
 

 
Abstract—In this paper we study optimization of multistage 

drying process in fluidized bed. The drying of fine particles in 
fluidized bed is very effective operation because of good 
contact of phases and a large interfacial surface. Using a 
relatively high gas velocity improves conditions of mass and 
heat transfers but a portion of gas begins to flow as bubbles or 
canals, so an energy carried by this gas is not used efficiently. 
This is a reason to search for best operating parameters to 
minimize cost or to maximize efficiency of the process. 

A method of determining optimal parameters of drying gas 
(flowrate, temperature and humidity) is described in this 
paper. As a performance index, i.e. function being optimized, 
we apply a function describing the exergy input in the drying 
process. This function consists of three parts, the first two 
describing the thermal and chemical exergy of gas whereas the 
third one referring to investment costs expressed in exergy 
units. The chemical exergy of gas is connected with the 
difference between gas humidity and ambient humidity. In the 
optimization calculations we search for a minimum of exergy 
consumption 

Any effective method of optimization involves an algorithm 
of maximum principle for multistage problems. The earliest 
algorithms of this sort was the Katz’ and Fan's algorithm. As it 
is less suitable for our purposes due to its undefined symplectic 
structure, we apply a modification of Sieniutycz's and Szwast's 
algorithm with a constant Hamiltonian (formally similar to the 
well-know continuous algorithm of Pontryagin). In this paper a 
modification of the basis algorithm is applied. This 
modification admits constrained intervals of time. 

In our calculations we take into consideration the bed 
hydrodynamics and kinetics of transport processes To describe 
behavior of fluidized bed we use the well-known two-phase 
model of Kunii and Levenspiel In this model, the gas excess 
flows in form of bubbles. The heat and mass transfer between 
the solid and gas as well between the dense phase (with gas and 
solid) and bubble phase determines values of optimal gas 
parameters. We discuss optimal parameters of gas and solid 
associated with minimum exergy consumption in drying 
proces. 
 

Index Terms— exergy, fluidized drying, optimization. 
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I. INTRODUCTION 

The optimization problem considered here deals with 
minimization of exergy consumption in the drying process 
in which thermodynamic state of solid is transformed from 
an initial state to a final one. The initial values of solid 
parameters (moisture content and temperature or enthalpy) 
are fixed, whereas final solid moisture content is fixed and 
solid final temperature is usually free. In this study decision 
variables, for which optimal values are searched, are inlet 
gas temperature, humidity and its flow rate. Optimal 
decisions have to minimize process performance index 
describing total cost of the process. The process cost is 
transformed to the form which describes exergy 
consumption in the multistage fluidized drying process.  

 
 

II. PERFOMANCE INDEX 

For N stage cascade (n=1,..N) of fluidized dryers and for 
unit stream of dried material the total cost is given by 
equation (1) [1]: 

 

 















N

n

n
n

g
n

gg

N

n g

n
e

u
r

m
e S

G
YTc

S

PGe

S

Jz
K

11

,
~





 (1) 

 

where symbols are employed: z~  is a factor describing the 
freezing of capital cost; τm – the maximum acceptable 
payout time [yr]; βr – a coefficient describing renovations 
[yr-1]; J – the total cost [$] of the new cascade of fluidized 
dryer; τu – the utilization time [s/yr]; ee – the unit price of 
electrical energy [$/kJ] for gas pumping; ΔP – the pressure 
drop [Pa] in the fluidized layer; η – the pumping efficiency; 
c(Tg

n,Yg
n) – the specific price of drying gas [$/kg] as 

function of its temperature Tg
n and humidity Yg

n; S is a mass 
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Fig. 1.  Scheme of the multistage fluidized drying process. 
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flow rate of solid [kg/s] and Gn is a gas flow rate on the 
stage n [kg/s].  

The cost of new cascade of fluidized dryer can be 
expressed as linear function of total fluidized apparatuses 
bottom area, Aa, and then also as a linear function of total 
gas flow rate i.e. sum of gas flow rate for all stages: 
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where j0 is a fixed term of apparatus price independent on 
its size, and p is the fluidized apparatus price per unit area 
of bottom. 

The thermo-economic studies indicate that the economic 
value of the stream of matter is proportional to the exergy of 
this stream. Therefore the specific price of drying gas can be 
substituted by the specific exergy of this gas 
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where e is a price of exergy unit according to the so-called 
exergy tariff of prices.  

The exact analytic formula for exergy of drying gas has 
the following form 
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After Taylor expansion of this function around the point 

(Ta, Ya) and omitting terms higher than second order one can 
obtain 
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Combining equations (1), (2), (3) and (5) yields the total 

cost of the process cost expressed in exergy unit in the 
following form 
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where g

n is dimensionless gas flow rate defined as a ratio 
of gas flow rate for stage n to the solid flow rate, and κ 
defined by expression 

 

g

e

ggu
r

m e

Pe

ue

pz





 











~
 (8) 

 
is so-called exergy coefficient of investment and gas 
pumping cost [1].  

The first term on the right hand side of the equation (7) is 
independent on any decision or state variables so for fixed 
number of stages is constant, and can be omitted in 
performance index accepted to calculation. Furthermore it 
should be noticed that the price of thermal exergy related to 
the gas temperature, and price of chemical exergy related to 
the humidity of the gas can be different. Taking this into 
account, we introduced parameter ζ defined as the ratio of 
the chemical exergy price to the thermal one. Hence the 
final form of performance index is given by the following 
equation: 

 

   






 

N

n

n
ga

n
ga

n
g YYBTTAI

1

22

2

1

2

1   (9) 

III. MODEL OF THE DRYING PROCESS 

In our studies two-phase Kunii-Levenspiel’s model is 
applied [2]. In this model the following assumptions are 
made: fluidized bed consists of two phases: a dense phase 
and a bubble phase; dense phase is ideally mixed and gas 
flowing through this phase has velocity of minimal 
fluidization; the plug flow of gas is accepted for the bubble 
phase; diameter of bubbles is constant along bed height and 
is a bed parameter; in the bubble phase any solid particles 
are not present. 

 
Moreover, only first period of drying is considered in this 

study, therefore the moisture evaporation proceeds like from 
the liquid surface, so process rate depends only on the heat 
and mass transfer in gaseous phase and is independent on 
the processes in solid particles. 

Taking into account that the gas forms two distinct 
phases, moisture balance for stage n takes the following 
form 
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and the enthalpy balance takes the analogous form: 
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Fig. 2.  Scheme of two-phase fluidized bed. 
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For the first period of drying the kinetic equation 
describing moisture transfer between solid and gas can be 
written as 
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where Ye is an equilibrium humidity on the particles surface 
and is equal to saturation humidity in temperature of solid 
particles, whereas Wmf is dimensionless coefficient 
describing resistances of mass transfer defined by following 
expression: 
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The moisture transfer between gas in dense phase and 

bubble phase is described by equation (14). The driving 
force for the transfer is expressed as logarithmic average of 
differences of humidity between gas in dense phase and gas 
in bubble phase, whereas the coefficient Wb describes 
resistance of moisture transfer and is defined by equation 
(15). 
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The kinetic equations for heat transfer contain except the 

terms describing convective transfer of heat also the terms 
which describe enthalpy transfer together with the stream of 
moisture. Hence, the equation describing the heat transfer 
from gas to solid is of the form 
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The first term on the right hand side of the equation (16) 

– convection term – is described by the ratio of driving 
force described by temperatures difference to the coefficient 
Zmf, analogous to Wmf, describing resistance of heat transfer. 
The second term describes the total heat flux carried by the 
stream of moisture. The heat transfer between gas in dense 
phase and bubble phase is expressed by the following 
equation 
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where, analogous to the equation (16), first term on the right 
hand side of above equation describes the convection heat 
transfer whereas the second term - the heat flux connected 
with moisture flux. The driving force for convective transfer 
is logarithmic average of temperature differences while 
resistance of the convective transfer is described by 

dimensionless coefficient Zb, like Wb. Both dimensionless 
coefficients describing resistances of heat transfer (Zmf, Zb) 
are defined by the following expressions, respectively: 
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For the air-water system commonly found in drying 
processes the ratio of the corresponding coefficients of Z 
and W can be accepted as equal to 1, so the proper 
coefficients Z and W are equal, Zmf = Wmf and Zb = Wb. 

The set of the equations (10) – (19) being the model of 
fluidized drying process has not the analytical solution, so 
there are not analytical forms of state transformations i.e. 
functions describing changes of state variables on the each 
stage of cascade. Therefore, the values of state 
transformations must be determined by numerical solution 
of the model. General forms of state transformations are 
shown below: 
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In the above equations one can distinguish three state 

variables: Xs and Ts describing solid moisture content and 
solid temperature, respectively, and state variable t called a 
“time” in optimization theory, which describes the gas flow 
rates from beginning of cascade to the current stage n, as 
well three decision variables Tg, Yg, and g being 
temperature and humidity of inlet gas as well gas flow rate 
for a stage. Note that in contrast to the problems optimized 
by the classic version of a discrete algorithm with constant 
Hamiltonian [1, 3, 4] in the problem considered in this paper 
the decision variable g can be one of the arguments in the 
functions fX and fT, and also appears outside these functions. 
Therefore the generalized version of a discrete algorithm 
with constant Hamiltonian presented below is applied in this 
paper. 

IV. OPTIMIZATION ALGORITHM 

Using performance index (9) and general forms of state 
transformations (20 – 22), generalized Hamiltonian takes 
the following form (the list of arguments for function fX and 
fT are omitted) [5] 
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The variables zX, zT, and zt are called adjoint variables and 

are analogous to Lagrange multipliers. If the equations (20), 
(21) and (22) (state equations) describing changes in state 
variables can be obtained again from the Hamiltonian by 
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differentiating it with respect to the adjoint variables, the 
equations describing the change of adjoint variables (adjoint 
equations) are obtained by differentiating of Hamiltonian 
with respect to the state variables.  
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From equation (26) it results that the adjoint variable zt is 

constant along cascade for optimal processes. 
Boundary values for adjoint variables result from 

boundary values for right state variables. Thus, for fixed 
value of state variable appropriate adjoint variable is 
undetermined, and for free value of state variable 
appropriate adjoint variable is equal to 0. Hence in the 
considered case it is assumed that for the beginning of the 
cascade, adjoint variables are undefined because state 
variables are fixed. At the end of the cascade, variable zX

N is 
unconstrained as solid final moisture content must be 
determined, whereas the variable zT

N is 0 because the final 
temperature of the solid is free. Moreover, for unspecified 
total gas flow rate, tN, zt

N variable is equal to 0, whereas 
from the equation (26) it follows that it is also constant 
along the cascade, therefore zt is always equal to 0. 

Conditions for optimality of the decision variables Tg
n 

and Yg
n are defined by equations 
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whereas for optimality of gas flow rate g

n appropriate 
condition has a following form: 
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The above equation (29) is suitable for generalized 

version of discrete algorithm with constant Hamiltonian. As 
it was mentioned above, for classical version of this 
algorithm the functions in state transformation cannot 
include an interval of time (g

n) as open argument, so the 
derivative of Hamiltonians for variable g is zero, then the 

equation (29) reduces to expression 0
~ 1 nH , which is 

valid for classical version of the algorithm. 
Solution set of state equations (20 – 22), adjoint 

equations (24 – 26), and equations for optimality conditions 
(27 – 29) for each stage of cascade is optimal solution 
giving optimal values of decision variables for each stage, 
and optimal interstage values of state variables.  

V. OPTIMIZATION RESULTS 

 

 
The optimization calculation was performed for the 

three-stage cascade (N = 3) as well for initial value of solid 
moisture content and temperature equal to Xs

0 = 0.8 
(kilogram of moisture per kilogram of dry matter) and 
Ts

0 = Ta = 293 [K] and final solid moisture content equal to 
Xs

N = 0.4. In Fig. 3. the interstage solid moisture content as 
a function of coefficient Zmf is presented for two values of 
coefficient Zb. As it is shown in this figure the all 
dependences are constant so interstage moisture contents in 
the solid are independent on the values of the coefficients 
Zmf and Zb, and thus are independent on the kinetics of the 
drying process. Moreover analyzing the values of interstage 
moisture contents it can be concluded that the drying 
process proceeds mainly on the first stage whereas on the 
second and third stages changes of moisture contents are 
rather small. The next graph in Fig. 4. shows solid 
temperatures on each stage of the cascade as a function of 
coefficient Zmf. Also solid temperatures are independent on 
value of coefficient Zmf so they are independent on process 
kinetics. Note that the highest temperature of solid occurs at 
the first stage and falls on the next steps. 
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Fig. 4.  Optimal solid temperature for 1st, 2nd and 3rd stage. 
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In the next two figures, Fig. 5. And Fig. 6., the optimal 
values of the decision variables are shown. These values are 
presented in the form of so-called substitute driving forces 
for convective heat and mass transfer. And so, for the 
moisture transfer in the first period of drying substitute 
driving force is defined as the difference between the 
saturation humidity at the surface of solid particles and the 
drying gas inlet humidity. For heat transfer the substitute 
driving force is defined as the difference between gas inlet 
temperature and solid temperature on the stage. The driving 
forces are constant for various values of coefficient Zmf, as it 
is shown in Fig. 5. and Fig. 6. Taking into account that the 
temperature of the solid is independent on the values of the 
coefficients Zmf and Zb, also the absolute values of decision 
variables (Tg, Yg) are independent on these coefficients. 

Note that substitute driving force for heat transfer (the 
differences of temperatures) is the highest on the first stage 
and decreases on next stages but the gas temperature is 
always higher than solid temperature, so heat is always 
transferred by convection from gas to solid, nevertheless the 
solid temperature falls. The drop in solid temperature on the 
second and third stages results from the transfer of enthalpy 
together with moisture stream. The opposite situation occurs 
for the driving forces of moisture transfer. The driving force 
increases along the cascade. This growth occurs despite the 
drop in solid temperature and thus despite the drop in 
saturation humidity. Therefore the optimal humidity of 
drying gas is the highest on the first stage and rapidly drops 
on the next stages. 

The total optimal gas flow rate is presented in Fig. 7. As 
it is shown in this figure the total gas flow rate strongly 
depends on process kinetics and bed hydrodynamics 
because increases if the value of coefficient Zmf increases or 
if the value of coefficient Zb increases. Moreover it was 
easily found that the dependences between total flow rate of 
drying gas and coefficient Zmf is practically linear.  

 
 

 
 

 

 

VI. CONCLUSIONS 

The optimization problem of fluidized drying processes 
proceeding in the first period of drying is considered in the 
paper. The hydrodynamics of two phase fluidized bed is 
included. The mathematical model of this process cannot be 
derived in the form required by the well-known classical 
algorithm with the constant Hamiltonian i.e. the all state 
transformation and the performance index are linear with 
respect to one of decision variables (an interval of a time). 
The paper presents generalized version of discrete algorithm 
with the constant Hamiltonian which does not require 
linearity of the optimization model. Generalized version of 
the algorithm preserves the structure of the equations and 
boundary conditions such as for the classic version. The 
main difference relates to a single equation, which is the 
optimality condition for the decision variable describing 
interval of the time.  

Some results of optimization calculations for drying 
process proceeding in the cascade of fluidized dryer are 
presented and discussed. The results presented show that the 
bed hydrodynamics and heat transfer kinetics practically no 
effect on the optimal values of state variables and on the 
optimal values of drying gas temperature and moisture 
content, whereas bed hydrodynamics and heat transfer 
kinetics reveal in the optimal value of the gas flow rate. 
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Thus, regardless of the drying kinetics, the optimal values of 
drying gas property remain the same, but changes the 
duration of the process – residence time of the solid 
particles. Moreover, it can be concluded that the relationship 
between optimum gas flow rate and the coefficients that 
describe the kinetics of drying is linear. Concluding one can 
observe that intensive parameters (gas temperature and 
humidity) are independent on process kinetics, whereas 
extensive parameter (gas flow rate) strongly depends on 
process kinetics. 

Finally, it should be noted that the presented 
generalization for the optimization algorithm allows finding 
its application in a wider range of processes in which 
nonlinearity of the optimization models excludes the use of 
the classical version of the discrete algorithm with constant 
Hamiltonian. 

VII. SYMBOLS 

bg – specific exergy of gas, kJ/kg 
c – specific price of drying gas, $/kg 
cg – specific heat capacity of gas, kJ/(kgK) 
cw – specific heat capacity of moisture, kJ/(kgK) 
e – unit price of exergy, $/kJ 
ee – unit price of electrical energy, $/kJ 
G – gas flow rate, kg/s 
hs – specific solid enthalpy, kJ/kg 
hmf – bed height for minimum fluidization, m 
i – specific gas enthalpy, kJ/kg 
ivb – enthalpy of moisture in bubble phase, kJ/kg 
ivmf – enthalpy of moisture in dense phase, kJ/kg 
J – total cost of the new cascade of fluidized dryer, $ 
j0 – fixed term of apparatus price, $ 
k – mass transfer coefficient, kg/(sm3) 
Mg – molar mass of gas, kg/kmol 
Mw – molar mass of moisture, kg/kmol 
N – number of stages, 
p – apparatus price per unit area of bottom, $/m2  
ΔP – pressure drop in fluidized layer, Pa 
R – gas constant, kJ/(kmolK) 
S – solid flow rate, kg/s 
T – temperature, K 
ug – superficial gas velocity, m/s 
X – moisture content, 
Y – gas humidity, 

z~  – adjoint variables, 
z – factor describing the freezing of capital cost 

Greek Letters 

α – heat transfer coefficient, kW/(m3K) 
βr – coefficient describing renovations, 1/yr 
η – pumping efficiency, 
ρg – gas density, kg/m3  
σ –  volume fraction of bubble phase 
σg – fraction of gas flowing through bubble phase 
g – dimensionless gas flow rate, g=G/S 
τm – maximum acceptable payout time, yr 
τu – utilization time, s/yr 

Subscripts 
a – ambient 
b – outlet gas from bubble phase 
g – inlet gas 
mf – dense phase 
s – solid particles 

Superscripts 
n – stage number 
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