order was given as follows: 
 

For Extended BBDF of order P3 ( 3P ) 
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For Extended BBDF of order P4 ( 4P ) 
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For Extended BBDF of order P5 ( 5P ) 
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By substituting 0s  and 1s  gives the corrector for 
the first and second point respectively. Therefore by letting 

1,1  qr , 2,2  qr and 19/10,1  qr we produced 

the following equations for the first and second point of 
Extended BBDF. 

 
Extended BBDF of order P3 ( 3P ) 
When 1,1  qr  
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Extended BBDF of order P4 ( 4P  ) 
When 1,1  qr  
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When 19/10,1  qr  
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Extended BBDF of order P5 ( 5P  ) 
When 1,1  qr  
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 When 2,2  qr  
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When 19/10,1  qr  
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As similar to analysis for order of Linear Multistep 

Method (LMM) given in [12], we use the following 
definition to determine the order of Extended BBDF 
method. 
 
Definition 3.1 
The LMM [12] and the associated difference operator L 
defined by 
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Consequently, BBDF method can be represented in standard 
form by an equation 
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Since Extended BBDF for variable order ( P ) is a block 
method, we extend the definition 3.2 in the form of 
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And the general form for the constant qC is defined as 
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kA is equal to the coefficients of ky where 

2,1),...,2(  nnPnk  and 5,4,3P . 

Throughout this section, we illustrate the effect of 
Newton-type scheme which in general form of 
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The general form of Extended BBDF method is 
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with  and  are the back values. By setting , 











10

01
I , 















2

1
2,1

n

n
nn y

y
y , , 











2

1

0

0




B , 














2

1
2,1

n

n
nn f

f
F , and 1

1, 2
2

n n




 
 

  
 

 

Equation (11) in matrix-vector form is equivalent to 
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Equation (12) is simplified as 
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Newton iteration is performed to the 

system 0ˆ
2,1  nnf , by taking the analogous form of (10) 
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 , is the Jacobian matrix of 

F  with respect to Y .  Equation (10) is separated to three 
different matrices denoted as 
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Two-stage Newton iteration works to find the 

approximating solution to (1) with two simplified strategies 
based on evaluating the Jacobian ( 2,1  nnJ ) and LU 

factorization of Â [12].  
 

B. Order and stepsize selection 

The importance of choosing the step size is to achieve 
reduction in computation time and number of iterations. 
Meanwhile changing the order of the method is designed for 
finding the best approximation. Strategies proposed in [13] 
are applied in this study for choosing the step size and 
order. The strategy is to estimate the maximum step size for 
the following step. Methods of order P-1, P, P+1 are 
selected depending on the occurrence of every successful 
step. Consequently, the new step size hnew is obtained from 
which order produces the maximum step size. 

The user initially will have to provide an error tolerance 
limit, TOL on any given step and obtain the local truncation 
error (LTE) for each iteration.  The LTE is obtained from 
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Where hold is the stepsize from previous block and hmax is 
obtained from the maximum stepsize given in above 
equations. 
 

The successful step is dependent on the condition 
LTE<TOL. If this condition fails, the values of 2,1  nn yy  

are rejected, and the current step is reiterated with step size 
selection )2( q . On the contrary, the step size increment 

for each successful step is defined as 

maxhchnew   and if 

oldnew hh  9.1  then oldnew hh  9.1  

where c  is the safety factor, p  is the order of the method 
while oldh and newh is the step size from previous and 
current block respectively. In this paper, c  is set to be 0.8 
so as to make sure the rejected step is being reduced. 

III. NUMERICAL RESULTS 

We carry out numerical experiments to compare the 
performance of Extended BBDF method with stiff ODE 
solvers in MATLAB mentioned earlier. These test problems 
are performed under different conditions of error tolerances 
–   (a) 10-2, (b) 10-4 and, (c) 10-6  

 
The test problems and solution are listed below  
Problem 1 

' 100( ) 1y y x   
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With solution:   
100( ) xy x e x   
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' 2
1 11002 1000y y y  

  1(0) 1y 
  

0 10x   

'
2 1 2 2(1 )y y y y  

  2 (0) 0y   

With solution:     
2

1
xy e   

2
xy e  

The abbreviations used in the following tables and figures 
are listed below: 
TS   :  the total number of steps taken 
TOL   : the initial value for the local error estimate 
MAXE  : the maximum error 
AVEE  : the average error 
MTD  : the method used 
TIME  : the total execution time (seconds) 

 
TABLE I 

NUMERICAL RESULTS FOR PROBLEM (1). 

TOL MTD TS AVEE MAXE TIME 

10-2 Extended 
BBDF 

21 2.9370e
-005 

2.8298e-
004 

0.0103 

ode15s 28 1.3000e
-003 

8.4000e-
003 

0.0313 

ode23s 19 1.0000e
-003 

4.5000e-
003 

0.1406 

10-4 Extended 
BBDF 

48 1.0716e
-006 

3.2212e-
006 

0.0105 

ode15s 60 3.0358e
-005 

1.6621e-
004 

0.0156 

ode32s 42 1.1285e
-004 

2.5683e-
004 

0.0313 

10-6 Extended 
BBDF 

16
4 

1.6733e
-008 

3.1232e-
008 

0.0115 

ode15s 10
0 

7.2564e
-007 

2.7506e-
006 

0.0313 

ode23s 14
3 

7.3558e
-006 

1.2514e-
005 

0.0469 

 
This paper considers the comparison of four different 

factors namely number of steps taken, average error, 
maximum error and computation time. From Table 1, 
among the three methods tested, our method, Extended 
BBDF method requires the shortest execution time, smallest 
maximum error and average error for each given tolerance 
level.  
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TABLE II 
NUMERICAL RESULTS FOR PROBLEM (2). 

TOL MTD TS AVEE MAXE TIME 

10-2 Extended 
BBDF 

22 7.1459e
-005 

2.5736e-
004 

0.0106 

ode15s 29 9.0287e
-004 

5.2000e-
003 

0.0781 

ode23s 25 3.3626e
-004 

1.1000e-
003 

0.0781 

10-4 Extended 
BBDF 

54 7.4173e
-006 

3.7659e-
004 

0.0111 

ode15s 55 1.7139e
-005 

8.5506e-
005 

0.1250 

ode32s 11
8 

1.3783e
-005 

6.9774e-
005 

0.2031 

10-6 Extended 
BBDF 

19
4 

6.3429e
-009 

3.2882e-
008 

0.0143 

ode15s 19
7 

2.1320e
-007 

1.0790e-
006 

0.2344 

ode23s 77
3 

3.3163e
-007 

2.8081e-
006 

0.4531 

 
Again by comparing four factors mentioned earlier, we 

can see Extended BBDF in Table 2 gives the least value of 
maximum error for every tolerance level except for TOL 
10e-4. However, our method prevails in terms of average 
error for each given tolerance level. Extended BBDF once 
again requires the shortest execution time for each given 
tolerance level.  

IV. CONCLUSION 

The objective is met when Extended BBDF method 
outperformed ode15s and ode23s in term of average error as 
well as maximum error. In most of the cases, Extended 
BBDF has successfully managed to reduce the number of 
total steps taken. As for the computation time wise, it gave 
lesser values for all cases. Therefore, we can conclude that 
Extended BBDF can serve as an alternative solver for 
solving stiff ordinary differential equations. 
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