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Nondifferentiable Convex Optimization: An
Algorithm Using Moreau-Yosida Regularization

Nada DJURANOVIC-MILICIC ', Milanka GARDASEVIC-FILIPOVIC?

Abstract—In this paper we present an algorithm for
minimization of a nondifferentiable proper closed convex
function. Using the second order Dini upper directional
derivative of the Moreau-Yosida regularization of the
objective function we make a quadratic approximation. The
purpose of the paper is to establish that the sequence of points
generated by the algorithm has an accumulation point which
satisfies the first order necessary and sufficient conditions. A
convergence proof is given, as well as an estimate of the rate
of convergence.

Index Terms— Moreau-Yosida regularization, non-smooth
convex optimization, second order Dini upper directional
derivative.

[. INTRODUCTION

The following minimization problem is considered:

min f(x), (1)
xeR"

where f:R" — R\U4{+ oo} is a convex and not necessa
ry

differentiable function with a nonempty set X " of minima.

For nonsmooth programs, many approaches have been
presented so far and they are often restricted to the convex
unconstrained case. It is reasonable because a constrained
problem can be easily transformed to an unconstrained
problem ussing a distance function. In general, the various
approaches are based on combinations of the following
methods: subgradient methods; bundle techniques and the
Moreau-Yosida regularization.

For a function f it is very important that its Moreau-

Yosida regularization is a new function which has the same
set of minima as f and is differentiable with Lipschitz

continuous gradient, even when f is not differentiable. In
[12, 13, 17] the second order properties of the Moreau-
Yosida regularization of a given function f are considered.

Having in mind that the Moreau-Yosida regularization of

a proper closed convex function is an LC : function, we
present an optimization algorithm (using the second order
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Dini upper directional derivative (described in [1,2]) based
on the results from [3]. That is the main idea of this paper.

We shall present an iterative algorithm for finding an
optimal solution of problem (1) by generating the sequence

of points {X, } of the following form:
Xy =X, +a,s, +a,’d, k=0l,..d #0 ()

where the step-size ¢, and the directional vectors §, and
d, are defined by the particular algorithms.

Paper is organized as follows: in the second section some
basic theoretical preliminaries are given; in the third section
the Moreau-Yosida regularization and its properties are
described; in the fourth section the definition of the second
order Dini upper directional derivative and the basic
properties are given; in the fifth section the semi-smooth
functions and conditions for their minimization are
described. Finally in the sixth section a model algorithm is
suggested and its convergence is proved, and an estimate
rate of its convergence is given, too.

II. THEORETICAL PRELIMINARIES

Throughout the paper we will use the following notation.
A vector § refers to a column vector, and V denotes the
T

0 0 0 .
. The Euclidean

ST e
ox, Ox,

ox,

gradient operator R

product is denoted by <,> and ”” is the associated norm.
For a given symmetric positive definite linear operator M
we set <,> " :=<M -,->; hence it is shortly denoted by
”x”}zw :=<x,x> e The smallest and the largest eigenvalue
of M we denote by 4 and A respectively.

The domain of a given function f:R" — RU {+ oo} is
the set dom(f)= {xeR" f(x)< +oo}. We say [ is
proper if its The

x =argmin f (x) refers to the minimum point of a
xeR"

given function f:R" —> RU {+ oo}.

domain is nonempty. point

A vector g € R" is said to be a subgradient of a given

proper convex function f:R" — RU {+ oo} at a point
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X€R" if the inequality f(z)>f(x)+g"-(z—x)
holds for all z € R". The set of all subgradients of f (x)
at the point x, called the subdifferential at the point X, is
denoted by Of (x) The subdifferential Of (x) is a

nonempty set if and only if x € dom( f ) The condition
Oeof (x) is a first order necessary and sufficient

condition for a global minimizer for the convex function f

at the point x € R" (see in [14,15]).

For a convex function f it follows that
f(x) = mc}ggc{f(z)—i— gT(x - z)} holds, where g € Gf(z)
(seein[lO]).Ze

The concept of the subgradient is a simple generalization
of the gradient for nondifferentiable convex functions.

The directional derivative of a real function f defined on
R" at the point X" € R" in the direction s € R", denoted

' /

by f(x.s), i fi(x,s)= lim S+ ~:)—f(x )
For a real convex function a

when this limit exists.
directional derivative at the point X’ € R" in the direction

S exists in any direction s € R" (see in [2]).

At the end of this section we recall the definition of an
LC' function.

Definition 1. A real function f defined on R” isan LC'

function on the open set D < R" if it is continuously

differentiable and its gradient V[ is locally Lipschitzian,
ie. ”Vf(x)—Vf(ym < L”x—y” for x,y €D holds for
some L >0.

III. THE MOREAU-YOSIDA REGULARIZATION

Definition 2. Let f:R" — R U{+ OO} be a proper closed
convex function. The Moreau-Yosida regularization of a
given function f*, associated to the metric defined by M,
denoted by F, is defined as

1
Flx)= ggg{f )+ X||L} - &)

The above function is an infimal convolution. In [10] it is
proved that the infimal convolution of a convex function is
also a convex function. Hence the function defined by (3) is
a convex function and has the same set of minima as the

function f (see in [6]), so the motivation of the study of
Moreau-Yosida regularization is due to the fact that
min f(x) is equal to min F(x).

xeR" xeR"
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The minimum point p(x) of the function (3), i. e.:

1
plx)= argmin{f (»)+ Elly ~x, } 4)
yeR"

is called the proximal point of x .

In [6] it is proved that the function F' defined by (3) is
always differentiable.

The first order regularity of F' is well known: without
any further assumptions, /' has a Lipschitzian gradient on

the whole space R" . More precisely,
[VE(x,)-VF(x, )" < AVF(x,)-VF(x,),x, —x,)

holds for all x,,x, €R" (see in [12]),
VF(x) =M((x-p(x))e Gf(p(x)) and p(x) is the

unique minimum in (4). So, according to above

consideration and Definition 1, we conclude that /' is an
LC" function.

where

Lemma 1. [13]: The following statements are equivalent:
(i) plx)=x ;
(iv) X minimizes F ;

i) F(x)=f(x).

(i) X minimizes f ;
(iii) VF(x)=0 ;
W f(p(x)= f(%);

IV. DINI SECOND UPPER DIRECTIONAL DERIVATIVE

We shall give some preliminaries that will be used in the
remainder of the paper.

Definition 3. The second order Dini upper directional
derivative of the function f € LC' at the point x € R" in

the direction d € R" is defined to be

z;(xad)zlimsup [Vf()H—ad)_Vf(x)]T -d .
alo o

If Vf is directionally differentiable at X, , we have

= ti [ e+ 0d)=Vf )] -

alo o

D”('xk’d):f”(xk’d

forall d € R".

Since the Moreau-Yosida regularization of a proper

. . 1 .
closed convex function f is an LC  function, we can
consider its second order Dini upper directional derivative at

the point x € R" in the direction d € R" ,i.e.:

Fl(x,d)= limsupﬁd,
alo a
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where g, € 9f (p(x+ad)). g, € 3f (p(x)), and F(x) is
defined by (3) for M =1 .

Lemma 2.[2]: Let f:R" — R be a closed convex proper

function and F' is its Moreau —Yosida regularization for
M = I . Then the next statements are valid.

() F(x, . kd)=k*F}(x,.d)
(ii) FD”(xk>dl "’dz)S 2(FD”(xk’d1)+FD"(xk’d2))

(iii) |Fl;'(xk, d) <K- ”d”2 , where K is some constant.

V. SEMI-SMOOTH FUNCTIONS AND OPTIMALITY
CONDITIONS

Definition 4. A function VF :R" — R" is said to be
semi-smooth at the point x€R" if VF is locally
Lipschitzian at xeR" and the

ii_l)?;ll{Vh}, Ve 52F(x+ /Ufl) exists forany d € R".

Ao

limit

Note that for a closed convex proper function, the
gradient of its Moreau-Yosida regularization is a semi-
smooth function.

Lemma 3. /16]: If VF :R" — R" is semi-smooth at the
point x € R" then VF is directionally differentiable at
x€R" and for any V € azF(x—i- h),h — 0 we have:

Vh— (VF ), (x,h) = 0(“}1”) Similarly we have that
W V= F"(x, )= ol ).

Lemma 4. [4]: Let f: R" — R be a proper closed convex
function and let F' be its Moreau-Yosida regularization.
So, if x€R" is solution of the problem (1) then
F'(x,d)z 0 and FD"(x,d)Z 0 forall d e R".

Lemma 5. [4]: Let f: R" — R be a proper closed convex

function, F' its Moreau-Yosida regularization, and X a
point from R" . If F'(x,d)z 0 and FD"(x,d) >( for all

deR", then xeR" is a strict local minimizer of the
problem (1).

VI. A MODEL ALGORITHM

In this section an algorithm for solving the problem (1) is

introduced. We suppose that at each x € R" it is possible
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to compute f(x),F(x), VF(x) and FD"(x,d) for a
given d € R".

At the k-th iteration we consider the following problem
1
min®,(d), ®,(d)=VF(x, ) d + EFg(xk,d), )
deR"

where F (xk,d) stands for the second order Dini upper
directional derivative at X, in the direction d . Note that if

A is a Lipschitzian constant for F' | it is also a Lipschitzian
constant for VF . The function @ k(d ) is called an

iteration function. It is easy to see that @ k(()): 0 and

o k(d ) is Lipschitzian on R". We generate the sequence
{xk }of the form

X, =X, +as, +aid,s, #0,d, %0,
where the step-size ¢, and the direction vectors s, and
d, are defined by particular algorithms.
For a given ¢ € (0,1) the step-size «is a number

satisfying o, = qi(k), where i(k) is the smallest integer
from {0,1,2,...} such that

F(xk+1)_F(xk)S

<ol V(s - 3 5 )| ©

and where o € (0,1) is a preassigned constant, and
X, € R" is a given point.
We make the following assumptions.

Al. Suppose that 6‘1”61'”2 < Fg(xk,d)ﬁ 02”61'”2 hold for

some ¢, and ¢, suchthat 0 <¢, <c, forevery d € R".

A2 |d =1, |s,]|=1 k=0,12,..
A3. There exists a valueff>0 such that
VE(x,) s, < —,B||VF(xk 1| . ||sk ,k=0,1,2,...

Lemma 6. [4]: Under the assumption Al the function

D, () is coercive.

Remark. Coercivity of the function @, assures that the

optimal solution of the problem (5) exists (see in [16]). It
also means that, under the assumption Al the direction

sequence {dk}is a bounded sequence on R" (proof is

analogous to the proof in [16]).
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Proposition 1. [3]: If the Moreau-Yosida regularization
F (-)of the proper closed convex function f () satisfies
assumption A1 then :

(i) the function F () is uniformly and, hence, strictly
convex;

(ii) the level set L(x0)= {x eR" :F(x)S F(xo)} is a

compact convex set, and

(iii) there exists a unique point X such that
F(x*): min F(x).
xelL xo)

Lemma 7. [4]: The following statements are equivalent:
(i)d =0 is the globally optimal solution of the problem (5)
(ii) 0 is the optimum of the objective function in (5)

(iii) the corresponding X, is such that 0 € Of (xk )

Convergence theorem. Suppose that f is a proper closed

convex function and its Moreau-Yosida regularization F
satisfies assumptions Al, A2 and A3. Then for any initial

point x, € R",x, > x_, as k = +00, where X, is a

o0 2

unique minimal point of the function f .

Proof. If d, #0is a solution of (5), it follows that
(Dk(dk)sozq)k(o)'

assumption A1 that

Consequently, we have by

vF(x, Y d, g_%F,;(xk,dk)g_%cl||dk||2 <0. O

From the above inequality it follows that the vector d, is

a descent direction at X, . By (6) and assumption Al we get

i 1 i "
F (xk+1)_F (xk) < g(q g (xk )Tsk _5 q' (k)Fb(xk,dk ))

®)
1 4
<of - AV |- el | <0
for every d . # 0. Hence the sequence {F (xk )} has the

property, and, consequently, the
{xk}CL(xo)- Since L(xo)is by the Proposition 1 a

descent sequence

compact convex set, it follows that the sequence {xk} is

VF (xoc)ZO. Hence, the sequence {xk} has a unique

limit point X, and it is a global minimizer of F' and by

Lemma 1 it is a global minimizer of the function f .

Therefore we have to prove that VF (xk) — 0,k > 4.

Let K, be a set of indices such that /im x, = x_ . Then
kekK,

there are two cases to consider:

a) The set of indices {l(k)} for k€K, is uniformly

bounded above by a number /. From A2, A3 and (6) it
follows that:

F'(xkﬁ-l)_F'('X’.k)S
<o qi(k)VF(xk)TSk _%q4i(k)FD’,(xk9dk)j

o qIVF(xk )TSk _%qMFD”(xk’dk)J

< O'q]ﬂ”VF(xk 1|||Sk|| _%q“F/g(xk’dk)

1 .
< —,Baq’”VF(xk m_EqMGFD(xk’dk)'

Hence, it follows that

F(xk)_F(ka)Z
2,Ban”VF(xm+%q4IO'F,;'(xk,dk). ©)
Since {F (xk )} is bounded bellow and
F(xk+1)—F(xk)—> 0 as k >0,k ek, from (9) it
follows that "VF(ka —0 and Fg(xk;a;) —0, k—ec
keK ie. x, is a stationary point of the objective function
F,ie. VF(XOO)ZO. From Lemma 1 it follows that X is a

unique optimal point of the function f .

b) There is a subset K, < K, such that /im i(k)z 400,

k—w

By the definition of i(k ), we have for k € K, that

F(xk+1)_F(xk)>

i(k)-1 T 1 4i(k)-4 . (10).
bounded. Therefore there exist accumulation points of the > G{q " VF (xk) Sk _Eq ) F, g (xkﬂdk)j
sequence {xk}.
Since VFE is continuous, then, i By Definitin 3, A1 and Lemma 2 we have
VF (xk ) — 0,k —> +00  then it follows that every F (xk +1)_F (xk)z
accur(nula)ttion point X of the sequence {xk} satisfies _ q"(kHVF(xk )TSk +q2i(k)72VFT (xk ) d, +
VF(x,)=0. Since F is (by the Proposition 1) strictl 1 ‘ . .
» | ‘ (by . p ) y L F[,;(xk’q,(k)_lsk +q21(k)—2 d ) + O(qu(k)—Z)
convex, there exists a unique point X, € L(xo) such that 2
ISBN: 978-988-19251-3-8 WCE 2012
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< Wy E ))T + 2O ET (6 Vd +
?—Fg(xk,;%_ Sk) %;u(xk’qzz(kg a? j(_,’_o(qu(k)—Z)

_ (k)1 T 2i(k)-2 T
=¢""'VF(x, ) s, +q VF"(x,)d, +
+q 2lk)y2 o ?xk,gk)+q k-4 pr (x:,dk)+o(q2i(k)_2)

Sq”HVF@Q%k+f“)VF
red™ s reg e +

w/—\
A§
+

Hence, from (10) it follows that:

o ¢ 9P ) s i)

<q"™VF (x,)s, +¢*" 2VFT xk
+erg?™ s, [ esg ", o)

Accumulating all terms of order higer than O(qu(k )_2) into
the O(q Zi(k)fz) (by assumption A2), and using the fact that
o (xk )d . <0 from the last inequality it follows that:

oq WrvE (xk )TSk <q WRvET (xk )Sk +
+Czq2i(k)72||sk"2 +0(q2i(k)—2)’
ie.
(1- J)qi(k)‘IVFT(xk )s,, + czq”(")"znsk ||2 + o(qz’l(")_2 ) >0.

Hence , dividing by ¢, -qi(k)_l, by A2 and A3 it follows
that

i(k)-
q(k)»l - 1VFT( ) Oqc
2 2
1 i(k)-1
> (xk )" + =t
2 G

Since ¢! —>0as k—>o0,keK,, it follows that
VF(x, )] >0 as k >0,k ek,

In order to have a finite value i (k ) , it is sufficient that 5,
and d, have descent properties, i.e. VF (xk )Tsk <0 and

VF (xk )T d, <0 whenever VF' (xk ) #0.

The first relation follows from A3 and the second relation
follows from (7).

At a saddle point the relation (6) becomes

F(xku)_F(xk)S_%q4[(k)74F[’J'(xk:dk)‘ (1D
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In the case d, #0 by Lemma 7 and hence, by assumption
Al it follows that F[','(xk,dk)> 0; so (11) can be clearly

satisfied.

Convergence rate theorem. Under the assumptions of the
previous theorem we have that the following estimate holds

for the sequence {xk} generated by the algorithm.

Pl )< 1 S

where and

for n=123,... My =F(x0)—F'(xw)
diamL(xo) =7 <+oC (since by Proposition 1 it follows that
L(x, )is bounded).

Proof . The proof directly follows from the Theorem 9.2,
page 167,1in [11].

VII. CONCLUSION

The Moreau-Yosida regularization is a powerful tool for
smoothing nondifferentiable functions. It allows us to
transform the solving an NDO problem into the solving an

LC' optimization problem using the properties of this
regularization.

To our knowledge this is a new approach to solving NDO
problems, and in some sense it is close to the proximal quasi
Newton algorithm.

The algorithm presented in this paper is based on the
algorithm from [3]. This method uses minimization along a

plane defined by the vectors §, and d, to generate a new

iterative point at each iteration. Relating to the algorithm in
[3], the presented algorithm is defined and converges for
noonsmooth convex function.
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