
 

 

Abstract—In this paper, a novel geometrical methodology is 

introduced for determining the reachable workspace of 6-3 

Stewart Platform Mechanism. The reachable workspace is one 

of the significant characteristic in determining the feasibility of 

utilizing SPM as a machine tool structure. The proposed 

method based on a geometrical approach is rather 

straightforward to evaluate the reachable workspace. 

Basically, it is based on determining attainable locations of 

three vertices for all possible leg configurations as all 

constraints dealing with legs and joints are taken into 

consideration. 

 
Index Terms—Kinematics, machine tool, workspace, Stewart 

Platform Mechanism. 

 

I. INTRODUCTION 

Stewart Platform Mechanism (SPM) has been extensively 

utilized in many practical engineering applications ranging 

from CNC machining to satellite dish positioning since 

D.Stewart proposed SPM as a flight simulator [1]. Although 

it has recently received considerable attention from many 

researchers because of its advantages such as high structural 

rigidity, accuracy, force/torque capacity, there are major 

drawbacks such as complex forward kinematics and limited 

workspace. Therefore, researchers have focused on 

workspace of SPM and introduced many valuable studies for 

last three decades.  

Merlet classified workspace determination methods into 

three groups, namely discretization methods, geometrical 

methods, and numerical methods [2]. Gossellin proposed the 

geometrical method for determining the constant orientation 

workspace of 6 degree of freedom parallel manipulator. [3]. 

Since SPM has also been utilized in CNC machining / 5-axis 

machining operations, some researchers have carried out 

some studies to achieve the knowledge of  shape and size of 

workspaces and boundaries of SPMs [4]- [11]. 

Reachable workspace is a set which contains all the 

positions that can be achieved by a reference point on the 

end-effector [12] The knowledge of size and shape of 
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workspace and boundary of SPM is of a great importance to 

locate the workpiece properly in order to avoid collisions 

between the cutting tool and the workpiece. Therefore, the 

reachable workspace is one of the significant characteristic in 

determining the feasibility of utilizing SPM as a machine tool 

structure.  

The proposed method based on a geometrical approach is 

rather straightforward to evaluate the reachable workspace. 

Basically, it is based on determining attainable locations of 

three vertices for all possible leg configurations as all 

constraints dealing with legs and joints are taken into 

consideration. 

The organization of this study is as follows. First, in 

Section II, the description of 6-3 SPM is presented. 

Secondly, in Section III, the proposed geometrical algorithm 

is introduced in detail. Thirdly, in Section IV, the 

implementation of the proposed method is presented.  

Finally, conclusions are made in Section V.  

II. THE DESCRIPTION OF 6-3 SPM 

SPM consists of one rigid base and one rigid moving 

platform connected to each other through six extensible legs 

and spherical joints, as shown in Fig. 1. Depending on 

arrangement of legs, SPM is categorized into different types 

such as 6-3, 3-3, 6-6 etc. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.  6-3 Stewart Platform Mechanism. 

 

We consider a 6-3 SPM, the base and moving platform of 

which are equilateral hexagonal and triangle shaped 

respectively. Leg lengths are Li varying between Limin and 

Limax,  i=1, 6. The side length of fixed platform is L. The side 

lengths of movable platform are dj, j=1, 3. Each pair of the 

six legs is attached to one vertex of moving platform. Bi and 

Pj are the centers of the joints located on the fixed and 

moving platforms, respectively. Geometric relations among 
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vertices P1, P2, P3 and other parameters were presented by 

Nanua et al. [13].  

 

III. THE PROPOSED METHODOLOGY 

The methodology consists of three steps. In each step, the 

position of one of the vertices is determined. The details of 

steps are presented in the following sections: 

 

A. The Determination of Position of Vertex P1 

 The coordinates (p1x, p1y, p1z) of vertex P1 in Fig. 3 are 

determined by varying lengths of L1, L2 and Ф1 with respect 

to the constraints of L1, L2, and joints.  

 Lbi and rj are the distances between Bi and Oj, and 

between Pj and Oj, respectively, as shown in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.  The location of vertex P1. 

 

It is necessary to express Lb1, Lb2 and r1 for vertex P1 in 

terms of leg lengths. These expressions include the 

following: 
2 2 2

1 2
1 (1)

2b

L L L
L

L

 

  

2 1 (2)b bL L L   

2 2
1 1 1 (3)br L L   

The coordinates (x01, y01) of O1 are given by the following 

equations: 

 

01 1 11 cos( ) (4)
b bx x L      

01 1 11
sin ( ) (5)b b

y y L    
 

where (xb1, yb1) are the coordinates of B1 and α1 is the angle 

between x axis and O1, as shown in Fig. 3.  

 

The coordinates (p1x, p1y, p1z) of vertex P1 are given by the 

following equations: 

1 1 1 1 1
)cos sin( (6)

x O
p x r       

1 1 1 1 1)cos cos( (7)y Op y r       

1 1 1sin (8)zp r   

where Ф1 determined by considering the limitations of joints 

is the angle between the planes of x-y and the triangle 

B1P1B2. 

Varying L1, L2 and Ф1 discretely with respect to the 

related constraints describes the entire achievable positions 

of the first vertex. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.  Top view of the fixed base. 

 

B. The Determination of Position of Vertex P2 

In this phase, the lengths of L3 and L4 are varied discretely 

with respect to the related constraints. The coordinates (p2x, 

p2y, p2z) of vertex P2 are determined by considering L3, L4, 

and the coordinates (p1x, p1y, p1z) of vertex P1 determined in 

previous phase.  

In order to determine P2 (p2x, p2y, p2z) the geometrical 

relation between P1 and P2 is taken into account. Vertex P2 

may be located on the sphere centered at P1 with radius d1, 

as shown in Fig 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.  The sphere centered at P1 with d1 radius. 

 

Let t be the axis on x-y plane which is perpendicular to the 

line B3B4a and passes through O2 as shown in Fig. 5. Varying 

lengths of L3 and L4 and keeping P1 fixed, vertex P2 moves in 

the circle centered at O2 with radius r2, which lies on t-z 

plane.   In order to determine the coordinates (p2x, p2y, p2z) 

of vertex P2, it is necessary to figure out whether or not the 

sphere centered at P1 and the circle centered at O2 intersect. 
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Fig. 5.  The circle centered at O2 with radius r2. 

  

This intersection may exist, providing that the intersection on 

x-y plane between the projection of the sphere and the axis t 

exists. The projection on x-y plane of the sphere is the circle 

centered P
ı
1 with radius d1. The axis t can be defined as a line 

(y=mx+k) as shown in Fig.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6.  The projections on x-y plane. 

 

The circle with radius d1 is expressed by the following 

equation: 

   
22 2

1 1 1
(9)

x y
x p y p d     

The following equation is written to define the intersection 

on x-y plane: 

1

2 2 2
1 1( ) ( ) (10)x yx p mx k p d      

 

 

 

 

 

This quadratic equation possesses two reel roots in the case 

Δ>0. These reel roots correspond to the point t1 and t2 

enabling to calculate the radius of the circle located on the t-z 

plane which is the projection of the sphere centered at P1. 

The radius of the circle is given by the following equation: 

 

2 1
(11)

2

t t
r



  

To determine P2, an additional intersection on the t-z plane 

shown in Fig. 8 between the circle with radius r and the 

circle with radius r2 must be existed. This intersection occurs 

when the following relation is satisfied: 

2 2 (12)r r l r r     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7.  The projections on t-z plane. 

 

The radius r2 of the circle centered at O2 is given by the 

subsequent equation; 

2 2
2 3 3 (13.a)br L L   

while the distance Lb3 between B3 and O2 (see Fig. 3, 5 and 

6) is defined as the following: 
2 2 2

3 4
3 (13.b)

2b

L L L
L

L

 

  

 

θ is the angle between the line P1
ıı
O2 and t axis. θ is given by 

the following equation: 

 

1

0

tan (14)zp
a

t


 

 
 
 

 

 

where  

1 2

0
2

(15)
t t

t


  

 

l, a,b and h are the distances, as shown in Fig. 7. These 

expressions include the following relations: 
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2 2

0 1 (16)zt Pl   

 
2 2 2

2

2
(17)

r l r
a

l

 

  

(18)b l a   

 

2 2 (19)h r a   

 

The projection on t-z plane of vertex P2 (p2x, p2y, p2z) is 

2 2 2( , )ıı ıı ııP tp zp  and 2

ııtp , 2

ıızp are given by the following 

equations: 

2 cos( ) (20)ııtp b   

2 sin( ) (21)ıızp b   

 

The coordinates of points A and B on t-z plane are 

2 .sin( ) (22)ıı

At tp h    

2 .cos( ) (23)ıı

Az tp h    

2 .sin( ) (24)ıı

Bt tp h    

2 .cos( ) (25)ıı

Bz tp h    

 

The coordinates (x03, y03) of O2 are given by the following 

equations: 

02 23 3 cos( ) (26)b bx x L      

02 3 23
sin( ) (27)b b

y y L      

 

where (xb3, yb3) are the coordinates of B3. The projections on 

x-y plane of points A and B can be written as 

2 2sin( ) (28)A O Ax x t    

2 2cos( ) (29)A O Ay y t    

2 2sin( ) (30)B BOx x t    

2 2cos( ) (31)B BOy y t    

 

xA , xB  and yA , yB  are  the solutions of the coordinates (p2x) 

and (p2y), respectively while zA and ,zB  are  the solutions of  

p2z. Each solution of (p2x, p2y, p2z) is accepted for the vertex 

P2, if the associated constraints are satisfied. 

 

 

C. The Determination of Position of Vertex P3 

Given the coordinates of vertices P1 and P2 calculated 

above, the geometric relations among P1, P2, and P3 are 

utilized to figure out the coordinates (p3x, p3y, p3z) of vertex 

P3. For a fixed P1 and P2, P3 moves in a circle centered at the 

point O
ı
 with the radius r0, shown as in Fig. 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sizing of Graphics 

Most charts graphs and tables are one column wide (3 1/2 

inches or 21 picas) or two-column width (7 1/16 inches, 43 

picas wide). We recommend that you avoid sizing figures 

less than one column wide, as extreme enlargements may  

 

 
Fig. 8.  The vertex P3 moving in the circle with radius r0.  

 

The points on the circle with the radius r0, where P3 moves 

are utilized to determine the leg lengths of L5 and L6 through 

inverse kinematics. Providing that the determined leg lengths 

satisfy the constraints of the leg lengths and joints, the points 

are included to the solution set of the vertex P3. In order to 

determine vertex P3, the coordinate frame O 
ı
(x

ı 
y

ı 
z

ı
) is 

defined. The origin of the coordinate frame O
ı
(x

ı 
y

ı 
z

ı 
) is 

located at the center of the circle with the radius r0. while y
ı 

axis
 
passes through the line P1P2 and x

ı
 axis lying parallel to 

the x-y plane. P3 moves along the arc corresponding to the 

angle φ (in radian). The radius r0 is given by the following 

equation with the help of equilateral triangle relation: 

 

0 1

3
(32)

2
r d  

The vertex P3 rotates about yaxis as shown in Fig. 9 and 

the equation of the circle with the radius r0 relative to the 

coordinate frame O
ı
(x 

ı
y

ı 
z

ı 
) can be rewritten as 

 

 

   
2 2 2

0 (33)x z r    

 

where 

0 cos (34)x r   

0 sin (35)z r   

The coordinates of 

 

The coordinates of the origin of O
I
(x

ı
y

ı
z

ı
) are given by the 

following equation: 

1 2
0

( )
(36)

2

x xp p
x



  

1 2

0

( )
(37)

2

y yp p
y



  

1 2
0

( )
(38)

2

z zp p
z



  

 

The coordinates of the geometric center C (a0, b0, c0) of the 

moving platform are given by following equations:  
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The coordinates of the geometric center C (a0, b0, c0) of the 

moving platform are given by following equations:  

0 3
0

2
(39)

3

xx p
x

 

  

0 3

0

2
(40)

3

yy p
y

 

  

0 3
0

2
(41)

3

zz p
z

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9.  The points reached by vertex P3. 

 

B5 and B6 as shown in Fig. 10 are the points on the fixed 

platform where L5 and L6 are connected, respectively. The 

coordinates of these points are transformed to the coordinate 

frame O
ı
(x

ı 
y

ı 
z

ı 
). To settle on P3, the circle is split into Δθ 

intervals. Using inverse kinematics, the points satisfying all 

constraints correspond to P3 (a3, b3, c3). 

Determined the coordinates of three vertices, the 

geometric center of the mobile platform is figured out. That 

the vertices P2 and P3 are evaluated for each achievable 

position of vertex P1 results in the workspace. 

 

IV. THE IMPLIMENTATION OF THE PROPOSED METHOD 

A 6-3 SPM with L=1 m, di=1 m, Lmin=0.8 m, Lmax=1.2 m 

is considered. The joint angle limitation varies between – 45
o
 

and 45
o
. The proposed algorithm results in the workspace in 

Fig. 10. 
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Fig. 10.  The reachable workspace of 6-3 SPM. 

 

V. CONCLUSIONS 

 

The knowledge of the overall size and shape of workspace 

and boundary of SPM is of a great importance to locate the 

workpiece properly in order to avoid collisions between the 

workpiece and the cutting tool. Therefore, the reachable 

workspace is one of the significant characteristic in 

determining the feasibility of utilizing SPM as a machine tool 

structure. The proposed method based on a geometrical 

approach is rather straightforward to evaluate the reachable 

workspace. 

Although the entire possible leg configurations are 

considered to achieve the workspace by using both the 

forward kinematics and inverse kinematics techniques, the 

proposed method does not require highly nonlinear algebraic 

equations with multiple solutions and time-consuming 

numerical analysis which needs good initial values and 

doesn’t always converge at an expected point by means of all 

mechanical constraints.  
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