
 

 

 

 

Abstract—In this study, an ant colony system (ACS) 

algorithm with local search is proposed for solving the unequal 

area facility layout problem using a flexible bay structure (FBS) 

representation. Eight international benchmark problems are 

used to test the performance of the proposed meta-heuristics. 

Compared with the previously best known solutions, ACS can 

obtain the same or better solutions to some benchmark 

problems.  

 
Index Terms—Unequal-area facility layout, ant colony 

system, flexible bay structure, constrained combinatorial 

optimization.  

I. INTRODUCTION 

Facility layout problems (FLP) occur in many 

organizations, including manufacturing cell design, hospital 

design, and service center design. One of the most critical and 

difficult design tasks, FLP aims to find the optimal 

arrangement of a given number of non-overlapping 

departments with unequal area requirements within a facility, 

so as to minimize the costs associated with projected 

interactions between departments. The common objective is 

to minimize the total material handling costs among 

departments. The department areas do not have to be same, 

but each department should follow certain ratio constraints or 

minimum length constraints. The problem was originally 

formalized by [1].  

FLP can be represented by many schemes that define how 

departments can be arranged within the facility area. The 

flexible bay structure (FBS), first defined by [2], is a 

continuous layout representation assuming rectangular 

departmental shapes placed in bays and allowing the 

departments to be located only in parallel bays with varying 

widths. Therefore, the problem complexity is reduced into 

determining the department placement order and the total 

number of departments that each bay will contain. The width 

of a bay is adjusted by the number of departments contained. 

In addition, FBS has an advantage in that the bay structure 

can be regarded as candidates for aisles that are necessary in 
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the consideration of an actual facility design [3]. FBS has 

received much attention from researchers [3-14]. 

Due to the computational intractability of the FLP, only the 

FLP with fewer than 14 departments can be optimally solved. 

Therefore, the majority of research on the FLP has focused on 

heuristic approaches to find good solutions. Metaheuristic 

approaches such as simulated annealing (SA) [15], genetic 

algorithms (GAs) [5], [16-18], tabu search (TS) [8, 19-21], 

the ant system (AS) [11, 22], ant colony optimization (ACO) 

[12], particle swarm optimization (PSO) [13], and the 

artificial immune system (AIS) [14] have been previously 

applied to FLPs. 

II. METHODOLOGY 

The Ant Colony Optimization (ACO) algorithm mimics 

the foraging behavior of the ant species for combinatorial 

optimization problem solving. In 1996, Dorigo et al. [23] 

developed the first ACO algorithm, called the ant system 

(AS). The AS was introduced using the travelling salesperson 

problem (TSP) as an example application. Thereafter, AS 

was applied to solve various kinds of discrete optimization 

problems including quadratic assignment problems, vehicle 

routing problems, sequential ordering problems, 

job-scheduling problems, and resource constrained project 

scheduling problems.  

Numerous variations of ACO have been studied, including 

the ant system (AS), elitist ant system (EAS), rank-based ant 

system (RAS), max-min ant system (MMAS) and ant colony 

system (ACS). ACS differs AS by introducing the state 

transition rule and local pheromone update as well as by 

using the best-so-far solution update rule [24]. In general, 

ACS produces better efficiency than AS.  

Recently, various ACO approaches have been used to 

solve different FLPs. Most of them formulate FLP as a 

quadratic assignment problem (QAP), such as the static equal 

area FLP [25], [26] and the dynamic equal area FLP [27], 

[28]. A hybrid approach is used to solve the discrete FLP [25]. 

This algorithm combines an ACO algorithm and the extended 

great deluge local search technique. The performance of the 

proposed algorithm is compared to construction and 

improvement heuristics as well as to other ant colony 

implementations for QAP. The experimental results indicate 

that the proposed meta-heuristic offers advantages in terms of 

solution quality. In [26], they propose a hybrid ACO 

approach coupled with a guided local search to solve a train 

maintenance facility layout problem modeled as a QAP. 
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Experimental results show that this algorithm performs better 

for small examples, but its performance is also acceptable for 

large examples. 

The ACO algorithm has been applied to solve the DLP 

with budget constraints [27]. Hybrid ant systems (HAS) were 

developed to solve the dynamic FLP [28]. Local search 

techniques, pairwise exchange, and simulated annealing are 

individually combined with AS. Both of these approaches 

also formulate the FLP as a QAP and obtain promising 

solutions to several test problems. 

Recently, an AS, the first algorithm among ACO 

approaches, was presented to solve the unequal FLP [22]. 

This algorithm uses slicing tree representation to easily 

represent the FLP and can create layouts that are impossible 

to achieve by the FBS. In addition, nine types of local search 

are incorporated to improve the search performance. Overall, 

the proposed algorithm shows encouraging results in solving 

UA-FLPs. 

An ACO approach is proposed to solve the unequal area 

FLP with FBS [12]. Compared with metaheuristics such as 

GA, TS, and AS as well as with exact methods from the 

literature, this ACO approach is shown to be very effective in 

finding previously known best solutions and making notable 

improvements. 

As mentioned above, the previous ACO approaches based 

on QAP can be extended for solving the continuous FLP. An 

ACS approach to the FLP with the FBS has not been reported 

in the literature. In this study, we propose an ant colony 

system to solve the unequal area FLP with the FBS. 

III. SOLUTION ALGORITHM 

A. Solution Representation 

The proposed ACS algorithm uses a flexible bay structure 

(FBS) to represent an FLP. Without loss of generality, the 

facility is divided vertically. The bay width is flexible, 

depending on the departments that it contains. We adopt the 

ant solution representation proposed by [29] for solving FLPs. 

Each ant solution consists of two parts: the department 

sequence codes and the bay break codes. The former 

represents the order of n departments, which will be placed 

into the facility. The latter is n-1 binary numbers. Here, 1 

represents a bay break and 0 otherwise. The bay width is 

adjusted by dividing the sum of department areas contained 

in this bay by the facility length. 

For example, a FLP with seven departments is shown in 

Figure 1. There are two bays: the first bay contains 

departments {2, 1, 4}, and the second bay contains 

departments {3, 7, 5, 6}. Thus, the bay break codes are 

0-0-1-0-0-0. Furthermore, bays run vertically; the 

departments are placed from bottom to top and left to right. 

The department sequence codes are 2-1-4-3-7-5-6 

accordingly. We use the ant solution 

(2-1-4-3-7-5-6)-(0-0-1-0-0-0) to represent this layout 

solution.  

 
Fig. 1 A Layout Example Using a FBS Representation 

B. Ant Solutions Construction  

The proposed algorithm employs the pheromone 

information and heuristic information for constructing ant 

solutions. Note that the two parts of an ant solution are not 

constructed concurrently. First, the department sequence 

codes are constructed based on pheromone information and 

heuristic information. The bay break codes are generated 

based on the proposed space filling heuristic. 

Space Filling Heuristic 

Step 1: Randomly generate a number of bay breaks, B. 

Step 2: Calculate the initial value of each bay width. Set 

  
  

 

 
, where W is the width of a facility. 

Step 3: Apply parallel sweep method to generate facilities 

layout according to the department sequence codes and 

initial bay widths.  

Step 3.1: Initialize the bay counter. Set l = 1. 

Step 3.2: Gradually place unassigned departments into the 

l-th bay of the facility until there is not enough space 

to contain the oncoming department. 

Step 3.3: If the available space of this bay is more than 

50% of total area of the oncoming department, locate 

this department at bay l. 

Step 3.4: Update the bay counter. Set l := l+1. 

Step 3.5: If l equals to B, all of the unassigned departments 

are located in the last bay; go to Step 4. Otherwise, 

go to Step 3.2. 

Step 4: Generate the bay breaks codes of ant m to present the 

implementations of Step 3. 

Step 5: Calculate bay widths of ant m, that is, H

a

l
lBi

i

b

 , 

where ai is the required area of department i; 𝐵  is the 

subset of departments which are placed at bay l; and H is 

the height of a facility. 

The main procedures of the proposed ant solution 

construction are given below: 

Step 1: Based on a state transition rule, generate the 

department sequence for ant m until the complete 

department sequence codes have been built. 

Step 2: Perform the proposed space filling heuristic to 

generate the corresponding bay breaks codes of ant m. 

Step 3: Perform the local pheromone update and update the 

heuristic information. 
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C. State Transition Rule and Heuristic Information 

Definition 

The state transition rule is given by Eq. (1), which shows 

how the ant k in department i chooses the j-th position of the 

department sequence to move to 

    





 


  otherwise ,                          
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where q is a random number uniformly distributed in [0, 1]; 

q0 is a fixed parameter (0  q0  1); s is a probability to locate 

department i to the j-th position of the positioning order of 

departments;  is a parameter which determines the relative 

weight of pheromone information;  is a parameter which 

determines the relative weight of heuristic information; ij is 

the pheromone value defined as the relative desirability of 

assigning department i to the j-th position of the department 

sequence; and     is the heuristic information related to 

assigning department i to the j-th position of the department 

sequence. 

In [29], the following intuitive rule is presented: “A 

department with higher material flow should be located 

nearer to the center of the facility.” In this study, the heuristic 

information function is defined by Eq. (2). 
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where mi is the sum of material flow from and to department i; 

xj is the x-coordinate of the centroid of the department which 

is located at the j-th position of the department sequence; and 

yj is the y-coordinate of the centroid of the department which 

is located at the j-th position of the department sequence. 

If q is greater than q0, every position of the department 

sequence has a probability to be chosen by an ant k located in 

department i equal to 
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where    
  is a probability of the j-th position of the 

department sequence to be chosen by an ant k located in 

department i and Ni is available positions of the department 

sequence to be chosen by the corresponding ant located in 

department i. 

D. Pheromone Updating Rules 

There are two pheromone updating rules. Local updating 

rule is as follows: 

  01:   ijij            (4) 

where 0 <  < 1 is the evaporation parameter, and    

represents the initial level of pheromone. 

The global updating rule is denoted by Eq. (5). 

  01:   ijij            (5) 

where Δ   represents the initial level of pheromone on the 

best trail found so far. 

Note that the local updating rule does not modify the 

pheromone trail until a global update has been performed. On 

the other hand, this modification allows the ants to choose 

different paths in the subsequent iterations. 

E. Evaluating the Fitness of Solutions 

At each iteration of ACS, S solutions are generated using 

the procedure of ant solutions construction described in the 

previous section. An ant solution s is feasible if its aspect 

ratio is less than the maximum allowable aspect ratio for each 

department. Infeasible solutions are penalized by a penalty 

function as follows [13]: 
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𝑐   is the cost per unit 

distance from i and j; 𝑓   is the workflow from i and j;  

hi is the height of i; wi is the width of i; and 𝛼 
max is the 

maximum aspect ratio of i. 

In this study, we define the fitness value of each ant 

solution as the sum of material handling costs and penalty 

costs, denoted by Eq. (2): 

  Pddcfz y
ij

x
ij

i j

ijij           (7) 

where     
  is the rectilinear distance of the centroids from 

departments i and j on the x-axis and    
 

 is the rectilinear 

distance of the centroids from i and j on the y-axis. 

F. Local Search Procedures 

In order to enhance the search performance, three types of 

local search are applied to the best solution of the iteration to 

further improve it: 

1. Swap between a department sequence, which exchanges 

the positions of departments i and j in the department 

sequence for all possible department pairs; 

2. One-insert procedure on department sequence, which 

randomly chooses one department and moves it to a new 

position in the department sequence for all possible 

combinations; and 

3. Two-opt procedure on department sequence, which 

randomly chooses a subset chain of the department 

Proceedings of the World Congress on Engineering 2012 Vol III 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-2-0 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



 

 

 

sequence and rearranges it in the opposite direction for 

all possible combinations. 

G. Overall Algorithm 

The overall procedure of the ACS-FBS is given below: 

Step 1: Parameter Setting and Initialization 

Step 1.1: Set algorithm parameters, maximum number of 

iterations (NI), number of ants (M), pheromone 

information parameter (), heuristic information 

parameter (), and evaporation rate (). 

Step 1.2: Initialize iteration number counter. Set I := 0.  

Step 1.3: Initialize pheromone information {   }     . 

Step 1.4: Initialize the fitness value of the global best 

solution. Set     . 

Step 2: Update iteration counter I = I + 1. 

Step 3: Generate ant colony. 

Step 3.1: Initialize ant number counter. Set m = 0. 

Step 3.2: Initialize the fitness value of the iteration best 

solution. Set   
   . 

Step 3.3: Update ant number counter m = m + 1. 

Step 3.4: Perform a procedure of ant solutions construction 

to create ant m. 

Step 3.5: Calculate the fitness value of ant m,   
  using Eqs. 

(6) and (7). 

Step 3.6: If the fitness value of ant m is less than the fitness 

value of the iteration best solution, update the 

iteration best solution   
    

 . 

Step 3.7: If the number of ants is less than M, then go to 

Step 3.3; otherwise, go to Step 4. 

Step 4: Local searching 

Step 4.1: Randomly select one of three local search 

approaches (swap, one-insert, and two-opt). 

Step 4.2: Perform the selected local search procedure to the 

iteration best solution. 

Step 4.3: Calculate the fitness value of the iteration best 

solution after local search,  ̂ 
  using Eqs. (6) and (7). 

Step 4.4: If  ̂ 
  is less than   

 , update the fitness value of 

the iteration best solution   
   ̂ 

 . 

Step 5: Apply the global updating rule, Eq. (5), and update 

the pheromone information {   }     . 

Step 6: Update the global best solution. 

If   
  is less than   , update the fitness value of the global 

best solution      
 . 

Step 7: Stopping criteria. 

If the maximum number of iterations is realized, then 

output the global best solution and stop; otherwise, go to Step 

2. 

IV. COMPUTATIONAL RESULTS 

A. Data and Implementation 

The proposed algorithm was tested using several problem 

sets, as listed in Table 1. Note that M11a was modified to 

allow the use of FBS representation. The fixed size 

department becomes the last department that will be assigned 

into the facility. 

Table 1 Problem Set Data 

Prob. Set 
# of 

Dpt. 
Problem Data 

Facility Size Shape 

Constraint* Width Height 

O7 7 [30] 8.54 13.00  max = 4 

O8 8 [30] 11.31 13.00  max = 4 

FO7 7 [30] 8.54 13.00  max = 5 

FO8 8 [30] 11.31 13.00  max = 5 

O9 9 [30] 12.00 13.00  max = 5 

vC10Ra 10 [17] 25.00 51.00  max = 5 

M11a 11 [31] 3.00 2.00  max = 5 

Nug12  12 [32] 3.00 4.00  max = 5 

*: maximum aspect ratio (max
) constraints 

B. Solution Parameters  

All parameter values were determined based on previous 

research and pre-tuning conducted by this study. The 

algorithm was replicated 10 times. We set a maximum 

number of iterations (NI), an evaporation rate (), and a 

probability for choosing a solution component (q0), equal to 

500, 0.1, and 0.5, respectively. For problem sets with fewer 

than 10 departments, we set a number of ants (M), a 

pheromone information parameter (), and a heuristic 

information parameter (), equal to 100, 3, and 1, 

respectively. For M11a and NUG12, we set M, , and , 

equal to 150, 5, and 5, respectively. The algorithm was coded 

with C++ and tested using an Intel(R) Core(TM) i7 CPU 

processor. 

C. Testing Results 

Table 2 provides the previous best-known results of the 

test problems. The ACS-FBS results are compared to their 

best-known FBS solutions. For problems O7, FO7, and O9, 

the ACS-FBS found new best FBS solutions which improve 

the previous best-known solutions by 1.75%, 18.34%, and 

1.22%, respectively. Except for problems vC10Rs and M11a, 

the ACS-FBS found the optimal FBS solutions in all ten 

random replications. 

Table 2 Comparisons of the Best FBS Solutions with Other 

Approaches 

Prob. 

Set 

Ref: Best 

FBS 

Solution 

Best 

Known 

FBS 

Solution 

Best 

ACS 

Solution 

Avg. 

ACS 

Std. 

Dev. 

ACS 

Imp. 

(%) 

O7 [29] 136.58 134.17 134.17 0 1.76 

O8 - - 245.47 245.47 0 - 

FO7 [3] 23.12 18.88 18.88 0 18.34 

FO8 [3] 22.39 22.39 22.39 0 0.00 

O9 [3] 241.06 238.12 238.12 0 1.22 

vC10Ra [3] 21,463.07 20,142.13 20,142.13 631.7 0.00 

M11a [13] 1,201.12 1,201.12 1214.36 13.9 0.00 

Nug12  [3] 262 262 262 0 0.00 
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The previous best-known solution of problem O7 [29] has 

two horizontal bays, while the new best solution in this study 

has two vertical bays (Fig. 2). The previous best-known 

solution of problem FO7 [3] has four horizontal bays, while 

the new best solution has four vertical bays (Fig. 4). The 

previous best-known solution of problem O9 [3] has three 

horizontal bays, while the new best solution has two vertical 

bays (Fig. 5).The best FBS solutions of problem O8 found in 

this study is given in Fig. 3. 

 

                
        (a) Best known solution          (b) Best ACS-FBS solution 

Fig. 2 Best FBS Solutions Found for Problems O7 

 

 

Fig. 3 Best ACS-FBS solution Found for Problems O8 

 

                 
        (a) Best known solution          (b) Best ACS-FBS solution 

Fig. 4 Best FBS Solutions Found for Problems FO7 

 

         
(a) Best known solution       (b) Best ACS-FBS solution 

Fig. 5 Best FBS Solutions Found for Problems O9 

V. CONCLUSION 

In this study, an ACS-FBS algorithm is proposed to solve 

unequal area FLP. The comparative results show that the 

ACS-FBS approach is very promising. New best solutions 

were found for some test problems by using the right 

representation in ACS and local search procedures. The main 

difference of the proposed ACS-FBS algorithm is the 

solution construction. 

An unfinished task of this study is to expand the size of the 

layout that can be solved by the proposed ACS-FBS. 

Moreover, the heuristic information function should be 

modified in order to improve the efficiency of the ACS-FBS. 

We believe it would be interesting to formulate the FLP as a 

multi-objective design problem with two objectives: the 

material handling cost and the department shape requirement. 
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