

Abstract— The role of hardware description languages

(HDLs) in a current digital systems development process is

essential. Their great contribution is undeniable, but they also

bring about several disadvantages. The textual form of HDL

models is less illustrative for a novice designer than a

schematic representation of the model structure. Next, the

simulation of such models is most commonly displayed in a

waveform representation, even though sufficient for

verification, but hard-to-identify design errors. In this paper,

we present our progress in developing a visualization

environment, which is able to display the simulation results in

the structural sphere of the model, allowing the designer to

switch between individual hierarchic levels of the structure

and watching the signal changes directly in a verified

component.

Index Terms— digital system, hardware design, simulation

results visualization, model verification

I. INTRODUCTION

HE standardization of VHDL (Very-High-Speed

Integrated Circuits HDL) in 1987 initiated the massive

development of supporting EDA (Electronic Design

Automation) tools. The HDLs in general brought a lot of

significant advantages into the digital system design

process including clearer design with fewer mistakes,

verification by simulation in early stages, and technology

independence. However, HDLs brought about some

disadvantages as well. The textual form of the structural

HDL model is less illustrative for human being than a

schematic representation. In a graphical representation, it is

usually easier to detect the possible design errors – such as

incorrect ports interconnection, or the inappropriate

component usage. Consequently, many of the complex HDL

design development environments support the conversion of

an HDL model to its schematic representation (see Table I).

However, for simulation-based design verification a

waveform representation of simulation results is the only

one available in most of these tools. Although, this

representation has a high verification power, especially the

Manuscript received March 22, 2012; revised April 11, 2012. This work

was supported in part by the Slovak Science Grant Agency (VEGA 1/1008/12

“Optimization of low-power design of digital and mixed integrated systems“).

D. Macko is with the Faculty of Informatics and Information

Technologies, Slovak University of Technology in Bratislava, Ilkovičova 3,

842 16 Bratislava, Slovakia (corresponding author e-mail:

macko@fiit.stuba.sk).

K. Jelemenská is with the Faculty of Informatics and Information

Technologies, Slovak University of Technology in Bratislava, Ilkovičova 3,

842 16 Bratislava, Slovakia (e-mail: jelemenska@fiit.stuba.sk).

inexperienced designers find it hard-to-read and difficult to

reveal the potential errors.

These problems could be addressed by a tool that can

display the simulation results directly in the schematic

representation of an HDL model, and at the same time

provides the possibility to move among the levels of the

hierarchy. If the designer could observe the data flow

through the individual components of the design, the model

verification would be simple and more effective.

The comparative analysis of several currently available

related tools is summarized in Table I. The simple

controllability was evaluated based on the intuitiveness of

the environment. The commercial property is based on the

price of the tool – free of charge or not. Other aspects

concern the supported functionality of the analyzed tools.

Based on the analysis, several possibilities of simulation

flow visualization are offered. Connection color based

logical value display is used in most of the logic circuit

simulators (e.g. LOGiX [11]). Another possibility is to

change a color of the port itself (used in TINA Design Suite

[8]). These two possibilities work perfectly for one-bit

signals, but when transmitting multi-bit signals one

connection/port color cannot represent the logic value of

multiple bits. However, these possibilities cannot be

resolutely refused, because if each signal bit is transmitted

through separate connection/port, this problem would be

solved. In HDL simulator ModelSim [5] a connection label

is used for displaying the signal value which is working

well for multi-bit signals as well. A combination of the

mentioned methods to display the simulation results have

been used in [12] but only SystemC language is supported

by this tool. What is more, the analyzed commercial tools

are very complex and quite expensive to be used by

beginners. Therefore, a simpler, intuitive and affordably

priced tool is needed especially for education and novice

designers.

In this paper, we present several extensions to the HDL

design visualization environment, called VHDLVisualizer.

The paper is organized as follows. In the section II, the

requirements for the developing environment (resulting

from analysis of several existing tools) are described. The

next one describes some of the important design partial

problems and finally, a simple example is shown before

conclusion.

II. VHDLVISUALIZER DESIGN

The developing environment should take the model

HDL Model Verification Based on Visualization

and Simulation

Dominik Macko, and Katarína Jelemenská, Member, IAENG

T

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

structure description in VHDL format as an input and

transform it into its schematic structure representation. The

individual hierarchical levels should have separated views.

Visualized objects layout modification at the selected level

of hierarchy should be enabled, but the function of the

model cannot change. The environment should offer

simulation of the entity representing the selected level of

hierarchy – either test-bench entity (top entity) or another

lower level entity. The simulation results should be

displayed in the visualized model structure. Export of the

currently displayed entity architecture into an image format

should be possible. The tool should also enable saving the

modified layout into a file for further usage. The user

interface has to be simple and intuitive, offering just

enough functionality to serve the mentioned purposes, in

order to have an advantage over existing complex

environments.

 To visualize and simulate the VHDL model, it has to be

syntactically analyzed first. The context-free parser then

transforms the VHDL description into an intermediate

format. The parser generator ANTLRv3 (ANother Tool for

Language Recognition) [20] was selected for analyzing the

VHDL model. The VHDL analysis is based on the input

grammar and the parser generator generates a group of

classes (in C# or other selected programming language). It

brings an advantage of supporting different HDLs. For

further use of the analyzed VHDL description it is suitable

to create an object model that will keep the hierarchical

structure of the VHDL model.

Intermediate representation of the VHDL model,

visualization, simulation and simulation results

visualization of the extended VHDLVisualizer are shortly

described below.

A. Intermediate Representation of VHDL Model

The analyzed information can be saved to an

intermediate representation, suitable for visualization. An

XML (eXtensible Markup Language) representation has the

appropriate properties for this purpose since it can preserve

the hierarchical structure. The XML representation is

widely used and allows easy analyzing of the contained

information. The similar approaches were used in [15] and

[21]. In terms of visualization, there are 3 types of objects

defined in the XML file: Entity instance, Port, and

Connection.

The entity instance is the only object in visualization that

can have its own structure representing the lower level of

hierarchy. For each entity instance, the following

parameters are extracted from the VHDL description:

Entity instance name, Entity declaration name,

Architecture name, and Ports list.

The port illustrates the interface by means of which the

entity instance in the real design communicates with the

other ports. Each port has the following parameters: Port

name, Port mode, Port type and Port value – the formula to

obtain port value in case of the lowest level entity instance

output port.

TABLE I

COMPARATIVE ANALYSIS OF THE TOOLS SUPPORTING MODEL STRUCTURE AND/OR SIMULATION VISUALIZATION

Tool (Author)

si
m

p
le

 c
o

n
tr

o
l

m
o

d
e
l

st
r
u

c
tu

r
e

v
is

u
a

li
z
a

ti
o

n

si
m

u
la

ti
o

n

si
m

u
la

ti
o

n

v
is

u
a

li
z
a

ti
o

n
 i

n
 t

h
e

st
r
u

c
tu

r
e
 d

is
p

la
y

in
te

r
a

c
ti

v
e

si
m

u
la

ti
o

n

h
ie

r
a

r
c
h

ic

st
r
u

c
tu

r
e

si
m

u
la

ti
o

n
 f

lo
w

d
is

p
la

y

c
o

m
m

e
r
c
ia

l

HDL Author (Mentor Graphics) [1] yes yes no no no yes no yes

HDL Designer (Mentor Graphics) [2] no yes no no no yes no yes

Leonardo Spectrum (Mentor Graphics) [3] yes yes no no no yes no yes

Visual Elite HDL (Mentor Graphics) [4] yes yes no no no yes no yes

ModelSim (Mentor Graphics) [5] no yes yes yes no yes waveform, connection label yes

Active-HDL (Aldec, Inc.) [6] no yes yes no no yes waveform yes

EASE (HDL Works) [7] no yes no no no yes no yes

TINA Design Suite (DesignSoft, Inc.) [8] no yes yes yes yes yes waveform, port color yes

DirectVHDL (Green Mount. Comp. Sys., Inc.) [9] yes no yes no no yes waveform yes

VHDL Simili (Symphony EDA) [10] yes no yes no no yes waveform yes

LOGiX (CommTec Soft. Eng.) [11] yes yes yes yes only no connection color yes

SystemC + Visualizer (Turoň) [12] no yes yes yes no yes connection color and label, port label no

HDL Visualizator (Nosáľ) [13] yes yes yes no no yes waveform no

VHDL Visualizator (Zubal) [14] yes yes no no no yes no no

VHDL Visualizer (Petráš, Macko) [15, 16] yes yes no no no yes no no

FreeHDL (The FreeHDL Project) [17] yes no yes no no no waveform no

GHDL (Gingold)[18] yes no yes no no no no no

GTKWave [19] yes no no no no yes waveform no

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

The connection joins two ports and presents their ability

to communicate to each other by means of sending signals.

The connections list of an entity instance includes the

interconnections of its lower level structure. Each

connection has the following main parameters: Connection

name, Source port name and entity instance name,

Destination port name and entity instance name, Source

port range name, and Destination port range name.

To preserve the hierarchical structure of the original

VHDL description for visualization purpose, it is sufficient

to keep the information about the architectures in the

VHDL description, along with their ports, connections and

the entity instances inside. However, in order to simulate

the model, we need to capture the behavior of the lowest

level entities. For each output port of the entity describing

behavior the formula for getting the output value is

extracted and saved as a property of that port in the XML

representation. Four types of main nodes have been defined

in the proposed XML schema (see Fig. 1): Architecture

(structure/behavior), Port, Entity instance, and Connection.

The information in such an XML representation is an input

to the visualization part.

B. Visualization of XML Representation

The architecture in the XML file represents one

hierarchical level. In fact, it is an entity instance at the

upper hierarchical level. Its description includes the ports of

the given entity instance (upper level ports), the entity

instances of the given level, their ports, and the

interconnections among the ports. To visualize the data it is

necessary to design graphical representation of each object

of the architecture.

1) Entity Instance

An entity instance is visualized as “black box”, which

functionality is not known. It is represented by a rectangle

(see Fig. 2a), displaying the entity name, the name of the

respective instance, and the input and output ports.

2) Port

A port can be specified in modes: in, out, inout, buffer, or

linkage. According to the port mode, the shape of port is

drawn (see Fig. 2b). The direction of the port shape (arrow)

symbolizes the direction of the data flow. The ports can

belong directly to an entity instance. In that case, they allow

the entity instance to communicate with other instances. If

the port does not belong to any instance, it represents input

from or output to the upper level of hierarchy. It is also

necessary to consider the special ports, which can represent

the constant value sources or the globally defined signals.

3) Connection

A connection is represented as a line, which

interconnects two ports (see Fig. 3a). In case of connection

among the ports of internal instances, the signal name is

displayed as well. The connections can pass from one port

to several ports or vice-versa and can be single or multi-

bits. Therefore branching and splitting of the connection

has to be defined as well. The connection branching is the

case when the same signal passes to several ports (see

Fig. 3b). The connection splitting/joining is the case when

the multi-bit signal splits into several one-bit signals (see

Fig. 3c), or several one-bit signals join into one multi-bit

signal (see Fig. 3d).

4) Behavior architecture

For the architectures describing behavior of an entity

instead of a structure, the visual difference has to be

obvious. Therefore, in case an entity instance of the lowest

level is selected, an object with no instance name and no

entity name will be displayed (see Fig. 4).

Fig. 2. The graphical representation of (a) an entity instance; (b) a port – it

dependents on the port mode.

Fig. 1. Proposed XML representation schema

Fig. 4. The graphical representation of a behavioral description.

Fig. 3. The graphical representation of (a) connection, (b) branching, (c)

splitting, and (d) joining.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

C. Objects Layout Algorithm

For structural model visualization a layout optimization

algorithm is used that positions the entities in two rows,

sequentially, according to their occurrence in the VHDL

source code. The entities are drawn in the order up down

and left to right.

In the displayed hierarchical level, the ports are divided

into external and internal. The internal ports are situated

inside the entity instances and automatically aligned to the

instance borders. The input ports are situated on the left

hand side and the rest on the right hand side. The external

ports belong to the upper level entity. They are displayed

near the left and right border of the display surface and

aligned to the connections position.

All the connections are positioned into a so called virtual

bus located between the entities rows. Each connection has

its own part of virtual bus reserved which ensures that the

connections will not overlap in horizontal direction,

therefore it is not necessary to check up on it allowing thus

an algorithm speed-up. However, the vertical parts of the

connections are checked up for overlapping. If there is an

overlap, the connection is shifted.

D. VHDL Model Simulation

There are two ways to simulate a visualized VHDL

model. The designed internal simulator allows the

interactive simulation, where the designer can set up the

input ports values for the selected hierarchical level. The

values are spread through the design hierarchy, and

subsequently the output ports values are calculated using

the VHDL behavioral description loaded from the XML

representation. When simulating test-bench entity, the

input ports values are loaded also from XML. For the

chosen simulation time, all the changes that should occur

till that time are executed. The results of simulation are

displayed directly in the schematic view.

Another designed possibility is to simulate the VHDL

model using an external simulator that will provide the

simulation results to the VHDLVisualizer. The GHDL

(Gcc-based HDL) simulator [18] was chosen for this

purpose due to a sufficient functionality and non-

commercial characteristics (to preserve non-commercial use

of VHDLVisualizer). This simulator enables to check the

VHDL code syntax, to analyze it and to run the simulation

saving the simulation results into the standardized VCD

(Value Change Dump) format [22] for which we developed

an analyzer. After the simulation is finished, the results are

loaded from the generated temporary VCD file. Thus, for

the visualized hierarchical level it is possible to display the

value of the chosen port at the selected time. In the case

lower level entity (not test-bench entity) is simulated using

the external simulator, it is necessary to generate a new

test-bench entity. In the architecture of this new entity, the

values set up by the designer are assigned to the input ports.

In this way it is possible to run interactive simulation using

the external simulator as well. With a small modification of

the VHDLVisualizer source code it is possible to use

another external simulator generating simulation results in

the VCD format.

The internal simulator is suitable mostly for the logic

gate level design interactive simulation of combinatorial

circuits, but it handles also the test-bench entity simulation

in this level of abstraction. The external simulator is

suitable mostly for the test-bench entity simulation. It

handles both the combinatorial and sequential digital

systems designs in any level of abstraction. However, it has

several restrictions described in [18]. Both simulators have

limitations concerning the VHDL support, so their

combination helps to increase this support.

E. Simulation Flow Visualization

Based on the analysis of available solutions summarized

in the Introduction, we decided to display the simulation

flow by means of connections labelling. Moreover, the

colour of the label changes when the signal state alters to

improve the visibility. We compared this solution to the one

where the signal value is represented by a connection

colour, or a port colour. But the other possibilities had

problem with the multi-bit signal displaying.

In complex architectures, where a large amount of

connections is displayed, the preferred solution would not

be clear enough, because the designer would have to search

the connection (which might be quite long) that is

connected to the monitored port in order to determine the

signal value placed above it. For the designer it is more

useful to see the signals’ values at an entity instance inputs

and outputs. Therefore, the simulation results are displayed

in the labels belonging not to the connection itself, but to

the ports. The labels are located above the connections, but

close to the ports. The signal value actually replaces the

number of bits (see Fig. 3) which is not necessary to display

any longer since it is evident from the signal value.

The simulation results can also be displayed in the

commonly used waveform. For this purpose the external

tool GTKWave (GTK+-based Wave viewer) [19] is used.

This tool reads data from the VCD file and displays the

simulation results in a waveform. This form of simulation

results visualization is an additional one, which can be used

when needed. The internal simulator does not generate the

VCD file, so the waveform visualization is only possible for

the external simulation.

The internal visualization module enables to also show

the three nearest signal values of the mouse-hovered port at

the selected time-point. It is displayed in the form of waves,

but only the previous, current and following values are

shown (see Fig. 5).

III. VHDLVISUALIZER EVALUATION

The visualization environment VHDLVizualizer was

designed for Microsoft Windows operating system with the

component of .NET Framework 3.5. Regarding the

Fig. 5. The three nearest signal value changes of the port c in the time-point

between 15 ns and 20 ns.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

hardware requirements, it only needs a small amount of

hard disc space (2 MB), but requires higher computing

power for simulation purpose (at least 500 MHz CPU and

256 MB RAM). The visualization environment has been

tested using a set of VHDL models designed in the frame of

school assignments that represent different designs of the

combinational and sequential circuits with one and multi-

bit signals. Thus VHDLVizualizer was evaluated in

education process at the Slovak University of Technology

but it can be used also for designers as a helpful tool for

verification.

As an illustrative example we took VHDL structural

description of a simple one-bit full adder. This description

was analyzed, translated into XML representation and

visualized using our tool. A fragment of the XML

representation corresponding to the instance “ha1” and port

“s” is shown in Fig. 6. It contains information about the

location, size and names of the objects. Fig. 7 illustrates the

simulation visualization in VHDLVisualizer for this adder.

In this case the interactive mode based on the internal

simulation module was used.

IV. CONCLUSION

The paper is devoted to the problem of visualization and

simulation of digital system models described in VHDL.

The core of the paper forms the design and implementation

of the tool usable in digital systems design process. For a

human being, the graphical representation of the structural

model, generated by this tool, is more understandable and

easier and faster to detect the errors made during the VHDL

structural model creation. The VHDL model visualization

is useful not only for verification purposes, but also for

design documentation. Using the graphic schematics of the

designed model in the documentation, other developers

would easier and faster understand the design structure.

The proposed and implemented environment includes two

kinds of simulation – interactive and simulation based on a

test-bench entity. For simulation results visualization in the

schematic representation the solution possibility and

algorithm were chosen and integrated into the

VHDLVisualizer which bring the simplest, fastest, the most

definite and the illustrative presentation of the simulation

flow. The traditional waveform representation was added as

well to allow for dual representation.

Due to the unusual simulation and its visualization, this

environment becomes a strong design and verification tool.

The VHDLVisualizer nature makes it especially suitable for

beginners in VHDL design - therefore education is the most

natural area of application. However, it can become the

useful verification tool for simple professional designs as

well.

The tool is ready to be extended for other HDLs support

such as Verilog and SystemC. Another possible extension is

elimination of restrictions in the support of VHDL

constructions, or object layout algorithm optimization.

These extensions represent our further effort and future

work.

REFERENCES

[1] Mentor Graphics, “HDL Author – Manage Design Data and Flows,”

Mentor Graphics's products, Online, January 2012.

www.mentor.com/products/fpga/hdl_design/hdl_author

[2] Mentor Graphics, “HDL Designer,” Mentor Graphics's products,

Online, January 2012.

www.mentor.com/products/fpga/hdl_design/hdl_designer_series

[3] Mentor Graphics, “Leonardo Spectrum,” Mentor Graphics's products,

Online, January 2012.

www.mentor.com/products/fpga/synthesis/leonardo_spectrum

[4] Mentor Graphics, “Continuous design flow from TLM to RTL - Visual

Elite HDL,“ Mentor Graphics's products, Online, December 2011.

http://www.mentor.com/products/fpga/hdl_design/visual-elite-hdl

[5] Mentor Graphics, “ModelSim,” Mentor Graphics's products, Online,

December 2011.

http://www.mentor.com/products/fpga/simulation/modelsim

[6] Aldec, Inc., “Active-HDL,” Aldec's products, Online, December 2011.

http://www.aldec.com/products/active-hdl/

[7] HDL Works, “EASE Graphical HDL Entry,” HDL Works's products,

Online, January 2012. www.hdlworks.com/products/ease/index.html

[8] DesignSoft, “Analog, digital, symbolic, RF, VHDL, MCU and mixed-

mode circuit simulation & PCB design,” Tina Design Suite, Online,

December 2011. http://www.tina.com/English/tina/start.php

[9] Green Mountain Computing Systems, “DirectVHDL for Windows,”

Online, January 2012. www.gmvhdl.com/directVHDL.html

[10] Symphony EDA, “VHDL Simili,” Symphony EDA's products, Online,

January 2012. www.symphonyeda.com/products.htm

[11] CommTec - Software Engineering, “LOGiX - Simulation of logic

circuits,” Simtel products, Online, December 2011.

http://www.simtel.net/product/view/id/90288

[12] J. Turoň, K. Jelemenská, “Contribution to graphical representation of

SystemC structural model simulation,” in Proc. of the 7th

FPGAword Conference, L. Lindh, V.J. Mooney, S. de Pablo, J.

Öberg, Eds. Copenhagen (Denmark), September 2010, pp. 42–48.

[13] K. Jelemenská, M. Nosáľ, P. Čičák, “Visualization of verilog digital

systems models,” in CISSE 2010, Bridgeport, Connecticut (USA),

December 2010, in press.

[14] M. Zubal, “VHDL model visualization,” master theses, FIIT STU

Bratislava (Slovakia), 2008, 80 p.

[15] J. Petráš, “VHDL model visualization,” master theses, FIIT STU

Bratislava (Slovakia), 2008, 85 p.

Fig. 7. Structural VHDL model visualization with simulation results

displayed

...

 <EntityInstance x="180" y="50" width="150" height="60">

 <InstanceName>ha1</InstanceName>

 <EntityName PackageName="" LibraryName="work">

half_adder</EntityName>

 <ArchitectureName PackageName="" LibraryName="work">

structure</ArchitectureName>

 <VHDLPorts>

 ...

 <Port anchor="right" x="310" y="80" width="20" height="10">

 <PortName>s</PortName>

 <PortMode>OUT</PortMode>

 <PortType>bit</PortType>

 <PortPinCount>1</PortPinCount>

 <PortValue> ha1.xor1.out1 </PortValue>

 </Port>

 </VHDLPorts>

 </EntityInstance>

...

Fig. 6. Fragment of VHDL model XML representation

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

[16] D. Macko, K. Jelemenská, “VHDL structural model visualization,” in

EUROCON 2011, Lisbon (Portugal), April 2011.

[17] The FreeHDL Project, “The FreeHDL Compiler/Simulator System,”

Online, January 2012. www.freehdl.seul.org/code/code.html

[18] T. Gingold, “GHDL – Where VHDL meets gcc,” Online, December

2011. http://ghdl.free.fr/

[19] GTKWave Project, “Welcome to GTKWave,” sourceforge’s projects,

Online, December 2011. http://gtkwave.sourceforge.net/

[20] R. M. Volkmann, “ANTLR 3,” Online, December 2011.

http://jnb.ociweb.com/jnb/jnbJun2008.html.

[21] M. H. Reshadi, B. Goji-Ara, Z. Navabi,”HDML: compiled VHDL in

XML,” in VHDL International Users Forum Fall Workshop, Tehran

Univ., 2000, pp. 69-74.

[22] IEEE, “IEEE standard Verilog hardware description language,” IEEE

Standards (IEEE Std 1364-2001), September 2001.

Proceedings of the World Congress on Engineering 2012 Vol II
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

