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Abstract—This paper presents a novel approach to WLAN
propagation models for use in indoor localization. The major
goal of this work is to eliminate the need for in situ data
collection to generate the Fingerprinting map, instead, it
is generated by using analytical propagation models such
as: COST Multi-Wall, COST 231 average wall and Motley-
Keenan. As Location Estimation Algorithms kNN (K-Nearest
Neighbour) and WkNN (Weighted K-Nearest Neighbour) were
used to determine the accuracy of the proposed technique.
This work is based on analytical and measurement tools to
determine which path loss propagation models are better
for location estimation applications, based on Receive Signal
Strength Indicator (RSSI).This study presents different pro-
posals for choosing the most appropriate values for the models
parameters, like obstacles attenuation and coefficients. Some
adjustments to these models, particularly to Motley-Keenan,
considering the thickness of walls, are proposed. The best found
solution is based on the adjusted Motley-Keenan and COST
models that allows to obtain the propagation loss estimation
for several environments.Results obtained from two testing
scenarios showed the reliability of the adjustments, providing
smaller errors in the measured values values in comparison
with the predicted values.

Index Terms—LBS, Location Estimation Algorithms, Finger-
printing, Motley Keenan, COST.

I. INTRODUCTION

The trends of emerging technologies and services arise
often the ubiquitous computing paradigm. So, we assist
to a use of wireless technologies (IEEE802.11, Bluetooth,
RFID, ...) in a widely spread way. We can say that wire-
less technologies became the alternative to the traditional
broadband technologies. In a world even more under the
ubiquitous computing paradigm it can be said that wireless
communications and the characterization of location are
inherent needs.
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The main objective of this work is to develop a propaga-
tion model suitable to determine indoor localization, based
on empirical models, which outputs are the path loss and
the effect of attenuation due to obstacles, like walls and
furniture, with a low computational time. Obtaining a good
performance, in terms of computation time, might result in a
lower accuracy, when compared with other types of models.

In wireless network coverage problems we deal essentially
with two types of propagation models: (1) determinis-
tic models which need a great amount of information
about the environment, and are slightly heavier in terms
of computational effort; (2) empirical models which need
less information about the environment, which results in
the use of simpler mathematical expressions and lower
computational time and effort.

Another important feature of this work is the elimination
of the off-line phase to generate the Fingerprinting Map
(FM). Instead of generating the FM using the traditional
procedures, which can be hard and time consuming due to
the need to measure the wireless signal in all important points
of the scenario, we propose the use of empirical models like
COST231 Multi-Wall, COST Average Walls and Motley-
Keenan [1]. Another important issue is the fact that whenever
the scenario suffers changes, e.g. due to the removal or
inclusion of furniture, it might imply the need for an update
to the FM. This means that the FM generation procedures
must be executed again [2].

These type of tasks are very simplified if empirical
propagation models are used. A computing system can
update the new features/labels of scenario in a easy way.
Besides this, the generation of new scenarios or updating of
existing ones can be made in an automate way, as presented
by the authors in previous works [3],[4].

From the literature [5],[6] we can find several works
related with propagation in indoor environments using em-
pirical models and some of these models consider the
attenuation due the penetration of walls. This effect depends,
among other parameters, on the thickness and construction
material of the walls. However, typically the models divide
the wall into groups, but do not specify how to evaluate
the effects of its the width. The present work takes special
attention in the adjustment of propagation models in way to
minimize the errors that depend on wall characteristics.

In the tests presented in this work, location estimation was
made using consumer electronic devices such as smartphones
and laptops and existing wireless network infrastructures.
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II. PROBLEM ANALYSIS

The prediction of propagation characteristics, between two
transceivers, in indoor environments is important specially
for the design of LBS services and applications such as
ubiquitous computing environments or smart spaces.

A major limitation to the localization estimation are the
irregular values for the Received Signal Strength (RSS).
This is due to the short distance between the transmitter
and receiver, in indoor environments, highly affected by the
attenuation caused by obstacles.

Typically the propagation models are divided into two
classes: (1) empirical models; (2) deterministic models. The
first type is represented by simple mathematical equations
which provide the path loss as output. The others are compu-
tational models which simulate the behaviour of propagation
of radio signals. As one of the main objectives of this work is
to obtain a lightweight model to estimate indoor localization,
the use of empirical models is a better option because it
minimizes the computational time and the needed resources.
It might however penalize the accuracy.

On the other hand, if we simplify too much the compu-
tation stage, it could lead to a FM for which the accuracy
of the location methods would be very low. At this point it
is important to define what resolution do we need to obtain
from the designed method.

The most simple propagation model is the classic One-
slope propagation model, Eq. 1, which widely used in several
environments [2][6]:

LdB = L0,dB + 10nLog10d (1)

where L0,dB is the path loss obtained at the distance of
1 meter from emitter and n is a coefficient experimentally
determined [7].

This model is a general path loss model that is good for
a first approach to the problem, but does not consider the
effect of obstacles like walls, windows and furniture.

If we want to consider the effects of obstacles we can
change this model into the Dual-Slope Model. According to
[2] the Dual-Slope model gives a better accuracy, however
the generation of the FM is more complex and the com-
putation time is higher. One reason for this is because the
Dual-Slope model has different equations to LOS and NLOS
and also computes the relative height of antennas [2].

III. TEST BED

It is not an easy task to compare different indoor prop-
agation models, because they have several and different
parameters, such as the type (glass, concrete, wood,...),
thickness of walls, furniture, etc. Small differences in the
parameters values could be reflected in discrepancies on the
output values of the different propagation models. In this
work the COST Multi-wall, COST average wall and Motley-
Keenan models were chosen to evaluate its suitability for the
characterization of propagation in indoor environments. The
comparison between these models is supported by several
tests and modifications over the considered models.

Two testing scenarios were chosen, which have differ-
ent configurations and type of rooms, such as classrooms,

Figure 1. Scenario 1

Figure 2. Scenario 2

corridors and Electrical Machines Laboratory, with several
electronic equipments. This means that it was considered
some rooms that could be classified as hazardous regarding
of view electromagnetic radiations, due the presence of
several metal cabinets. The effect of metal furniture in the
signal propagation can have at least two consequences: it
might work as a wave guide, for example on corridors, or it
is a very serious obstacle when they are near the walls.

The two testing scenarios are depicted in Fig. 1 and
Fig. 2. The first one is a typical floor with classrooms and
offices, while the second is constituted by corridors with
metal cabinets, laboratories with electronic and electrical
equipments and a higher number of walls.

At the begin it was used the values for the parameters
found in the bibliography [2][6] as well as in authors’
previous works [4],[8].

As starting point to Motley-Keenan model we have consi-
dered that in Free-Path Loss n=2 and in indoor environments
”n will be bigger, closest to 3”, as stated by [7].

The equations of the methods to be evaluated for indoor
environments are:

• COST 231 Multi Wall:

LdB = L0+20Log(d)+k

kf+2

kf+1−b
f Lf+

kw∑
i=1

kwiLwi (2)
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• Free Space Loss:

L0,dB = −32.44− 20Log(fMHz)− 20Log(dkm) (3)

• COST Average Wall:

LdB = L0 + 20Log(d) + kwLw (4)

• Motley-Keenan:

PL(d)[dB] = PLR+10nLog(d)+

kw∑
i=1

kwiLwi2
Log3

ei
eoi

(5)

As stated in the equations 2 and 4 the free-space path loss
is obtained by Eq. 6:

L0 =

(
4πd0
λ

)2

(6)

where for f = 2.4GHz, λ = 0.125, d0 = 1m then the 6 is
40.2dB, as in [4] and by definition.

COST and Motley-Keenan models are very similar due
to the fact that they calculate the propagation loss based on
path loss in free space added by the loss (attenuation) due
to obstacles (walls and furniture).

Besides the difficulties to find a solution that works quite
well with all models, it will be presented some approaches
based on kNN (k-Nearest Neighbour) and WkNN (Weighted
k-Nearest Neighbour) and the parameters needed tune them.
With this work it is possible to evaluate the performance
of each propagation models comparing their results in real
environments. This allows also to fine tune the parameters
in a more accurate way.

The first approach to COST and Motley-Keenan models
are very simple because we just need identify the number of
walls between the transmitter and the receiver. At this point
we have the first simplification of models. We just consider
two types of Walls: Thin (−3, 4dB) and Thick (−6, 4dB).

The second approach, that was demonstrated by the
measurement test, is: ”if you have several walls between
the transceivers, the effect usually it is not linear, this
means that the attenuation is often small when compared
with the addition of the individual effects”. So we use
empirical methods that are similar to the COST average
wall method. At this experiments we only consider a bi-
dimensional system (2D), therefore the third member of Eq.
2 is not considered. To simplify even more the computation
time we have opted by a variation of this model that results
in Eq. 4.

The generation of FM, which is the first step execute, is
made using the empirical models. The greatest challenge
is to generate the FM based only on the information on
the blueprints [8]. While in Eq. 2 and Eq. 5 model it very
straightforward, when we use Eq. 4, some interaction with
the user, who decides the simplification to do, is needed.

IV. LOCALIZATION ESTIMATION ALGORITHMS

To estimate the indoor localization the classical k-
Nearest Neighbour (kNN), [9], and Weighted k-Nearest

Neighbour(WkNN) methods were used. It was performed a
set of tests in which it was applied the traditional approaches
as well as some variations of these methods regarding to
offset compensation, and weight determination.

A. The KNN Location Estimation Algorithm
The kNN is the simplest of all algorithms for predicting

the localization. Regarding the use of this methods it must
be defined the value of k and the distance function. Usually
the value of k is 3. To define the distance the most common
distance function is the Euclidean distance, Eq. 7:

d(x, y) = ||x− y|| =
√

(x− y)(x− y) =

(
m∑
i=1

(xi − yi)
2

)1/2

(7)

where x and y are points in X = Rm, m represents the
dimension of the problem, this means that are performed m
measurement for each point to estimate. Typically the major
dimension found in literature is around 20, [10], and still
having a lightweight problem. In many literature this value
works like a limit. However it was demonstrated that the
accuracy depends on the number of samples registered in
the FM, because the signal strength varies widely and these
variations over the time result in the introduction of errors
or discontinuities in users’ trajectory [7].

The kNN LEA is based on the identification of the closest
neighbour or the k closest neighbours. This method consists
in searching in the Fingerprinting Map for the closest k
neighbours following the criterion:

X = argmin

(
N∑
l=1

(Pl(x, y)− PFMl(xk, yk))
2

)
(8)

where Pl represents the RSSI value received from AP l, N in
the number of Access Points and (xk, yk) are the coordinates
on spatial domain. As this method is strongly affected by the
variations of RSSI, several stages of compensation are made:

1) Compute the RSSI average for m samples:
m∑
l=1

(Pl,dB(x, y)/m;

2) Use one calibration point, by default point (0, 0);
3) Compensate the measurements variations, using the

following procedure: the point to be computed with

FM is Pl(x, y)−
m∑
l=1

(Pl(x0l, y0l)− Prl(x0rl, y0rl))/m,

where l is the index of measures and rl is index of the
reference point in the FM;

4) Compute the previous point with all points of FM, and
identify the k closest points;

5) Finally the point to be considered will be the point
resulting from the average of the k closest points;

6) Repeat the procedure for all points.

To evaluate the performance of the proposed adjustments
to Motley-Keenan and COST models (accuracy and preci-
sion) the Means Relative Error (MRE) and the Standard De-
viation (σ) between measured values and calculated values
were computed. The adjustments resulting from the first test,
which works as a validation to the adjustments, are presented
in Tab. I. These results were obtained in Scenario 1 using
a HTC smartphone. The methodology used to estimate the
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Table I
KNN IN SCNENARIO1 WITH HTC

Model Mean err. σ Max. err. % err.< res.

COSTMW n=2; Lw=3.4 3,188 1,889 9,014 46.67

COSTAW n=2; Lw=3.4 2,611 1,512 6,719 60.00

Motley n=2; Lw=10 2,792 1,378 5,069 43.33

Motley n=2.5; Lw=10 2,774 1,473 5,590 53.33

Motley n=2.9; Lw=10 2,852 1,389 5,590 50.00

Table II
KNN IN SCNENARIO1 WITH PC

Model Mean Err. σ Maxi. err. %err. < res.

COSTMW n=2; Lw=3.4 2.859 1.793 7.682 50.00

COSTAW n=2; Lw=3.4 3.216 1,943 9.317 56.67

Motley n=2; Lw=10 2,979 1,711 7,861 53.33

Motley n=2.5; Lw=10 3,067 2,079 9.310 56.67

Motley n=2.9; Lw=10 2,864 1,556 7,453 50.00

point was based on the average of measurements (signal
domain) and the average of the k closest points.

The same tests were made using an IBM laptop and with
a Sony Android smartphone. In the case of the laptop the
best results were obtained with kNN but with the k closest
points determined using the mean of m measurements at
each point, Tab. II. For the smartphone, using kNN, the
best results were obtained with Motley-Keenan (n = 2.5,
Lw = 10, mean error=3.09, σ = 1.633). When performed
the calibration using kNN with the mean deviation the best
results were also obtained with Motley-Keenan.

Regarding to the HTC calibration and from Tab. III the
better results are obtained with Eq. 4 and Eq. 5 (n = 2;Lw =

10). It was defined that resolution of FM works like the
threshold (the lower than the resolution is the result, the
better it is). Since the Motley-Keenan model is the main
object of study of this paper it was made an effort to enhance
its performance, i,e., obtain more points with error value
below the resolution. Besides this from the analysis of other
output data it was noted that the measured reference point
(0, 0) did not match exactly with the reference point. The
first approach was to consider that deviation as an offset and
apart this as measurement values present variations we use
the mean-deviation either to make the compensation task.
The procedure is as follows:

1) Step (1), (2), (3) and (4) are similar to the previous
methodology;

2) After that, it is computed the mean of the k closest
points to determined the reference point, by default
(x0, y0);

3) Determine the value of the mean deviation
between the k closest points to the
reference point: Mean.Deaviation =

Mean(ABS(X0l, Y0l) − Mean(X0i, Y0i)),

P0,md(x0, y0) =

 k∑
l=1
|(x0l, y0l)−

k∑
i=1

P (x0i,y0i)

k
|

/k

Table III
CALIBRATION OF KNN IN SCNENARIO1 WITH HTC

Model Mean err. σ Max.err. % err. < res.

COSTMW n=2; Lw=3.4 3,141 1,801 8,448 40.00

COSTAW n=2; Lw=3.4 2,695 1,630 6,719 60.00

Motley n=2; Lw=10 2,610 1,760 6,298 53.33

Motley n=2.5; Lw=10 3,017 1,670 6,832 53.33

Motley n=2.9; Lw=10 2,920 1,603 6,832 50.00

Table IV
KNN AND WKNN TEST IN SCNENARIO1 WITH SONY

LEA kNN WkNN

Model Mean Err. σ Mean Err. σ

COSTMW n=2; Lw=3.4 3,657 2,650 3,550 2.423

COSTAWn=2; Lw=3.4 2,683 2,043 2,950 1.839

Motley n=2; Lw=10 3,280 2,031 3,000 1.896

Motley n=2.5; Lw=10 3,365 2,110 2,832 1.810

Motley n=2.9; Lw=10 3,334 1,992 3,133 2.025

Motley n=2.9; Lw=16 2,921 1,942 3,093 1.924

4) For all the other points calculate the kNN.
The point that is effectively considered is
obtain with the expression: Pl,md(x, y) =
k∑
l=1

Pl(x0l, y0l)/k−P0,md(x0, y0)+Prl,md(x0rl, y0rl)

5) Finally the point of the spatial domain is obtained
by multiplying the coordinates of Pl,md(x, y) by the
resolution of FM (in present case 2.5 meters).

6) Repeat the procedure for all points.

To evaluate the suitability of the calibration procedure,
these tests were made with a Samsung Android at Scenario 2,
and the results are shown in Tab. IV. Since the global results
were a little worse, it was obtained a new balance between
n and Lw. Using kNN the best results were obtained using
Motley-Keenan (n = 2.5, Lw = 6) and with the calibration
the best case was Eq. 4. These new parameters values were
tested with HTC and PC and we had obtained lower values
for mean error and σ. However due the fact that scenario
2 is very hazardous, from the propagation point of view,
the maximum error is higher, more than 3 times the spatial
resolution of FM. In this case it is harder to find a correct
balance between free space loss and losses due walls and
metal cabinets.

B. The WKNN Location Estimation Algorithm
The Weight k-Nearest Neighbour (WkNN) is a variation of

kNN in which each of the k closest neighbours has different
influence in the determination of the final point. This means
that after the measurements it must be taken in account the
significance of each point in way to determine the correct
weight of each neighbour.

Several approaches to define the weight of each neighbour
exist: static attribution (e.g. w1 = 0.7, w1 = 0.2, w1 = 0.1

based on empirical tests [4]) or dynamic attribution where
each point has also a different weight, but the weight is
computed on the fly during the online phase. However, in
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the last approach we can have two situations: the weight
depends on the order of the k closest neighbour (the first
closest has the highest weight, the second lower, and so on);
or it can be defined an algorithm that considers the k closest
neighbours as a set and then computes them to find which
one could be the most representative, and then attribute to it
the higher weight. This approach results from the observation
of variations of the measured points, because frequently the
real nearest point does not appear as the closest (appears as
second, third, or k − th significant point).

As the measurement is the RSSI value, then it must be
transformed into a position using LEA techniques presented
at the previous sections. These approaches are based on
Dudani’s work in which it is proposed a distance-weighted
kNN method which assigns to the i− th nearest neighbour a
weight wi as a function of its distance, as defined by Eq. 9:

wi =
dk − di
dk − d1

(9)

for dk 6= d1 and equal to 1 when dk = d1. Dudani
demonstrated that this approach allows to yield lower error
rates than obtained in kNN.

Other weighting function that can be employed by the
distance-weight k-Nearest Neighbour is given by Eq. 10:

wi =
1

di
, di 6= 0 (10)

and the weights are bigger for distances di closer to zero
which could be redundant with the kNN and in some case
has the constraint of the division by zero. In this case, it
would be useful adding a small constant to the denominator.
Latter, Baily and Jain [11] showed that the distance-weight
is not always better than the traditional kNN. Macleod made
a modification to Eq. 9 in [12]. Based on the advantages and
disadvantages of the methods above described it was applied
Eq. 11 method [13] which uses an exponential weighting
following the rule:

wi = exp(−αdβi ) (11)

in this work it was used β = 1.
However, the distance measure can not be computed

directly because it is not monotonic, which implies the need
to be interpreted. The real nearest neighbour may lie far
away, and not appear as the k-closest or often could not
be included in the set of k nearest points. To minimize
these problems, it must be a linear approximation based
on the following issues: i) instead using the measured k-
closest point directly we firstly determine the addition of
the difference between them; ii) use the parameter α from
Eq. 11 as compensation. Since α can switch between 1

or −1, depending on previous computation and it used to
compensate the x axis.

To validate all approaches several tests, using different
modes of distance-weight determination, were made.

1) Experiment 1: To perform the first set of tests it
was considered that the distance-weights are determined as
following: (1) compute the average of the x-coordinates and
y-coordinates of the k-closest points. The distance to be
evaluated is obtained by de difference between the xi or yi)

and the correspondent average value. xi = xl−
k∑
l=1

xl/k (2)

based on the signal of new points (xj ; yj) it is defined the
value of α. After that, the Euclidean distance for each point
x =

√
x2i + y2i is calculated. Then the individual distance-

weight is determined using Eq. 11 with β = 1 and α as
compensation parameter. Finally the point to be considered
as the position is obtained using Eq. 12:

P (x, y) = (
k∑
i=1

xiwi;
k∑
i=1

yiwi) (12)

2) Experiment 2: In the second set of tests it was
considered some variations in the determination of the
distance-weights, which are determined as following: (1) for
each measured point compute the difference of x-coordinates
and y-coordinates between itself and the other (k−1)-closest
points. The point that presents the lowest values of (x, y) is
assumed to be the more significant point, this means that
it is the closest point and must have the higher weight. The
distance to be evaluated is obtained by de difference between
the xi or yi and the correspondent average value.

After that, the Euclidean distance for each point x =√
x2i + y2i is calculated. Then the individual distance-weight

is determined using Eq. 11 with α = β = 1. Finally the
point to be considered as the position is obtained by:

∀i ∈ {1, 2, 3, ...k} , xi =
k∑
j=1

xi − xj (13)

After this point repeat the procedures of previous experi-
ment, i.e., calculate the Euclidean distance for each point and
then calculate the individual distance-weight using Eq. 11
with β = 1 and α to compensate the non monotonic
behaviour of the measures. Finally the point to be considered
as the position is obtained using Eq. 12. The results obtained
in experiment 1 and 2 are showed in Tab. V.

Analysing the results, we can conclude that they are
very encouraging. We have got several position estimations
with the following characteristics: Average Error = around
the Resolution; standard deviation = closest to the half of
resolution. Regarding to the Maximum Error the objective is
to obtain a value not greater than twice the resolution, but in
some cases it still is a little bit far away from the objective.

Finally, to validate the approaches described in Experiment
1 and 2 it was chosen other smartphone, a Samsung Android,
with the previous propagation models and LEA (Location
Estimation Algorithms) to be applied to the scenario 2. The
objectives are: test the independence of the models to the
characteristics of the devices; promote the application on
hazardous scenarios (from the propagation point of view).

From Table VI we can identify two undesired factors:
the average error is slightly higher than the desired value;
the maximum error is too big. This is related with the
ratio between n and attenuation due the wall balance.
So, to minimize or even eliminate this problem it was
made another test bed with Motley-Keenan model with
n = 25;Lw = 6 and the results was better: Experiment
1: δ=2.887; σ=1.762; Error max=8.939; Experiment 2:
δ=2.681; σ=1.478; Error max=9.378
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Table V
RESULTS OF WKNN OF HTC AND PC ON SCNENARIO2 UNDER EXP1 AND EXP 2 CONDITIONS

COSTMW COSTAW Motley n=2 Motley n=2,5 Motley n=2,9

δ(m) σ(m) Em(m) δ(m) σ(m) Em(m) δ(m) σ(m) Em(m) δ(m) σ(m) Em(m) δ(m) σ(m) Em(m)

HTC Exp1 3.128 1.785 9.014 2.423 1.501 6.610 2.651 1.340 5.409 2.733 1.442 5.591 2.846 1.387 5.591

PC Exp1 3.128 1.816 — 2.532 1.515 — 2.604 1.350 — 2.746 1.472 — 2.871 1.419 —

HTC Exp2 3.353 1.667 8.545 2.781 1.619 7.478 2.649 1.296 5.00 2.680 1.676 6.310 2.898 1.419 6.072

PC Exp2 3.034 1.733 7.903 3.102 1.733 7.900 2.801 1.405 7.903 2.795 1.454 7.903 2.491 1.683 7.975

Table VI
RESULTS OF SAMSUNG ANDROID ON SCENARIO2 UNDER EXP1 AND EXP 2 CONDITIONS

COSTMW COSTAW Motley n=2 Motley n=2,5 Motley n=2,9

δ(m) σ(m) Em(m) δ(m) σ(m) Em(m) δ(m) σ(m) Em(m) δ(m) σ(m) Em(m) δ(m) σ(m) Em(m)

Samsung Exp1 3.851 2.580 11.562 2.553 2.006 11.069 3.178 1.922 10.056 3.437 2.035 10.274 3.469 1.998 10.274

Samsung Exp2 3.140 1.591 10.306 2.552 1.280 7.923 3.130 1.590 7.923 3.356 1.735 9.879 3.255 1.571 9.879

After this test and because the maximum error was higher
than the desired value, the map was analysed and three points
that were misclassified, which caused a sharp deviation in
relation to the actual point, were identified. This situation
must be corrected by the user intervention. So, it was proved
that the approaches described can be implemented under any
environment and with any device. The major challenge is
obtain a reliable FM from the blueprints.

V. CONCLUSION AND FUTURE WORK

In this paper it was presented a comparison of different
location methods based on empirical propagation models and
on location estimation algorithms for indoor environments.

For the models that consider the attenuation due to walls,
the best results for the accuracy were obtained using average
or simplified models in comparison with original COST231.

It was demonstrated that the localization estimation using
empirical models for indoor environments with multiple
walls can be obtained without the need of knowing in
advance the penetration loss of the wall.

The COSTAW and Motley-Keenan models were a good
choice for use with automatic generation of the FM. Dynamic
weight based algorithms produce an enhancement to the
accuracy over the other presented methods, and leads to
a better localization estimation accuracy. This approach
seems to be suitable to compensate the variations due
either the fluctuation measurement values and the fact that
the measures have not a monotonic behaviour, even for
sequential points. In this case the Zavrel distance-weight
approach demonstrated to be suitable to do the compensation
task based on α to define the signal of tendency.

With the new approaches and assuming that FM resolution
working like a threshold it was obtained a satisfactory
accuracy: Average Error = close to the resolution value;
standard deviation = closes to the half of resolution, and
the Maximum Error= close to twice the resolution value.

Finally, from the overview of the results we can conclude
that the propagation models represent a good solution to
generate Fingerprinting Maps which eliminate the need for
data collection in all significant points of the scenario, and
eliminate the hard work need to generate FM in off-line. This
solution gives a good approach to the FM by computing

the empirical models based on the blueprints. Even when
mapping RSSI values to position labels, the computation time
and needed resources are low.
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new indoor and outdoor propagation models for WLAN,” in
OPNETWORK’2004, 2004, pp. 1–6.

[7] F. Evennou and F. Marx, “Improving positioning capabilities for indoor
environments with WiFi,” in IST Summit, 2005.

[8] P. Mestre, L. Coutinho, L. Reigoto, J. Matias, A. Correia, P. Couto, and
C. Serodio, “Indoor location using fingerprinting and fuzzy logic,” in
Advances in Intelligent and Soft Computing, no. 107. Springer-Verlag
Berlin and Heidelberg GmbH & Co. K, 2011, pp. 363–374.

[9] C. Elkan, “Nearest neighbor classification,” 2007, online, available at
http://cseweb.ucsd.edu/ elkan/151/nearestn.pdf.

[10] A. M. Kibriya and E. Frank, “An empirical comparison of exact nearest
neighbour algorithms,” in PKDD’07, 2007, pp. 140–151.

[11] T. Baily and A. K. Jain, “A note on distance-weighted k-nearest
neighbor rules,” Systems, Man and Cybernetics, IEEE Transactions
on, vol. 8, no. 4, pp. 311 –313, april 1978.

[12] J. Macleod, A. Luk, and D. Titterington, “A re-examination of the
distance-weighted k-nearest neighbor classification rule,” Systems,
Man and Cybernetics, IEEE Transactions on, vol. 17, no. 4, pp. 689
–696, july 1987.

[13] J. Zavrel, “An empirical re-examination of weighted voting for k-
nn,” in Proceedings of the 7th Belgian-Dutch Conference on Machine
Learning, 1997, pp. 139–148.

Proceedings of the World Congress on Engineering 2012 Vol II 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-1-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012




