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Abstract—The problem of multi-user radio resource schedul-
ing on the downlink of a Long Term Evolution (LTE) cellular
communication system is addressed in this paper. The optimiza-
tion model used imposed that the radio resources for multiple
users are jointly allocated at the air-interface. The study shows
that optimal and near optimal solutions to such a problem
may provide reasonable gain over a simply greedy approach
using global and local/heuristic approaches. On one hand, the
complexity of the global optimal approach appears prohibitively
high, on the other hand, the heuristic approach, namely Genetic
Algorithm (GA), provides much better near-optimal results with
significant reduction in complexity.

Index Terms—Multiuser scheduling, LTE scheduling, Genetic
Algorithms, Mathematical programming, Heuristic optimisa-
tion.

I. INTRODUCTION

One of the recent shift in radio access technologies is
in the use of Code Division Multiple Access (CDMA) to
Orthogonal Frequency Division Multiple Access (OFDMA),
which causes very important differences in radio resource
management. As the result of this significant shift, stan-
dards like Worldwide Interoperability for Microwave Access
(WiMAX) [1] and Long Term Evolution (LTE) [2] have been
developed to handle these new changes. The aim not only
simplifies the design of channel equalizers at the air interface
[1], [2], but also provides an additional degree of freedom
in exploiting frequency diversity during multiuser resource
allocations.

CDMA-based standards such as the High Speed Downlink
Packet Access (HSDPA) only involves the time domain
while OFDMA-based standards such as LTE requires to
allocate resources for users in both the time domain (TD)
and the frequency domain (FD). This additional flexibility
has been shown to provide throughput and coverage gains of
around 40% [3]. In order to take into account the scheduling
requirement in both TD and FD, various schemes have been
proposed [4], [5], [3], [6]. Assume that we have packets for
Nusers users waiting in the queue and that resources can
only be allocated at the beginning of a pre-defined time
period known as the Transmission Time Interval (TTI) or
scheduling period. In TD scheduling, U users from the total
of Nusers users are selected based on some priority metric.
Let {Pu, u = 1, 2, . . . , Nusers} be the set of priority metrics
associated with the users. These metrics are then ranked in a
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descending order. Subsequently, the U users associated with
the largest metrics would be selected. After the U users
have been selected, appropriate subcarrier frequencies and
Modulation and Coding Schemes (MCSs) are then assigned
by the FD scheduler. Note that the metrics used for TD and
FD scheduling can be different in order to provide a greater
degree of design flexibility. Typically, the metrics can take
the form of a proportional fair (PF) or maximum C/I metrics.
More details and proposals regarding the TD/FD scheduling
metrics can be found in [7], [4]. In this paper, the focus will
be on the frequency domain scheduling.

In the downlink, the selection of frequency resources and
MCSs is done at the base station, which is called eNB for
short in the LTE terminology, based on Channel Quality
Indicator (CQI) obtained from users over the uplink. A good
channel quality can support a higher order MCS, and thereby
providing a higher bit-rate, while the reverse if true with a
bad channel quality. As specified in [8], frequency-selective
CQIs from the users must be available for FD scheduling.

While a smallest unit of frequency resource is a sub-
carrier, the smallest unit of channel quality is usually rep-
resented for a group of sub-carriers due to limited feedback
signalling resources. If a single CQI value is used to convey
the channel quality over a large number of sub-carriers,
the scheduler may not be able to distinguish the quality
variations within the reported range of sub-carriers. This is a
severe problem for highly frequency-selective channels. On
the other hand, if a CQI value is used to represent each
sub-carrier, many CQI values may need to be reported back,
resulting in a high signalling overhead.

According to [8], [2], it has been decided that sub-carriers
in LTE are grouped into resource blocks (RBs) of 12 adjacent
sub-carriers with an inter sub-carrier spacing of 15 kHz. Each
RB has a time slot duration of 0.5 ms, which corresponds
to 6 or 7 OFDM symbols. The smallest resource unit that a
scheduler can assign to a user is a Scheduling Block (SB),
which consists of two consecutive RBs, spanning a sub-frame
time duration of 1 ms [8], [2].

Note that one important constraint in LTE downlink
scheduling is that all SBs belonging to a single user can be
assigned to only one Modulation and Coding Scheme (MCS)
in each Transmission Time Interval (TTI) or scheduling
period in the non multiple-input-multiple-output (MIMO)
configuration. [2, page 326]. In [9], an optimization model
for multi-user frequency-selective scheduling in the context
of LTE has been presented. The computational complexity
of the problem, to the best knowledge of the authors, is
believed to be NP-hard as discussed, therefore, is time-
consuming to obtain an exact optimal solution. In order to
reduce the time-complexity whilst producing near-optimal
solutions, a genetic algorithm as a population-based heuristic
optimisation algorithm, is implemented and tested to achieve

Proceedings of the World Congress on Engineering 2012 Vol II 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



a reasonable gain over a simple greedy algorithm at the
expense of a higher complexity.

The rest of this paper is organized as follows: Section
II presents the system model for the original problem, and
is followed by Section IV, which introduces the genetic
algorithm implementation for the mathematical programming
model. Subsequently, relative performances among different
schemes are compared in Section V, which is followed by
the conclusion in Section VI.

II. SYSTEM MODEL

The radio resources of an OFDMA system such as LTE
are selected from the time-frequency grid. In the time do-
main, each SB consists of Nsb OFDM symbols. Let L be
the total number of sub-carriers and Ld(ν) ≤ L be the
number of data-carrying sub-carriers for symbol ν, where
ν = 1, 2, . . . , Nsb. Also, let R(c)

j be the code rate associated
with the MCS j ∈ {1, 2, . . . , J}, Mj be the constellation
size of the MCS j and Ts be the OFDM symbol duration.
Then, the basic bit rate, rj , associated with a single SB is
given by

rj =
R

(c)
j log2 (Mj)

TsNsb

Nsb∑
ν=1

Ld(ν). (1)

As mentioned earlier, we assume U users are to be sched-
uled simultaneously, which have already been pre-selected
from Nusers users during the TD scheduling phase. Also, let
Ntot be the total number of SBs that are available during each
TTI, Ni be a subset of the Ntot SBs whose Channel Quality
Indicator (CQI) values are to be reported by user i. The size
of Ni is denoted by Ni. It is assumed that only the Ni highest
SB CQI values are fed back. Such a limited feedback scheme
requires a smaller bandwidth albeit at the cost of a degraded
system performance. We also assume that the total available
power is shared equally among the users. As suggested in
[10], [11], the system throughput degradation resulting from
such an assumption is small when adaptive modulation and
coding (AMC) is used, as is the case in LTE.

Let θi,n, n = 1, 2, . . . , Ni be a real scalar or vector re-
ported (via a feedback channel) by user i to indicate the col-
lective channel qualities of all the sub-carriers within the n-th
reported SB. Furthermore, let qi,max(θi,n) ∈ {1, 2, . . . , J}
be the index of the highest-rate MCS that can be supported by
user i for the n-th SB at CQI value θi,n, i.e. qi,max(θi,n) =

argmaxj

(
R

(c)
j log2 (Mj) |θi,n

)
.

Due to frequency selectivity, the qualities of the sub-
carriers within a SB may differ. However, the indicator
θi,n should provide a good collective representation of the
qualities for all the sub-carriers within the n-th SB [12],
[13], [14], [15]. For convenience, we assume that the MCS
rate R

(c)
j log2 (Mj) increases monotonically with j and that

the rate of MCS 1 is zero. SBs whose CQI values are not
reported back are assigned to MCS 1.

III. OPTIMAL SCHEDULER

A. Joint Optimization Model

Let Ri,n(θi,n) be the bit rate of SB n selected for user i
given the channel quality θi,n, and is given by

Ri,n(θi,n) =

qi,max(θi,n)∑
j=1

yi,jrj , (2)

where yi,j ∈ {0, 1} is a binary decision variable. Also, let
Qmax(i) = maxn∈Ni{qi,max(θi,n)}. In order to ensure that
the MCS for user i can only take on a single value between
1 and Qmax(i), the following constraint is introduced, i.e.

Qmax(i)∑
j=1

yi,j = 1. (3)

Note that the above formulation allows the selected bit rate
for SB n to be less than what θi,n can potentially support,
as may be the case if user i is assigned more than one SB
during a TTI. From (2) and (3), it can be seen that SB n
might be selected for user i only if the MCS j∗ chosen for
user i satisfies j∗ ≤ qi,max(θi,n).

Finally, the problem of jointly maximizing the sum of the
bit rates for all users can be expressed as

Z1 : max
X,{yi}

U∑
i=1

∑
n∈Ni

xi,n

qi,max(θi,n)∑
j=1

yi,jrj (4)

subject to (3) and
U∑
i=1

xi,n = 1, n ∈ Ni (5)

xi,n, yi,j ∈ {0, 1}, ∀ i, j, n. (6)

In problem (P1), X = {xi,n, i = 1, . . . , U, n ∈ Ni}, yi =
[yi,1, yi,2, . . . , yi,Qmax(i)] is an MCS selection vector for user
i, and xi,n is a binary decision variable, with value 1 if SB n
is assigned to user i and 0 otherwise. The objective in (4) is
to select optimal values for X and the set {yi} to maximize
the aggregate bit rate

Rtot =
U∑
i=1

Ri, (7)

where

Ri =
∑
n∈Ni

xi,nRi,n(θi,n), n ∈ Ni. (8)

It is important to point out that (8) corresponds to the
assigned bit rate for user i that the system can provide. It
does not correspond to the actual throughput Ti, which is
given by

Ti = Ri (1− ϵi (θi,n)) , n ∈ Ni, (9)

where ϵi (θi,n) is the block error rate (BLER) associated with
user i. However, as it is a requirement that the CQI feedbacks
qi,max(θi,n) selected by user i should fulfill ϵi (θi,n) ≤ 0.1
[16], the user throughput is tightly bounded by the assigned
user bit rate Ri, i.e. 0.9 × Ri ≤ Ti ≤ Ri. Thus, the
optimization of the aggregate assigned bit rate Rtot serves
as a good approximation to the optimization of the actual
system throughput. Due to the high nonlinearity between
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ϵi (θi,n) and θi,n, the incremental benefit in optimizing the
actual throughput does not necessarily justify the added
complexity. This slight simplification allows us to formulate
the problem without resorting to further approximate the
actual non-linear relationship between Ti and θi,n.

While solutions can be obtained using standard optimiza-
tion techniques, global optimality is not guaranteed. In [9],
it has been shown that additional auxiliary decision variables
can be included in order to linearise the problem, and
thereby avoiding local optimality. However, these additional
auxiliary variable effectively increases the solution space of
the problem, and thereby imposing an additional cost in
solving the original problem.

B. A Sub-Optimal Scheduler

The complexity of joint optimal scheduling model, which
requires the MCSs, SBs, and users to be jointly assigned,
remains very high. As it is also very non-linear, one way to
solve the problem without loss of integrity is linearisation,
which can avoid local optimal solutions, but, it does intro-
duce an additional cost via the introduction of the auxiliary
variable. One way to reduce complexity is to perform the
optimization in separate stages as described in [9]. This
approach imposes a two-stage method, where each SB is
assigned to the user who can support the highest bit rate
in the first stage. In the second stage, the best MCS for
each user is searched and determined. The idea behind the
sub-optimal scheduler is to assign a disjoint subset of SBs
to each user,thereby reducing a joint multiuser optimization
problem into U parallel single-user optimization problems.
The complexity reduction is further discussed in both [9] and
[17].

IV. GENETIC ALGORITHMS

Heuristic optimisation is the sub-field of problem solving
using human expertise in the form of heuristic algorithms.
Genetic algorithms (GA) is perhaps one of the most famous
meta-heuristic in problem solving, which was invented by
John Holland three decades ago inspired of natural selection
and recombination of surviving alive creatures. The main
idea is to recombine fresh solutions from couples of ex-
isting solutions and to promote the more useful solutions
produced for next generations with respect to some certain
performance measures. A population of solutions is adopted
and kept evolving throughout so as to achieve a virtually
alive environment [18].

This approach facilitates search (problem solving) across
a problem space via genetic operator called recombination
and selection operators in which the problem states are
altered. Mainly, crossover and mutation operators are used to
recombine child (new) solutions, and selection and replace-
ment rules are utilised to evolve a population generation-by-
generation. Although there are various genetic algorithms im-
plemented, we preferred to introduce a standard generational
genetic algorithm, which is the most common GA used in
the literature. The idea is described in the following.

Let Sp ⊆ S be a set of solutions adopted as a population,
where Sp = {si : i = 0, ..., | Sp |}, and S is the
whole set of search space. In each generation, a new set
of solutions, Sc ⊆ S, where Sc = {si : i = 1, ..., | Sc |},

is produced with which crossover, C(si, sj), and mutation,
M(si), functions operate on randomly chosen coupled parent
solutions. C(si, sj) recombines a set of children solutions
from at least two parent solutions, while M(si) works
with a single individual changing a minor information. Both
operators are utilised subject to certain probabilities. Once
a predefined number of children solutions were born, a
selection operator promotes a population for the next gen-
eration among all existing individuals. The new population
for the (k + 1)th generation is formed by combining the
population of parent solutions and the population of new born
children according to Sp(k + 1) = Sp(k)

⊗
Sc(k), where k

is the generation index and
⊗

is the relation identified for
replacing the old population with a new set from the mixture
of newly born individuals and their parents. The policy to be
adopted for such a relation identifies the type of GA, where
it can be an elitist policy with generational replacement as
undertaken in this study or something else. This evolving
process repeats until a predefined number of generations is
met.

There are various crossover, mutation and selection opera-
tors introduced with records of success within the literature.
Due to the sensitivity of this problem, non-standard crossover
and mutation operators are preferred to use. Specifically, the
standard operators may reproduce infeasible solutions, which
require further computation time to repair with particular
algorithms. The crossover operator works with two parent-
solutions selected by a binary tournament selection operator
for reproduction in a similar way that fusion-based crossover
operators [19] work. A child solution is built copying succes-
sive user’s information from different parents in such a way
that user j’s decision information, xj and yj, is copied from
one parent, and then user j+1’s corresponding information is
copied from the other parent. Note that each solution in GA
is represented with a chromosome, which is a particular en-
coding scheme. Suppose si = {Xi,yi} and sj = {Xj ,yj}
are two chromosomes representing the ith and jth parent-
solutions selected with binary tournament selection operator.
The crossover operator creates the chromosome of a new
child solution from scratch copying the complete information
of one users, e.g. user 1, from one of the selected parent
randomly, say ith parent and the information of the next
user, e.g. user 2, from jth parent, the other parent. Thus, the
chromosome of the new solution, x́i, will be built as follows:

x́i
n =

{
xi
n r ≥ 0.5

xj
n otherwise (10)

ýin =

{
yin r ≥ 0.5
yjn otherwise (11)

where n is the user index, r ∈ [0, 1] is uniform random
number and Xn and yn, are the decision variables make up
a solution/chromosom as identified in Section III with (3)-
(6).

On the other hand, the mutation operator uses the fol-
lowing logic to make a slight change in the randomly
selected The states of the problem are represented with
X and y, where the former is used to choose SB in-
dexes for each user and the latter is to choose the MCS
index. New solutions are generated by applying f(X,y)
in which either xi or yi is uniformly randomly selected
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to be operated once. If xi is selected, then a particu-
lar column of X, say j, is randomly chosen to assign
the jth SB to one randomly selected user, say i. There-
fore, if jth column xj = (x0,j , ..., xi,j , ..., xk,j , ..., xN,j)

T

is (0, ..., 0, ..., 1, ..., 0)T then the resulted new solu-
tion x′

j = (x0,j , ..., x
′
i,j , ..., x

′
k,j , ..., xN,j)

T will be
(0, ..., 1, ..., 0, ..., 0)T . This operation must not violate (5).

On the other hand, if the selected decision variable is
b, then yi = (yi,0, ..., yi,j , ..., yi,k, ..., yi,Qmax(i)) with
a possible value of (0, ..., 0, ..., 1, ..., 0) will be randomly
chosen to be operated for producing the next state sub-
ject to (3). Then the resulted state will be yi

′ =
(yi,0, ..., y

′
i,j , ..., y

′
i,k, ..., yi,Qmax(i)) with a possible value of

(0, ..., 1, ..., 0, ..., 0).
Typically, in order to obtain good results, the mutation rate

is configured as higher than crossover rate. Otherwise, higher
crossover rate results in more frequent switching between
neighbourhoods, and less time would be available for muta-
tion to fine-tune the result within a particular neighbourhood.

V. EXPERIMENTAL RESULTS

Simulations to illustrate the performance of the proposed
heuristic algorithm in comparison to the global optimisation
approach have been done. Linear integer programming (LIP),
sub-optimal-model-based greedy algorithm (Sub-Opt), and
genetic algorithm (GA) are the problem solving approaches
examined through this study. LIP is a global optimization
method which guarantees the optimum solution even for NP-
Hard and NP-Complete problems. This is done based on
the linearisation formulation as proposed in [9], and corre-
sponding solutions are obtained by the LINGO optimisation
package [20]. On the other hand, the Sub-Opt. solves the
problem very quickly with a lower solution quality. Further-
more, the genetic algorithm (GA) is producing very near
optimum solutions with much lower, polynomial, complexity.
GA is a population based approach, which usually provides
good quality of solutions. The level of parameters used for
configuring GA is presented in Table I.

Genetic Algorithm

Parameter Level

Population Size 50
Number of Generations 200
Crossover rate 0.05
Mutation rate 0.75

TABLE I
THE LEVELS OF PARAMETERS USED TO CONFIGURE GA

The assumptions made in these simulations are as follows:
Ntot = 12 SBs per TTI, L = 12 sub-carriers per SB,
N1 = N2 = . . . = NU = N and that the normal cyclic
prefix configuration is used [2]. For each sub-carrier and user,
the fading amplitude follows the Rayleigh distribution [21].
The SINRs for all sub-carriers of each user are assumed to
be correlated, but identically distributed (c.i.d.), and that the
resource blocks follow the localized configuration [8]. The
correlation coefficient between a pair of sub-carriers is given
by ρ|i−j|, where i and j are the sub-carrier indices. The SINR
of each sub-carrier is assumed to be independent at the begin-
ning of each scheduling period, and constant throughout the

entire period. It is also assumed, for simplicity, that the set of
MCSs consists of QPSK 1/2 and 3/4, 16-QAM 1/2 and 3/4,
as well as 64-QAM 3/4 [1], and the L1/L2 control channels
are mapped to the first OFDM symbol within each sub-frame.
For illustration purposes, the parameters associated with
the MCS thresholds were obtained from [1]. Furthermore,
each sub-frame consists of 8 reference symbols [2]. The
feedback method is based on the Exponential Effective SINR
Mapping (EESM) [13], in which the effective SINR per SB is

given by γi,n = −β ln 1
K

∑K
k=1 e

−
γ
(i)

n,k
β ,= θi,n, where γ

(i)
n,k

corresponds to the SINR for user i at the k-th sub-carrier of
SB n, the channel quality, θi,n, is defined to be the effective
SINR, γi,n, over the K sub-carriers within the SB n for user
i under EESM. The quantity β is a positive real parameter
which is associated with EESM obtained from [22]. Note
that EESM maps a set of sub-carrier SINRs, {γ(i)

n,k}Kk=1, to a
single effective SINR, γi,n, in such a way that the block error
probability (BLEP) due to {γ(i)

n,k} can be well approximated
by that at γi,n in additive white Gaussian noise (AWGN) [1],
[13]. The main idea is to reduce uplink signalling feedback
overhead.

In order to study the effect of three important aspects of
packet scheduling for LTE, three sets of experiments were
included in this paper, where each set consists of different
values of a specific variable to be studied (while fixing
the rest of the parameter values according to the above
assumptions). Each given value is calculated on 2500 channel
realizations generated according to the assumptions described
earlier. In the first set of experiments, the number of SBs,
N , is varied from 2 to 12 so that each CQI feedback can
support in order to study the sensitivity of the performance
due to the amount of feedback information available to
the schedulers. This test is important as more information
may improve the accuracy of the channel feedback, but at
the expense of a higher signalling overhead. In the second
set of experiments, the effect of correlations between sub-
carriers is studied. In this scenario, the correlation is varied
from 0.1 (less frequency-selective) to 0.9 (more frequency-
selective). For the first two set of experiments, a maximum
of U = 3 simultaneously scheduled users are assumed, and
their average signal-to-interference plus noise ratios (SINRs)
are 10 dB, 11 dB, and 12 dB respectively. Note that each user
is assumed to be fading independently, while the SINRs for
each user are correlated among sub-carriers according to the
model described earlier. In the third set of experiments, the
number of users, U , that can be scheduled simultaneously at
each TTI is varied from 1 to 8. The aim of this test is to
examine the extent to which the schedulers can benefit from
the user diversity. To maintain a fair comparison, the average
SINRs for all users are now assumed to be 10 dB.

Let R∗
tot be the total bit rate defined in (4), and E[R∗

tot] be
the value of R∗

tot averaged over 2500 channel realizations.
Figs. 1 and 2 show the performances of all four algorithms

with respect to the average total bit rate, E[R∗
tot], as a

function of ρ and N respectively. Fig. 1 shows that the
performance improves with increasing correlation among
sub-carriers for all algorithms. At a lower correlation, the
variation among γ

(i)
n,k tends to be higher. Thus, while there

are more sub-carriers may take on higher values of SINR,
more sub-carriers may also take on lower values. Due to
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Fig. 1. Average total bit rate as a function of N , with U = 3. ρ = 0.5
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Fig. 2. Average total bit rate as a function of ρ, with U = 3. N = 5 and
12 with U = 3.

the nature of EESM as described in (V), a higher SINR
tends to be de-emphasized compared to a lower SINR. Thus,
for the case of lower correlation, the effective SINR γi,n
tends to be skewed towards SINRs of the weaker sub-
carriers. Such a conservative approach is characteristic of
EESM in order to maintain an acceptable BLEP. Therefore,
at a low value of ρ, sub-carriers with large SINRs are not
effectively utilized, leading to a relatively poor performance.
In Fig. 2, it can be seen that the performance improves with
N , but the rate of improvement decreases. There is little
performance improvement as N increases beyond 8 in our
example. This observation suggests that a full CQI feedback
is not necessary, and the feedback signalling overhead can
potentially be reduced without significant degradation to the
system. The explanation is as follows. Recall that the quantity
N refers to the SBs associated with the N highest channel
quality for each user. As the schedulers make use the CQI
feedback for SB assignments, it is the SBs associated with
better channel qualities that are more important for each user
during the assignment process. Thus, as N reaches up to
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Fig. 3. Average total bit rate as a function of the number of users,
U , with ρ = 0.9 and N = 12.

a certain level, further increase in N would only include
additional SBs that are of lower channel qualities and lower
chances of being scheduled, and are less likely to contribute
to the actually process of scheduling.

It can be seen from Figs. 1 and 2 that the performance
of GA tends to be closer to the global optimum than the
others. This is especially true with a higher value of N . Also,
GA clearly outperform Sub-Opt., especially in the region
of higher N and ρ. Fig. 3 shows E[R∗

tot] as a function of
the number, U , of users for ρ = 0.9 and N = 12. In this
study, the average SINRs for all users are set to 10 dB. As
U increases, E[R∗

tot] increases due to the more pronounced
benefits from multiuser diversity. The performance of GA
remains a little bit below, but quite above the sub-optimal.
This is because GA changes neighbourhood to conduct
search within more frequently.

The complexity of GA for this problem is linear as
explained in the following. A typical GA implementation
goes through a number of generations, G, where a number of
reproduction cycles, usually equals to the size of population,
|Sp|, is iterated in each generation. The complexity associ-
ated with these two loops is O(G × |Sp|), which reduces to
O(1 × 1) since both G and |Sp| are fixed values. The last
remaining complexity issue with GA is created by genetic
operators applied per reproduction cycle through which se-
lection, crossover and mutation operators are applied usually
based on domain-specific procedures. In this implementation,
a binary tournament selection operator is used with constant
settings, which results in a complexity of O(1), while the
crossover and mutation operators described above operate
subject to certain probabilities, where the mutation rate dom-
inates the crossover resulting in a complexity of O(U + U)
in the worst case. Therefore, the overall complexity becomes
O(U).

As indicated in Fig. 4, the complexity for GA is polyno-
mial and linear in terms of the number of users, and is shown
to be visibly lower than that of the global optimum method.
The overall results indicate that the proposed GA scheduler
is an attractive alternative to the global optimal scheduler,
as it provides significant reduction in complexity with near
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Fig. 4. Normalized CPU time as a function of the number of users,
U , with ρ = 0.9 and N = 12.

optimum performance.

VI. CONCLUSION

The downlink multiuser scheduling problem for LTE sys-
tems is addressed in this paper. The problem is particularly
tackled with GA in solving the optimization model originally
proposed in [9]. The numerical results show that the genetic
algorithm approach proposed in this paper significantly re-
duce computational complexity relative to the exact approach
using linear integer programming, while providing near-
optimal performance.
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