
 
 

 

 
Abstract— This paper is devoted to research the dynamic 

stress-strain behavior of transtropic massif with a few cavities 
deep founded from earth surface. Cases of propagation and 
diffraction of elastic PP-, SV- and SH-waves are considered.  
Analytical rigorous methods by using theory of cylindrical 
functions are applied for solving the first and the second 
fundamental problems of mechanics in the case of stationary 
diffraction of elastic waves on the few cavities with arbitrary 
form and location. An influence of physical and mechanical 
properties of surround massif and falling elastic waves to 
stress-strain state of transtropic massif with deep-founded 
cavities is demonstrated.  

  
Index Terms—transtropic massif, deep founded cavities, 

mines, tunnels, drifts, diffraction, PP-wave, SV-wave, SH-wave.  
 

I. INTRODUCTION 

The earthquake, along with flooding and mudslides, the 
cyclone is a natural disaster, which as yet can neither inform 
nor prevented. Harmful effects of earthquakes can be relaxed 
if we use the achievements of modern theory and practice of 
dynamic and seismic stability of building. These 
achievements are mainly related to the optimal construction 
of facilities on the ground. Meanwhile, in large cities located 
in seismic areas, the underground space is full of plumbing, 
gas, sewer objects, parking and other facilities. The 
underground subway stations and tunnels in fractured 
obliquely layered media with complex structure are built and 
expanded.  

Many mineral deposits are created on the areas with 
seismic activity. They are built mainly underground and are 
going and fixed in the extensive network of different kinds of 
horizontal and vertical openings (mine tunnels). In 
mountainous areas prone to seismic shocks, various tunnels: 
road, rail and hydro are built and extensively exploited. 

Underground structures in seismically active regions must 
meet the requirements of earthquake resistance. But this 
design is a complicated task. Complexity is due to the fact 
that the seismic loads are classified by these dynamic effects, 
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and accurate prediction of the magnitude and nature of them 
can not advance because of the complex inhomogeneously- 
layered structure of the rock massif. Under these conditions 
the critical analysis of experimental data and field 
observations on the behavior of underground structures 
during earthquakes has great meaning. 

On the base of natural and technogenic conditions and on 
the base of nature of impact of seismic effects on 
underground structures for various purposes we can 
distinguish two-class facilities:  shallow-founded and 
deep-founded. Moreover, the allocation of shallow-founded 
structures in a particular class is due to the fact that the 
calculation of their seismic stability is necessary to conduct 
an impact not only from volume waves but also from surface 
waves. It should also be considered the waves reflected from 
Earth Surface. 

The deep-founded structures can be associated with the 
great complex of mines, as well as transport and hydraulic 
tunnels with deep foundations, cavity-gas reservoirs, leached 
in salt deposits, etc. The influence of earthquakes, industrial 
explosions to the stress-strain state of deep-founded 
structures is associated only with the direct influence of the 
longitudinal and transverse waves, without any influence of 
the surface. 

Thus, the basic idea of current research is to take into 
account more fully the effects of applying the dynamic stress 
field related to wave propagation, onto the static stress field, 
which was formed in the inclined-layered rock mass near 
horizontal underground structures of arbitrary foundation 
and form in the process of their penetration, fixing, and 
operation under the impact of the dynamic effects. So we 
have possibility to determine sequentially the static and 
dynamic loads on structural elements of buildings. The most 
fully explored are the problem of determining the static stress 
field in the rock mass near the facilities. The main difficulties 
arise in calculating the dynamic fields of stresses and moving 
near a variety of structures due to wave processes in layered 
rock massif.  

II. REVIEW OF RESEARCHES OF THE PROBLEMS OF WAVE 

DIFFRACTION ON THE NON-HOMOGENEITIES  

To make an analysis of existing research in the field of 
wave diffraction on the non-homogeneities and in area of 
problems of seismic stability of underground structures, we 
decided do not stop in detail on the description of researches 
of scientists of the past century such as G.I. Petrashen [1], 
Delesan E., D. Ruaie [2], Zh. S.  Erzhanov, Sh.M. Aitaliyev,  
L.A. Alekseyeva [3], A.N. Guz, V.D. Kubenko, M.A. 
Cherevko, V.G. Golovchan, N.A. Shulga [4,5,6], A.S. 
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Kosmodamiansky, V.I. Storozhev, L.B. Obodovsky, [7,8], 
Y. Pao, C.C..Mow, L.J. Mente, Chao C.C. [9,10,11], Banaf,  
Goldsmith[12],  Sh.G. Napetvaridze[13], N.N Fotiyeva [14], 
J.K. Masanov, [15], S.G. Lekhnitsky [16], G.N.Savin [17], 
S.A. Kaloerov, [18], Okamoto C, Kato K., Hamada M.[19], 
Walter Wittke, Berndt Pierau,  Claus Erichsen [20] and their 
followers which have become part of the fundamental 
foundations of mechanics for issues of propagation and 
diffraction of waves in isotropic and anisotropic media, rock 
mechanics, and for problems of seismic stability of 
underground structures. 

We would like to stop on describing the problems of wave 
diffraction in media with non-homogeneities(or cavities) and 
on the issues of rigorous analytical methods for their studies, 
which take place in recent years. 

The problem of wave scattering on the non-homogeneities 
and cavities, with using of the methods of the complex 
variable theory and the method of boundary integral 
equations are studied by the authors J. Hu, F. Khan, J. Louis, 
[21, 22]. The massif surrounding the object is considered as 
isotropic [21] or orthotropic [22]. 

The work of authors Guoqing Wang, Dianku Liu [23] 
describes the research of the distribution and scattering of 
SH-waves on the multiple circular cavities in half-space. 
They considered an isotropic medium, the method of 
multipolar coordinate system,   scattering methods as well as 
techniques of functions for movement of coordinates.  The 
problem of scattering and propagation of shear waves in the 
half-space is transformed into the problem of wave 
propagation in space. The infinite system of linear equations 
is solved by the reduction method. 

Multiply of isotropic medium is taken into account by 
Jianwen Liang, Hao Zhang, Vincent W. Lee [24, 25]. In the 
works they studied the solutions in ranks for analysis of 
displacements on the surface in the presence of underground 
tunnels in an isotropic medium under the influence of 
SV-waves [24], and PP-waves [25]. Solutions are sought in 
the Fourier-Bessel functions. The numerical results show the 
influence of underground tunnels onto the displacements on 
the surface. 

The paper of Gai Bing-zheng [26] is devoted to problems 
of using of complex functional method for solving problems 
of diffraction of elastic waves and finding the dynamic 
stresses. He considered the case of a simply-connected, 
multiply connected isotropic medium and the problems of 
cracks. 

In their paper [27] Liu Diankui and Liu Hongwei consider 
special Green's functions for the study of cylindrical cavity in 
an isotropic half-plane diffraction of SH-waves. By using of 
Earl, Fredholm integral equations they transform half-plane 
into plane. 

In the paper of Xu Ping, XIA Tang-dai, HAN Tong-chan 
[28] we can study the problems of scattering of the 
compression wave (PP-) in water-saturated isotropic 
medium. As a model, the authors take the model of Biota and 
get the amplitude equations for the potential functions of the 
scattering and reflection of waves, which are solved 
numerically and analyzed. 

Kim, D., C. Conaghai [29] investigated a method to reduce 
seismic damage in the tunnel through the reinforcement of 
the tunnel soft and thin linings. It is shown that the tunnels 
deep in the rocks with a soft and thin linings has only one 

degree of freedom, which allows to evaluate the insulating 
effect with a limited number of key parameters. 

V. W. Lee , M. E. Manoogian, S. Chen [30] studied the 
problem of dynamic state firmly embedded rigid foundation 
in the presence of an underground rigid circular tunnel at the 
case of SH-wave diffraction in the isotropic medium. By 
means of exact analytical solutions for two-dimensional 
SH-waves near the tunnel and the rigid foundation the 
authors analyzed displacements and stresses from the impact 
of different dynamic effects. The test of the displacement 
amplitude shows a complex wave distribution. 

In the works [31] Gao Guang-yun, Li Zhi-yi1, Qiu Chang 
investigated the effects of Rayleigh wave propagation, based 
on analytical relations of Lamb and on the theory of elastic 
wave scattering. They researched the scattering of Rayleigh 
waves from multiple irregular obstacles in an isotropic 
medium. 

There are many others research in the area of wave 
diffraction in different media but the scattering and 
diffraction of waves in rock massif with non-homogeneities 
has many special characteristics that we should take into 
account.  

A detailed review of the literature above showed that in 
research of the dynamics of underground structures the issues 
of diffraction of waves on the underground facilities in 
anisotropic layered media are not fully explored. In 
particular, the problems of diffraction of elastic waves in 
transtropic layered media and dynamic stability of arbitrarily 
oriented underground facilities, development of which takes 
place under the current conditions of underground 
construction are insufficiently studied. 

In this paper we try to fill this gap in research and consider  
the dynamic stress-strain state of horizontal underground 
structures which are simulated by cavities in an anisotropic 
layered medium under the conditions of a stationary 
diffraction of elastic longitudinal (PP) and transverse (SV, 
SH) waves. 

III. DIFFRACTION OF ELASTIC WAVES ON THE ARBITRARY 

DEEP-FOUNDED CAVITIES IN THE ANISOTROPIC ROCK MASSIF  

Let us consider the modeling of anisotropic rock massif by 
presenting it as a small-layered transtropic massif with 
inclined plane of isotropy, the equations of which satisfy the 
generalized Hooke's law [15]: 

     D , 

    ;6,...,2,1,,  jibD ij            (1) 

   332322131211 ,,,,,   , 

03424

145646352515




bb

bbbbbb
                

where ijb , 6,1, ji , - the elasticity coefficients, which 

depend on the elastic constants of the environment 1E , 2E , 

1  , 2  , 2G and the angle  for inclined plane of isotropy . 

Objects of underground construction can be modeled by 
cavities in different forms, from circular to noncircular, 
through the use of the mapping function [32]: 

)()(~
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In the case of falling the stationary waves of different 
nature and types - longitudinal and transverse, wave 
equations can be represented as [33]: 

tieuu  * , )](exp[ 2211

** xnxnkiUu            (3) 

Wave equations (3) differ only by wave amplitude and by 
wave number. 

Schematically, the process of falling the stationary wave to 
transtropic massif with non-homogeneity (or, in general, 
non-homogeneities) can be shown in Figure 1. 

 
Fig.1.   The scheme of propagation of elastic waves in a layered transtropic 
massif with non-homogeneities  

Let’s consider the general case of multiple cavities of 
arbitrary profile simulating the deep-founded horizontally 
extended pipelines, mines, oil wells and other underground 
structures (Fig. 1). Depending on the conditions of fixing the 
boundaries of the cavities we can solve the first and the 
second fundamental problems of mechanics, namely, we 
consider the cases when the boundary of the cavities is free of 
load (first fundamental problem) and the boundary of the 
cavities is absolutely rigidly fixed (second fundamental 
problem). For the different conditions of fixing the 
boundaries we can put different boundary equations. 

In particular, for the first fundamental problem the 
conditions are imposed in terms of stresses: 

0)( * 
lГnnnn  , 0)( *

~~ 
lГnn 

 , 0)( *

3
~

3
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lГ
  (4) 

For the second fundamental problem conditions depend on 
the displacements: 

0)( * 
lГii uu                                (5) 

IV. SOLUTIONS FOR THE FIRST AND THE SECOND 

FUNDAMENTAL PROBLEMS 

Let’s study the issues of wave diffraction in the rock massif 
with non-homogeneities based on the proposed assumptions.  
We can suggest that this problem may be solved by 
transforming the equations of motion, generalized Hooke's 
law, and Cauchy equations [33] to the equations of the 
following forms: 
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- for longitudinal and transverse (PP- and SV-) waves   

and   
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1      - angular frequency. 

- for shift (SH-) waves. 
In the case of consideration of the state of plane and 

antiplane deformations of cavities in transtropic massif in the 
coordinate system 321 xxOx , the equations (6) and (8) using 

the following affine transformation: 
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where 21  i (at that 02  - positive 

definite symmetric matrix) - the root of the characteristic 
equation of the second degree – may be reduced to the 
Helmholtz equation in matrix form in the coordinates 
( )(
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In the special case when the elastic coefficients 16b =0, 

26b =0 (the case of horizontal and vertical stratification of the 

massif) equations (10.1) can be split. As a result we obtain 
the following two equations: 
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In general, the points )(i

lO , 3,2,1i  that are centers of 

local coordinate systems( )(

1

i

lx , )(

2

i

lx ), 3,2,1i , in the areas of 

lS ( Ll ,1 ) ( where  L-number of cavities) under the 

transformation (9) become the points )(i
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will be considered as the beginning of the local Cartesian 
system ( )(

1

i

l , )(

2

i

l ), 3,2,1i  with axes oriented along the 

coordinate axes ( )(

1

i

l , )(

2

i

l ) and polar coordinates ( )(i

lr , )(i

l ) 

with the readout of the polar angle )( i

l  from the axis 
)(i

lO )(

1

i

l . 

Solutions of equations in displacements 
 321 ,,}{ uuuuu i    (10.1.1) and (10.2), in accordance 

with the principle of generalized superposition [4] can be 
represented as an infinite series for the unknown coefficients 
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nlA , 3,2,1i , and the cylindrical 1st kind Hankel functions  
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By using the theorems of addition of cylindrical functions 
[33, 34] we can obtain expressions  }{ iuu  , 3,2,1i in any 

of the coordinate system( )( i

lr , )( i

l ):  
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( )( i

lqR , )( i

lq ) - the coordinates of the point )(i

lO  in a coordinate 

system ( )( i

qr , )( i

q ). 

In expressions (11) as a cylindrical function we use the 
first kind Hankel function, since the time dependence is given 

by the multiplier 
tie 
, and solutions of this problem is 

characterized by the wave, stretching to infinity. 
Appropriate to representation of displacements 

 3

1
iiuu in the form (11), the expressions for the stress 

components can be found using the generalized Hooke's law 
and the corresponding transformations in the following 
forms: 
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Now, using the mapping function (2), affine 
transformations (9), we can find the expressions for points on 
the contours of the cavities: 

- In case of non-circular cavity: 
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- In case of circular cavity: 
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To represent the complex potentials in (11) on the contour 
of cavities we need to use the theorem of addition of 
cylindrical functions, requiring the implementation of 
following conditions: 
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These conditions are satisfied, because the matrix 2 >0 

(positive definite), and the parameter 3 is greater than zero, 
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consider the fact that the task is external, i.e. parameter 1 , 

hence the process is convergent and the following expression 
can be implemented: 
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Now, applying the theorem of addition of cylindrical 
functions sequentially, we can write the representation of 
complex functions for points on the contour of the cavities: 
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where in the case of non-circular profile of the cavity we can 
use the following relations: 
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In case of circular cavities the expressions above can be 
transformed into much easier relations  
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Now displacements 
lГiu )(  on the contours of cavities can 

be represented by the expression 
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By using the formula for the normal and tangential stresses 
on the platform with the normal (n1, n2), we transform the 
boundary conditions (4), (5) to the following equations: 
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Contour expressions for stresses by using the contour 
relations for displacements and formulas for contour 
functions of stresses [33, 34, 35] may be defined as 
following:  
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where )(i

npl , )(i

npl , )(i

npl , )(i

npl  - complex functions  for different 

forms of cavity contours that to be expressed through the 
cylindrical functions [33 , 34]. 

Relations for the displacements and stresses on the contour 
of the cavity on the incident wave Гnn )|'~(| *2  , 
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may be obtained by using the formula of expansion of 
exponential functions in the harmonic series: 
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where )(i

pQ , )(i

p , )(i

p  - complex functions that include 

cylindrical function expressions[33,34]. 

By using the boundary conditions (4.1) and (5.1) for the 
first and second fundamental problems, and by equating 

coefficients on the equal degrees of  
pie , we can obtain a 

system of linear algebraic equations for the unknown 
coefficients )(i

nlA  , 
)(i

nls  that can be resolved by reduction 

method [33, 34, 35]: 
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V. ANALYSIS OF RESULTS 

To analyze the stress-strain characteristics of the 
cavities in the transtropic massif we considered siltstone with 
elastic parameters 1E =1,074*105 kg/cm2, 2E = 523*105 

kg/cm2, 1 =0,413 , 2 =0,198 , 2G =0,12*105 kg/cm2, the 
elastic wave extends perpendicular to the longitudinal axis of 
the cavities at an angle of  = 0 , frequency changes in the 
range from 1 to 100 Hz. 

In accordance with the obtained theoretical solution we 
develop an algorithm and software by using Programming 
Environment MatLab 7.0 for the calculation of values of 
stresses and displacements near the cavities of different 
forms (from circular to non-circular). We tested program to 
meet the boundary conditions with an error less than 1% for 
the amplitude values of the stresses Гnn )( , Гn )(  , Г)( 3  

in reflected waves with respect to the corresponding 
amplitude values of stresses in the incident wave at the case 
of solving of the first fundamental problem as well as we 
checked program to meet the boundary conditions for the 
displacements in reflected waves with respect to the 
amplitude values of the displacements in the incident wave - 
in the case of the solving second fundamental problem. It has 
also been tested the compliance of our results with the known 
results of the similar research in area of diffraction of elastic 
waves. 

Let us give you an example of research of impact of 
different kinds of waves (PP-, SV-,SH-) into the stress-strain 
state (Fig.2).  

 

 
Fig.2.  Impact of different kinds of waves into the stress-strain state of 
cavities in transtropic rock massif (first fundamental problem) 

 

Figure 2 shows the distribution of displacements for 
different kinds of waves at the case of solving the first 
fundamental problem (angle of plane of isotropy and angle of 
falling waves are equal each other - 0  , frequency 

 =15 Hz.). 
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VI. CONCLUSION 

In conclusion we can add that this work also contains 
many other research results regarding to analyzing the 
stress-strain behavior of rock massif depend on the various 
physical and geometrical parameters of massif, waves and 
cavities. We considered the influence of cross-sectional form 
of cavities, their mutual influence, impact of changing angles 
of the plane of isotropy in rock massif, and changing of the 
angle of incidence and frequency of elastic waves onto the 
stress-strain state of transtropic massif with cavities. 

We also can add that this work is a part of researches that 
are held in the Kazakh-British Technical University and in 
the Institute of Mechanics and Engineering Science named 
after U. A. Zholdasbekov,  Republic of Kazakhstan over the 
past decades [32, 33, 34, 35, 36]. 
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