
 

 

Abstract—Commonly diagnosed in advanced breast cancer 

patients, especially in vertebrae, bone metastases can appear 

lytic, sclerotic, or anywhere in between these extremes. Given its 

ability to alter the therapeutic strategy, bone metastases is a 

critical issue in staging and follow-up of breast cancer. This 

work presents a novel computer-aided diagnosis (CAD) system 

to detect metastasis in vertebrae by using whole body computed 

tomography (CT). An automated method is developed to extract 

ROIs of trabecular centrum from vertebrae. Eleven texture 

features and their inter-slice differences are then calculated for 

each ROI. Next, total 33 features are fed into an artificial neural 

network (ANN) to determine whether any abnormality occurs in 

the trabecular centrum. The datasets include 35 breast cancer 

patients who underwent a whole-body PET/CT scan between 

2007 and 2011. The average sensitivity, specificity, and accuracy 

are 85.4%, 91.8%, and 89.7%, respectively. Capable of 

identifying possible bone lesions by using CT images, the 

proposed CAD system can incorporate with features of nuclear 

medicine images to increase diagnostic accuracy in an 

automated CAD system for estimating bone metastases 

quantitatively. 

 
Index Terms—X-ray imaging, Computed Tomography, Spine, 

Computer-Aided Diagnosis, Neural Network 

 

I. INTRODUCTION 

S bone is the most common site of distant metastasis, 

metastases to bone are diagnosed in 30-85% of advanced 

breast cancer patients [1].  Bone metastases have important 

implications in terms of worsening morbidity and mortality of 

patients. The vertebral column is the most frequent site of 

metastatic involvement of the skeleton [2]. Bone metastases 

are characterized as either osteolytic (lytic) or osteoblastic, in 

which some patients can have both types (Fig 1). Whereas 

bone resorption predominates, little new bone formation and 

focal bone destruction occurs, giving the lesions an osteolytic 

appearance. Conversely, lesions appear to be sclerotic if bone 

metastases are formed by increasing osteoblastic activity. 

Bone metastasis complications include bone pain, 

pathological fractures, hypercalcemia, and spinal cord 

compression [3, 4]. Capable of altering therapeutic strategy, 

bone metastases is a priority concern in the initial staging and 

follow-up of breast cancer.  
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Widely prescribed to search for bone metastases, bone 

scintigraphy permits a whole-body examination with a 

relatively high sensitivity [5, 6]. Tracer accumulates in the 

reactive new bone that is formed in response to the lesion. 

However, increased bone metabolic rates can be owing to 

cancer unrelated conditions such as fractures, arthritis, or 

infections [7-9]. Therefore, sensitivity and specificity are 

limited [10-12]. On the other hand, although superior to bone 

scintigraphy in terms of detecting bone metastases [5, 13-15]. 

FDG-PET may yield a high false-positive rate in 

abnormalities with rapid glucose metabolism, such as acute 

osteomyelitis and fractures. Therfore, images should be 

carefully interpreted when considering symptoms and clinical 

findings [16, 17]. Previous studies have also demonstrated a 

low detection rate of osteoblastic metastases from prostate 

and breast cancer by using FDG-PET [15, 18-20]. Fused 

PET/CT scanners integrate the functional data of PET with 

the detailed anatomical information of CT scanners in single 

examination, leading to the development of a new modality 

available for whole-body imaging. Capable of providing 

visceral organs and lymph nodes, as well as excellent skeletal 

details, CT images have a high sensitivity for diagnosing bone 

metastases, ranging from 71% to 100% [9, 21, 22]. 

Malignancy can be diagnosed in locations with lytic, sclerotic, 

and mixed lytic–sclerotic changes in CT images. 

Multidetector CT (MDCT) can be an alternative method for 

whole body bone screening to perform skeletal scintigraphy 

[23]. MDCT scanners achieve thin collimation and fast 

scanning, yielding a significantly improved scanning 

resolution and a sequence of thin-sliced images. However, 

given the normally time consuming task of radiologists in 

interpreting hundreds of CT slices, computer-aided diagnosis 

(CAD) systems for bone metastasis may increase the 

reliability of bone metastasis screening.  

The most complex aspect of CAD applications involves the 

synthesis of imaging information from the extracted target 

organ or ROI to make a diagnosis. Many semi-automatic or 
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Fig. 1.  Metastatic lesions in vertebrae can be (a) osteolytic, (b) osteoblastic, or 

(c) mixed. 
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automatic segmentation methods have been developed for the 

recognition of vertebrae. However, to our knowledge, a 

limited number of articles describe diagnosis systems for 

bone metastases. O’Conner et al. [24] developed a detection 

method for lytic bone metastasis by using regular CT images. 

Based on a dynamic graph search, that study traced the spinal 

cord from thoracic spine to lumbar spine to establish a local 

spine coordinate system. Potential lytic bone lesions were 

also detected using a watershed algorithm. A set of 26 

quantitative features were computed for each region 

candidate. Moreover, whether a candidate is a true lesion was 

determined using support vector machines (SVM). In sum, 

none of the above methods are fully automated or can be used 

in both blastic and lytic metastases. 

This work presents a completely automated CAD system to 

detect vertebral metastasis of breast cancer by using whole 

body CT images. An image segmentation method was 

developed to determine the region of interest (ROI) of 

trabecular centrum for each slice. Because the cortical shell of 

vertebral body displays a similar high intensity of blastic 

metastasis, isolating the shell can increase the classification 

accuracy. For each ROI, 33 texture features are then 

calculated, including 11 texture features and 22 inter-slice 

features of these textures. Finally, whether an abnormality 

occurs in the trabecular centrum is determined by feeding all 

of the features into a multilayer perceptron (MLP) neural 

network to identify. The results are compared with those of 

manual classification as validation of the proposed CAD 

method. Importantly, the proposed method provides a high 

diagnostic prediction accuracy and to increase interpretive 

efficiency for radiologists. 

 

II. DATA ACQUISITION 

CT images were obtained by using a combined PET/CT 

scanner (Discovery LS; GE Medical Systems, Waukesha, Wis) 

in whole-body PET scanning. Scanning was performed from 

head to upper thigh regions for 40 minutes after intravenously 

administering 400 MBq of 18F-fluoride by using a Discovery 

LS PET/CT system (GE Medical Systems). The datasets 

include 35 patients (39–78 years old; mean age of 52.3 years 

old) with breast cancer who had a whole-body PET/CT scan 

between 2007 and 2011. Patients had between zero and 17 

metastatic vertebrae (average of 5.5). This study excluded 

patients with severe degenerative disease of spine or hardware 

such as cement, rods, or screws. For all of the patients, CT 

images were reviewed by an experienced radiologist. Each 

vertebra was assessed using a binary system in which a score 

of 1 indicated definite positive for vertebral metastasis and 0 

indicated negative. Totally, 4,413 CT images were obtained 

among the 35 patients, included in 192 metastatic vertebrae 

and 392 normal vertebrae. This study was approved by the 

local ethics committee, and the informed consent was 

wavered obtained from all included patients. 

 

III. ROI EXTRACTION METHOD 

A. Preprocessing 

The source images were initially resized from 512512  to 

204204  pixels and then, transformed to a gray level image 

using a window center of 100 and a window width of 300 to 

highlight the bone regions. The image was then converted into 

a binary data by using a threshold T was then used to convert 

the image into binary data, where the pixels with value larger 

than T were labeled 1 to denote as bone region. The value of T 

was adaptively determined using Ostu’s method [25].  

B. Bounding Box Computation 

 Locating Pelvis 

Starting from the bottom in the volumetric stack of all of 

the binary images, this method accumulated the horizontal 

counts of non-zero pixels to the k-th image slice, which can be 

denoted by a function fk(x) for horizontal coordinate x. A 

normal indivisual has a typical curve of fk(x) as illustrated in 

Fig. 3, where the hills from left to right correspond to left hand, 

left leg, right leg, and right hand, respectively. The two 

classes can be separated using a threshold obtained by the 

binarization method [25]. For each class, the same method 

can be performed again to separate the hand and the leg, 

eventually resulting in four sub-classes.  

The spatial locations for the left and right legs, denoted as 

LL and RL respectively, can be obtained as reference 

landmarks by computing the averages for the middle two 

sub-classes. Furthermore, the non-zero pixel counts around 

the middle point between LL and RR, denoted as mp, starts to 

increase as the accumulation proceeds to the pelvis. Assume 

there are n CT image planes for a scan. The anatomical 

landmark PELVIS can thus be estimated according to the 

following formula: 

  0,1,...,1for  )(),(min)(   max 
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kkk  (1) 

where  2/)(,2/)(],[ RLmpmpLLba  . The scope 

formed by the estimated reference landmarks LL, LR, and the 

pixels of limbs were excluded by using PELVIS. 

 

Spine Localization Using Bone Diagram 

A spatial image map for spine was formed by averaging the 

value for each pixel over all of the input images. The range of 

the vertebral column can therefore be statistically revealed on 

this average image. Pixels with their values exceeding 50 

were selected and then, grouped into regions. A bounding box 

 
Fig. 2.  The value of fk(x) denotes the accumulation of the horizontal counts of 

non-zero pixels at some x from the bottom to the k-th image plane. In this 

example, k was 258 where there were 263 image planes in total. The markers 

LL and RL respectively correspond to the spatial locations for the left and right 

legs. 
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for the largest region was determined as a reference window 

not only to exclude the bones not connected to the spine, but 

also to generate a bone diagram. In each binary image Ik, a 

region with its center not contained in this window was 

removed. Next, the leftmost and rightmost ends of the 

remaining connected components were plotted individually in 

a diagram, where the horizontal axis refers to the number of 

the image plane, and the vertical axis denotes the leftmost and 

rightmost coordinates of the region on a given k-th slice. 

Figure 3(a) displays a typical bone diagram. The two thin 

solid curves, denoted as CL(k) and CR(k), represent the 

leftmost and rightmost ends of the spinal bones, respectively.  

The upper thoracic spine was located by starting from I0 

and then examining each binary image Ik along the z-axis. 

During the iterative process, the horizontal width of the 

connected components, which is equivalent to (CR(k)－CL(k)), 

was computed. Simultaneously, the maximum and minimum 

widths were updated. Since the width for the middle neck is 

relatively smaller than that of the head, the position was 

denoted here as NECK at the image level, where the scanned 

width was less than 60% of the maximum width. Below the 

level of NECK, the process was continued to locate a 

reference landmark where the width was 60% larger than the 

minimum width, denoted here as T-SPINE.  

Next, local median values for the curve CL(k) and CR(k) 

were estimated to remove the rib-cage, as shown in the two 

thick solid curves in Fig. 3(a). Based on the experiments, the 

kernel size for local computation was set to 5. Second, the 

bones connected to vertebral joints were isolated by grouping 

the images from T-SPINE to PELVIS into M sections. For 

each section, a spatial image map was generated and its 

bounding box, defined as Bv, was computed as a local 

reference window. For each binary image Ik where 

1 vMkv , a non-zero pixel was set to 0 if it was not 

included in Bv. The bounding box for the connected 

components on each slice was calculated. The bone diagram 

was also regenerated to reflect this modification, as shown in 

Fig. 3(b). Here, the value of M was 10. The position of lumbar 

spine was determined at position x where (CR(k)－CL(k)) was 

twice larger than the mean width, which we denoted as 

L-SPINE. Finally, a set of sub-images were then defined from 

the reference landmark T-SPINE to L-SPINE in the original 

CT images according to these bounding boxes, which were 

later used as an input to detect the spinal canal and vertebral 

body. 

 

Skeletal Structure Differentiation 

 Detecting and localizing spinal canal (SC) are necessary to 

facilitate the analysis of spinal structures. The sub-image was 

extracted according to the bounding boxes described in the 

previous section. Mean filtering was then performed with a 

kernel size of 5 to reduce the noise effect, followed by 

histogram equalization to increase the contrast. Next, the 

image was transformed to a binary image by using an 

adaptively computed threshold Tk. Finally, the binary image, 

denoted as Mk(x), was used as an image mask to represent the 

profile of skeletal regions. Since the SC profile and the spine 

have the same medial axis, for each Mk(x) with a size equal to 

kk WH  , a sliding window with a size of   is used to scan in a 

horizontal direction. In the window, the vertical distance 

between the uppermost and the lowermost non-zero pixels 

was computed, denoted by Dk(j) where 11  kWj . The 

horizontal coordinate of the largest distance, jmed, was 

defined as the medial axis.  

 Next, a 1515  mask on the image of Gk(x) was used to 

search for each pixel along the medial axis from the positions 

at 0.25Hk to 0.75 Hk to find the vertical coordinate for SC. For 

each point, the intensities in the mask were summed up. The 

point sk was defined as an initial estimate for the center point 

of SC in the k-th image slice if it has the minimum sum. By 

linking all sk, a path representing the middle line for SC can be 

obtained.  

Centered at sk, the information of SC contour on the k-th 

image slice can be represented by its signature. The signature   

of a contour is a 1-D function that describes the distance from 

the center to its boundary on a specific angle  . Assume that 

d(m, n) denotes the Euclidean distance between two points m 

and n, and ρ(m) represents the angle of the point m respective 

to the center. In the proposed approach, the signature of the 

SC contour on the k-th image slice can be defined as follows. 

 kkkk
u

TuIusudsudr  )( and )( ,0)',()',(min)(   (2)
 

Next, a median filtering and a mean filtering with a kernel size 

of 23° were successively applied to generate a smooth contour 

for the SC.  

 To extract the trabecular centrum, the part upper to the 

computed SC area in the ROI of the image was chosen as an 

initial bounding box for the trabecular centrum. In the 

bounding box, the candidate pixels were selected if their 

intensities exceeded a threshold equal to Tk / 2. The threshold 

 
Fig. 3.  (a) An example of bone diagram. The two thin solid curves, denoted 

as CL and CR, respectively indicate the leftmost and rightmost ends for 

spinal bones.  The thick curves show the outcome of median filtering on CL 

and CR from the reference landmark NECK to PELVIS. (b) The thick curves 

denote the computed results of bounding boxes for the extracted spine from 

thoracic spine (T-SPINE) to lumbar spine (L-SPINE). 
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was decreased to half in order to recruit more candidate pixels 

of bone including the lesion part. For the k-th image slice, the 

spatial gravity for these pixels, denoted as bk, was calculated 

to be the center of vertebral body. Next, the contour was 

estimated using the same procedure similar to that in Equation 

(3). The signature   for the contour of trabecular centrum can 

be defined as follows. 

 2/)( and )( ,0)',(),(max)( kkkk
u

b TuIusudbudr    (3)
 

The average value and standard deviation of )(br  were 

again used to remove the outliers. The boundary was 

smoothed using median filtering and mean filtering. The 

region enclosed by )(br  was defined as the ROI of trabecular 

centrum. Figure 4 illustrates the segmentation procedures. 

 

IV. TEXTURE ANALYSIS 

In this work, Haralick texture features were used to 

differentiate between normal trabecular centrum and 

metastasis [26]. Haralick features are derived from the 

gray-level co-occurrence matrix. If there are Ng gray levels, 

then the dimension of the co-occurrence matrix is 
gg NN  . 

The nine Haralick texture features can be calculated directly 

using the equations listed in Table I. In this table, P(i, j) 

denotes the entry of the gray-level co-occurrence matrix at (i, 

j), and μ is the mean values for all P(i, j). The averages and 

standard deviations for the two dimensions are represented by 

μx, μy, σx, and σy. 

A window center of 500 and a window width of 1000 were 

used to enhance the inner tissues of trabecular centrum 

contained in the ROIs. Eleven texture features were computed 

for each ROI, including nine Haralick textures and two local 

statistical features, mean and standard deviation. Their 

feasibility was then evaluated by using the unpaired Student’s 

t-test (two-tailed); in addition, the features that have p-value 

under 0.01 were preserved. Some false positive lesions in the 

classification could be observed near the upper and lower 

endplates. Partial inclusion of the vertebral endplates may 

lead to incorrect classification as blastic tumor tissue. 

Therefore, in this work, a three-dimensional (3D) consistency 

check is performed based on depth information. To reduce 

errors caused by a false-negative, two differences with the 

previous and the next slices were computed for each of the 11 

texture features, subsequently producing 22 additional 

features.  

 

V. CLASSIFICATION 

This work also attempted to determine whether a ROI is a 

normal trabecular centrum or contain metastasis by adopting a 

general MLP neural network and chose the back-propagation 

algorithm as the learning rule. Values derived by the output 

node of the neural network are either 0 or 1, respectively 

representing whether a pixel belongs to normal or abnormal 

tissues. Here, three-layer back-propagation algorithms was 

used. The first layer was an input layer including 33 neurons 

(nodes) that denote the foregoing 33 features extracted from a 

specific ROI. The framework of this neural network consisted 

of a hidden layer with 18 neurons. The last layer was the 

output layer with two neurons which classifies the ROI. An 

attempt was made to stabilize this neural network by training 

the data with 500 iterations. The learning parameter was set to 

0.01 and the momentum was chosen as 0.01 for quick 

convergence.  

The accuracy of feature classification was estimated using 

 
Fig. 4.  The procedures of the contour extraction for spinal canal and 

trabecular centrum. (a) Original image (window center of 300 with width 

50). (b) The outcome obtained by image enhancement. (c) The vertical 

distance of the vertebrae was scanned for locating the medial line. (d) Along 

the medial line, a   mask was used for finding the center of spinal canal. (e) 

The contour of spinal canal computed using signature. (f) The final result 

for trabecular centrum extraction (merged with (a)). 

  

TABLE I 

THE EQUATIONS OF HARALICK TEXTURE FEATURES 

Property Equations 
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the k-fold cross-validation method. With the k-fold 

cross-validation method, the 35 cases were randomly divided 

into k groups. The first group was chosen as the test set, and 

the remaining (k-1) groups were used as the train set to train 

the neural network. The process was repeated until every 

group had been tested. Each time a group was to be tested, the 

other (k-1) groups were used to train the network first. Here, k 

was 5.  The pixels recognized as abnormal were grouped into 

regions and compared with the ROIs manually segmented by 

an experienced physician (one of the authors). If the proposed 

CAD system detects any region in common with a manual 

detection, it was considered a true detection of liver lesion; 

otherwise, it was considered a false detection. If more than 

one CAD detections corresponded to a single lesion of 

reference-standard detection, the detections were still counted 

them as a true-positive (TP) finding.  

VI. RESULTS 

Features from ROIs of 4413 slices were extracted, 

including in 192 metastatic vertebrae and 392 normal 

vertebrae of 35 patients. Table II summarizes the prediction 

results using 11 basis features without inter-slice information. 

The sensitivity was 79.2%, the specificity was 90.3%, and the 

accuracy was 86.6%.  

By using the other 22 inter-slice features formed by the 

differences for each of the 11 texture features, the FN can be 

significantly decreased from 20.8% to 14.6%. Finally, the 

average sensitivity, specificity, and accuracy were 85.4%, 

91.8% and 89.7%. Table III summarizes prediction results 

with the total 33 features. Figure 5 describes experimental 

results for different vertebra types. Accordingly, the proposed 

system can successfully extract the ROIs for normal and 

metastatic trabecular centrum, resulting in an accurate 

classification. 

 

VII. DISCUSSION 

Although CT is not the optimum modality for screening of 

bone metastases, CT images can identify most bone 

metastases. Detecting vertebral metastases using a computer 

is a challenging task, owing to the variation in bone 

attenuation within and among patients, as well as to the 

diversity of non-metastatic abnormalities such as 

degenerative disk disease. O’Conner et al. [10] developed a 

method based on watershed segmentation algorithm and SVM 

for lytic bone metastasis detection by using regular CT images 

of 50 patients. The sensitivity was 0.94, while the 

false-positive was 4.5 per patient. This work developed a 

neural network based CAD system to diagnose vertebral 

metastasis in breast cancer patients by using whole-body CT 

images. The average sensitivity, specificity, and accuracy 

were 85.4%, 91.8% and 89.7%. In contrast to O’Conner et al., 

the false-positive was only 0.9 per patient. The proposed 

CAD system provides an automated method for both kinds of 

metastases with a high sensitivity and specificity. 

Despite its merits, the proposed method has certain 

limitations. This work excluded studies involving hardware 

such as cement, rods, or screws, owing to the possible 

confounding effects of the artifacts produced by the devices. 

Furthermore, a faulty contour in the trabecular centrum 

segmentation could lead to erroneous diagnostic results, as 

shown in Fig. 6. In Fig. 6(a), the incorrect positioning of SC 

and the outlier region at the upper-left corner led an erroneous 

segmentation for trabecular centrum; therefore, the dark 

background included in the ROI was classified inaccurately as 

a lesion. Conversely, the example in Fig. 6(b) obtained a 

false-negative result since the ROI excluded the lesion 

because the lytic metastasis dropped out of the boundary of 

vertebrae. Furthermore, partial inclusion of endplates and a 

small lesion could affect the accuracy (Figs. 6(c) and (d)).  

Most errors in the classification were found near the upper 

and lower end plates. Endplates containing high intensity 

pixels, partial inclusion of the vertebral endplates might be 

incorrectly classified as a blastic tumor tissue. Consider a 3-D 

consistency check using inter-slice differences. The accuracy 

TABLE II 

PREDICTION WITHOUT INTER-SLICE FEATURES 

 Normal vertebra Abnormal vertebra 

Negative Prediction 354 TN 40 FN 
Positive Prediction 38 FP 152 TP 

Total 392 192 

TP: True Positive, TN: True Negative, FP: False Positive, FN: False 

Negative. 

TABLE III 

PREDICTION WITH THE TOTAL 33 FEATURES INCLUDING INTER-SLICE 

INFORMATION 

 Normal vertebra Abnormal vertebra 

Negative Prediction 360 TN 28 FN 
Positive Prediction 32 FP 164 TP 

Total 392 192 

TP: True Positive, TN: True Negative, FP: False Positive, FN: False 

Negative. 

 
Fig. 5.  Segmentation and prediction result of normal and metastatic 

trabecular centrum. (a) normal trabecular centrum classified as normal. (b) 

intervertebral disc and endplates classified as normal. (c) osteoblastic 

lesion, classified as metastasis. (d) osteolytic lesion, classified as metastasis. 

(e) mixed lesion, classified as metastasis. 

  

 
Fig. 6.  Examples of erroneous segmentation results. (a) False-positive 

result due to incorrect segmentation. (b) False-negative result due to 

incorrect ROI segmentation, which excluded the lesion. (c) False-positive 

result due to partial inclusion of endplates. (d) False-negative result because 

the lesion is too small. 
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was increased from 86.6% to 89.7% while the FN rate was 

significantly decreased from 20.8% to 14.6%. Additionally, 

the proposed CAD system may fail to detect a small tumor. 

 

VIII. CONCLUSION 

In conclusion, this work has described a novel CAD 

method capable of detecting both lytic and blastic metastases 

in the thoracolumbar spine. Efforts are underway in our 

laboratory to incorporate features computed from PET 

images into the proposed method to increase diagnostic 

accuracy in an automated CAD system for quantitatively 

estimating bone metastases. Future research should also 

refine the proposed segmentation method so that it can extract 

the profile of trabecular centrum accurately and remove the 

parts of intervertebral disc and endplates. Additionally, a 

model-based method should also be adopted not only to solve 

the segmentation problem when the vertebrae shape is 

distorted by lesions or spurs, but also to locate intervertebral 

discs. Moreover, since metastasis can occur in all bones, a 

more complex procedure is necessary to perform bone 

division for the entire body in order to detect all possible 

lesions. 
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