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Abstract—An efficient Eulerian numerical method is con-
sidered for simulating multiphase flows governed by general
equation of state (EOS). The method allows interfaces between
phases to diffuse in a transitional region over a small number of
computational cells. The seven-equation model of Saurel and
Abgrall [Saurel, R. and Abgrall, R., A multiphase Godunov
method for compressible multifluid and multiphase flows, J.
Comput. Phys. 150 (1999), 425 - 467] is employed to describe
the compressible multiphase flows. For one dimensional flow the
model which is strictly hyperbolic consists of seven equations.
These equations are the volume fraction evolution equation
and the conservation equations (mass, momentum and energy)
for each phase. The solution of the hyperbolic equations is
obtained using HLL Riemann solver. In the present work
various equations of state (EOSs) have been discussed. Error
analysis, number of time steps and CPU time comparisons
between EOSs have been presented. Well known test cases are
examined to simulate compressible as well as incompressible
multiphase flows.

Index Terms—compressible multiphase flow, hyperbolic
PDEs, Riemann problem, Godunov methods, shock waves, HLL
Riemann solver.

I. INTRODUCTION

THE study of multiphase flows is very important to
investigate natural phenomena and several engineering

applications which are encountered in our everyday life.
This importance has led researchers to build up different
mathematical models to simulate such flows. For example,
Baer and Nunziato [1] have proposed the seven-equation
model with two velocities and two pressures for the study
of deflagration-to-detonation transition in reactive granu-
lar materials. Following the assumptions of [2], a similar
model was obtained by Saurel and Abgrall [3] to study
two compressible fluids. Allaire et al. [4] have proposed
a five-equation model with both a single velocity and a
single pressure for the numerical simulation of interfaces in
two-phase flows, assuming that both phases are immiscible
with no phase change and mass transfer at the interface.
Two simple models have been derived from Baer-Nunziato’s
model by Kapila et al. [5], the first one is similar to that
of [4]: i.e. the five-equation model and the six-equation
model with a single velocity and two pressures. Murrone
and Guillard [6] have derived another five-equation model
from the model of [3] to study compressible two-phase flow
problems. Many other models have been suggested to study
wide range of multiphase flows and details on these models
can be found in, for example [7], [8].

A great effort has been made to construct numerical meth-
ods for simulating multiphase flows. In general, there are
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two main approaches; the first is the Sharp Interface Method
(SIM) in which the numerical diffusion is not allowed at
the interface and the second is the Diffuse Interface Method
(DIM) in which the numerical diffusion at the interface is al-
lowed. This feature is necessary for capturing discontinuities,
for example, see [3], [9], [10], [11] for details.

During the last three decades, many works have been
proposed for carrying out investigations on compressible
multiphase flows. In these works, different models and
numerical methods have been implemented with various
equations of state [3], [12], [13], [14], [15]. However, none
of these studies have included comparison studies between
these equations of state. In this work, we attempt to compare
between stiffened gas (SG) EOS and van der Waals EOS for
gas and stiffened gas (SG) EOS and Tait’s EOS for water
in terms of accuracy and the computational cost to obtain
the solution. The compressible multiphase flow model of
[3] and DIM with Godunov’s approach using HLL Riemann
solver described in [3] have been used as a platform in this
study. This paper is organised as follows: in section II the
seven-equation model is written and closure relations are
given; the numerical method used is mentioned in section III;
the results of the simulations obtained using the developed
numerical application are verified via classical benchmark
test problems and comparisons between equations of state in
terms of time steps and CPU time are presented in section
IV. Finally conclusions are drawn in section V.

II. THE MULTIPHASE FLOW MODEL

The compressible multiphase flow model considered in
this work is a full non-equilibrium model because each phase
has its own pressure, velocity, etc. This model is known as
the parent model. The model was proposed for the first
time by Saurel and Abgrall [3]. It is obtained from the
Navier-Stokes equations for individual phases by applying
the assumptions of [2] for incompressible two-phase flows
and neglecting all dissipative terms everywhere except at
the interfaces. The model is strictly hyperbolic and non-
conservative [3]. It consists of seven equations that are
the conservation equations (1a - 1c) (mass, momentum and
energy) for each fluid, and the non-conservative equation (1d)
for volume fraction evolution of one of the phases, which
is proposed by Ishii [16] to relate the phases together. The
general model without heat and mass transfer, but with source
and relaxation terms can be written in the following form:
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∂αkρk
∂t

+
∂αkρkvk
∂x

= 0, (1a)

∂αkρkvk
∂t

+
∂(αkρkv

2
k + αkpk)

∂x
=

Pi
∂αk
∂x

+ λ(uk − uk′) + αkρkg, (1b)

∂αkρkEk
∂t

+
∂(αkρkEkvk + αkvkpk)

∂x
=

PiVi
∂αk
∂x

+ Viλ(uk − uk′)

− µPi(pk − pk′) + αkρkgvk, (1c)
∂αk
∂t

+ Vi
∂αk
∂x

= µ(pk − pk′). (1d)

where: g is the gravitational force; Pi, Vi are the interfacial
pressure and velocity, respectively; αk, ρk, vk, pk, Ek, are
the volume fraction, the density, the velocity, the pressure
and the total energy for the phase k, respectively; k′ is the
other phase; Ek = ek+ 1

2v
2
k where ek is the specific internal

energy of the phase k.
The terms Pi ∂αk

∂x and PiVi ∂αk

∂x result from the averaging
process and appear in the momentum (1b) and energy (1c)
equations of the system (1). They are non-conservative terms
because they prevent the system from being in the divergence
form. The terms µPi(pk − pk′) and µ(pk − pk′) in (1c) and
(1d), respectively, represent the pressure relaxation terms.
The term λ(uk−uk′) in (1b) and (1c) represents the velocity
relaxation term. The pressure and velocity relaxation terms
respectively are responsible for bringing the relaxed pressure
and velocity of both fluids to common values that fulfil the
interfacial pressure and velocity conditions between fluids.
The parameter µ and λ control the rate at which the pressures
and velocity of both fluids reach the equilibrium state. More
details are given in [3], [9]. The last terms in the momentum
(1b) and energy (1c) equations are related to the gravitational
force. The effect of the gravitational force is not taken into
account in the shock tube but its effect is considered in the
water faucet test. The instantaneous pressure and velocity
relaxation processes have made the parent model applicable
for a wide range of applications, for instance, simulations of
interfaces separating phases, cavitating flows, detonation and
so on.

A. Closure Problem

Due to the averaging process used to derive the parent
model from the Navier-Stokes equations, extra terms appear
in the model to represent the transfer processes that may take
place at the interface. To close the system (1) the number of
equations must equal the number of unknown variables. Thus
the following closure relations are considered:

1) Adding the equation (1d) which represents the volume
fraction evolution obtained by the averaging procedure of
[2]: The existence of this equation has made the model well
posed.

2) The volume fraction of both phases are constrained as
follows ∑

k

αk = 1. (2)

3) Each phase is governed by its equation of state.

4) The mixture pressure at the interface is given as follows

Pi =
∑
k

pkαk. (3)

5) The mixture velocity at the interface is given by

Vi =

∑
k αkρkvk∑
k αkρk

. (4)

B. Equations of State

Some multiphase models lose their hyperbolicity due to
negative squared sound speed produced when cubic EOSs
are used, such as van der Waals EOS. To overcome this
issue each phase has to be governed by its own EOS [17].
The advantage of this model is that it is able to deal with
different EOSs. For example, one can use van der Waals or
stiffened EOS to govern gases and Tait’s or stiffened EOSs
to govern water. These EOSs can be written in the form of
Mie-Grüneisen:

pk(ρkek, ρ) = (Γk(ρk) − 1)ρkek − Πk(ρk) (5)

where Γk(ρk) and Πk(ρk) are functions to be determined
according to the EOS in consideration as we will see.

1) Ideal gas EOS: This EOS in terms of pressure can be
written as follows:

pk = (γk − 1)ρkek (6)

where γk is the adiabatic specific heat ratio and depends on
the gas under consideration. By writing the ideal gas EOS (6)
in the form of Mie-Grüneisen EOS (5), we have the following
equations:

Γk(ρk) = γk,

Πk(ρk) = 0.

2) Stiffened gas (SG) EOS : This EOS can be used for
both liquids and gases. It takes the following form:

pk = (γk − 1)ρkek − γkπk (7)

By writing the SG EOS (7) in the form of Mie-Grüneisen
(5) EOS, we have the following equations:

Γk(ρk) = γk,

Πk(ρk) = γkπk.

3) Tait’s EOS: This EOS is particularly used for water
and can be written in the following form as given in [15]:

pk = (γ − 1)ρe− γ(B −A) (8)

where A,B and γ are constant parameters depending on fluid
under consideration. By writing Tait’s EOS (8) in the form
of Mie-Grüneisen (5) EOS we have the following equations:

Γk(ρk) = γ,

Πk(ρk) = γ(B −A).
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4) van der Waals gas EOS: This EOS is written in the
following form:

p =

(
γ − 1

1 − bρ

)
(ρe− π + aρ2) − (π + akρ

2) (9)

where a, b, γ and π are constants parameters, they depend on
the gas being considered. This EOS may be rewritten in the
form of Mie-Grüneisen EOS (5) as

p =

[(
γ − 1

1 − bρ

)
+ 1 − 1

]
ρe

−
[
1 −

(
γ − 1

1 − bρ

)]
aρ2

+

[(
γ − 1

1 − bρ

)
+ 1

]
π (10)

Thus, we have the following equations:

Γ(ρ) =

(
γ − 1

1 − bρ

)
+ 1

Π(ρ) =

[
1 −

(
γ − 1

1 − bρ

)]
aρ2

+

[(
γ − 1

1 − bρ

)
+ 1

]
π

III. NUMERICAL METHOD

The existence of the non-conservative terms in equations
(1b, 1c), the non-conservative equation of the volume fraction
evolution (1d) and the relaxation and source terms in the
system (1) has made its numerical solution very difficult.
Therefore, the solution can be obtained by splitting the
model into two operators. The first of these operators is the
hyperbolic operator L4th , which consists of the left hand side
of the system (1) with the non-conservative terms appear in
the right hand side of the momentum and energy equations
(1b) and (1c). The second of these operators is the source and
relaxation operator L4ts which consists of the relaxation and
source terms appear in the right hand side of the momentum,
energy and volume fraction equations (1b), (1c) and (1d),
respectively. These operators may be solved in succession
by implementing the Strang splitting technique which may
be written as follows:

Un+1
i = L4ts L4th Uni (11)

where Un+1
i and Uni are the conservative vector at time

n+ 1 and n, respectively. The hyperbolic operator of the
system (1) with gas and liquid phases may be written in the
following form:

∂U

∂t
+
∂F (U)

∂x
= H(U)

∂αg
∂x

. (12a)

∂αg
∂t

+ Vi
∂αg
∂x

= 0 (12b)

where U = [αgρg, αgρgvg, αgρgEg, αlρl, αlρlvl, αlρlEl]
T ,

F (U) = [αgρgvg, αgρgv
2
g + αgPg, vg(αgρgEg +

αgPg), αlρlvl, αlρlv
2
l + αlPl, vl(αlρlEl + αlPl)]

T and
H(U) = [0, Pi, PiVi, 0, −Pi, −PiVi]T .

In this work, the DIM is implemented with second order
accuracy based on Godunov’s approach to solve the hy-
perbolic operator using HLL approximate Riemann solver
described in [3] to calculate the intercell fluxes. Then the
velocity and pressure relaxation are solved as given in [3],
[18].

TABLE I
THE TIME STEPS AND THE CPU RUN TIME FOR WATER-AIR SHOCK

TUBE, (I) WATER AND AIR ARE GOVERNED BY SG EOS, (II) WATER IS
GOVERNED BY SG EOS AND AIR IS GOVERNED BY VAN DER WAALS

EOS.

I II
Mesh Time step CPU time (s) Time step CPU time (s)

100 207 0 212 0
200 409 0 419 0
500 1014 1 1041 1

1000 2024 3 2077 3
2000 4044 13 4149 14
5000 10103 77 10365 82

IV. NUMERICAL RESULTS

The considered test problems were chosen to verify the
performance of the developed second-order computational
algorithm. At the same time, they were used to compare
between the SG and van der Waals EOSs for air and SG and
Tait EOSs for water. The CFL number is always set equal
to 0.6.

A. Water-air Shock Tube Test
The standard water-air shock tube test problem of 1m

length filled with nearly pure water on the left and nearly
pure air on the right. The water is under high pressure and
air is at atmospheric pressure and both fluids are at rest. The
initial discontinuity which separates liquid and gas is located
at x = 0.7 m and the initial conditions, taken from [3], are
as follows:

(ρ, u, p) =

{
1000, 0.0, 109 if x ≤ 0.7
50, 0.0, 105 if x > 0.7

In this test a strong shock wave with a pressure ratio of
10,000 propagates from a high density fluid to a low density
fluid. The water is governed with SG EOS whereas air is
governed with SG and van der Waals EOSs. The constant
parameters for SG EOS are as follows: γ = 1.4, π = 0 for air
and γ = 4.4, π = 6×108 for water. The van der Waals EOS
constant parameters are as follows: a = 5, b = 10−3, γ =
1.4 and π = 0. Two simulations of water-air shock tube
were conducted using different mesh resolutions. In the first
simulation, curve (I), both fluids are governed by SG EOS
and in the second simulation, curve (II), water is governed by
SG EOS and air is governed by van der Waals EOS. Figure
1 shows the results of volume fraction (a), mixture density
(b), velocity (c) and pressure (d) using 500 cells compared
to the exact solution at time t = 229µ s. It can be observed
that the shock position obtained in the first simulation, curve
(I), is closer to the exact solution than that obtained in the
second simulation, curve (II). Table I gives the computational
costs for both simulations using different mesh cells. It can
be seen that at mesh resolution of 2000 and higher van der
Waals EOS needs more CPU time than SG EOS to obtain
the solution. Also, it can be seen that van der Waals EOS
needs more time steps than SG EOS to obtain the solution
for all mesh resolutions.

B. Gas-air Shock Tube Test
In the gas-air shock tube test problem the initial discon-

tinuity which separates the two gases is located at x = 0.2
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Fig. 1. Water-air shock tube results: curve (I) water and air are governed
by SG EOS, curve (II) water is governed by SG EOS and air is governed
by van der Waals EOS.

m. The gas on the left side is given an initial velocity to the
right. The initial conditions, taken from [19], are as follows:

(ρ, u, p) =

{
3.984, 27.355, 1000 if x ≤ 0.2
0.01, 0.0, 1 if x > 0.2

A strong shock wave with a pressure ratio of 1000 propagates
from a high density gas to a low density gas. The constant
parameters for both EOSs for air are as given in the previous
test. The SG EOS parameters for the gas on the left side are
γ = 1.667 and π = 0. Two simulations of gas-air shock tube
were conducted using different mesh resolutions. In the first
simulation, curve (I), both gases are governed by SG EOS,

TABLE II
THE TIME STEPS AND THE CPU RUN TIME FOR GAS-AIR SHOCK TUBE,
(I) GAS AND AIR ARE GOVERNED BY SG EOS, (II) GAS IS GOVERNED

BY SG EOS AND AIR IS GOVERNED BY VAN DER WAALS EOS.

I II
Mesh Time step CPU time (s) Time step CPU time (s)

100 665 0 665 0
200 1343 0 1343 0
500 3351 2 3351 2

1000 6697 10 6697 10
2000 13389 40 13389 42
5000 33465 250 33465 263

while in the second simulation, curve (II), gas is governed
by SG EOS and air is governed by van der Waals EOS.
Figure 2 shows the results of volume fraction (a), mixture
density (b), velocity (c) and pressure (d) using 500 cells
compared to the exact solution at time t = 0.01 s. It can
be noticed that both simulations are identical. Table II gives
the computational costs for both simulations of gas-air shock
tube using different mesh cells. It can be seen that at mesh
resolution of 2000 and higher van der Waals EOS needs
more CPU time than SG EOS to obtain the solution. But
both EOSs need the same time steps to obtain the solution
for all mesh resolutions.

C. Water-faucet Test

This test has been used to show the ability of this
compressible model to solve incompressible flows. It was
proposed by Ransom [20]. The test consists of a 12m vertical
tube that contains a water column that is surrounded by air.
Water leaves the faucet at vo = 10 m/s and αo = 0.8 under
the effect of gravity and the water narrows as it moves down.
The velocity relaxation process is not performed because
each fluid has a different velocity direction. The initial
conditions are as follows

(ρ, u, p, α) =

{
1000, 10, 105, 0.8 Water
1, 0, 105, 0.2 Air

(13)

Tait’s and SG EOSs parameters for water are γ = 7.15, B =
3.31 × 106 Pa and γ = 4.4, π = 6 × 106 Pa, respectively.
Four simulations were conducted for this test using different
mesh resolutions. In the first simulation, curve (I), water
and air are governed by SG EOS; in the second simulation,
curve (II), water is governed by SG EOS and air is governed
by van der Waals EOS; in the third simulation, curve (III),
water is governed by Tait’s EOS and air is governed by
SG EOS; in the fourth simulation, curve (IV), water is
governed by Tait’s EOS and air is governed by van der
Waals EOS. All results are obtained at t = 0.4 s. Figure 3
shows the results of gas volume fraction and water velocity
for the first simulation compared to the exact solution. It
can be noticed that increasing of cells more than 1500 cells
would not improve much the results. Figure 4 shows the
results of gas volume fraction and water velocity for the
four simulations using 500 cells. To compare the accuracy
of EOSs implemented in the simulations, the error norm L2

is calculated for gas volume fraction and water velocity using
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Fig. 2. Gas-air shock tube results: curve (I) gas and air are governed by
SG EOS, curve (II) gas is governed by SG EOS and air is governed by van
der Waals EOS.

the following form

L2 =

√∑N
i (xi,ex − xi,num)2

N
(14)

where the subscripts ex and num denote the values obtained
from the exact solution and the numerical solution respec-
tively, and N is the number of mesh cells. Figure 5 (a) shows
the error norm of gas volume fraction for the four simulations
using different mesh cells; the accuracy of all simulations,
curves (I), (II), (III) and (IV), is the same for all resolutions
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Fig. 3. Water-faucet results using different mesh resolutions both fluids
are governed by SG EOS: (a) gas volume fraction and (b) water velocity.

TABLE III
THE TIME STEPS AND THE CPU RUN TIME FOR WATER-FAUCET, (I)

WATER AND AIR ARE GOVERNED BY SG EOS, (II) WATER IS GOVERNED
BY SG EOS AND AIR IS GOVERNED BY VAN DER WAALS EOS.

I II
Mesh Time step CPU time (s) Time step CPU time (s)

100 2130 0 2133 0
200 4257 1 4263 1
500 10639 8 10860 9

1000 21276 30 22108 37
1500 31915 69 33472 83

except at 1500 cells where Tait’s EOS produces overshot
with Both SG and van der Waals EOSs for air, curves (III)
and (IV). Figure 5 (b) shows that the error norm of water
velocity is the same for all simulations for all mesh cells.
Tables III and IV give the computational costs for the four
simulations of water-faucet test using different mesh cells. It
can be seen that SG and Tait’s EOS for water need the same
number of time steps and CPU time to obtain the solution
but van der Waals EOS needs more number of time steps
and CPU time than SG EOS for air to obtain the solution
for relatively higher mesh.

V. CONCLUSION

This study has considered the parent model for the simula-
tions of compressible as well as incompressible multiphase
flows with various EOSs. It has been noticed that van der
Waals EOS needs a greater number of time steps and more
CPU time than SG EOS for air to obtain the solution in all
test problems, SG and Tait’s EOSs for water need almost the
same number of time steps and the same CPU time when air
is governed by SG or van der Waals EOS. The compared
results show that the studied EOSs have relatively the same
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Fig. 4. Water-faucet (a) for volume fraction (b) for water velocity. Curve
(I) water and air are governed by SG EOS, curve (II) water is governed by
SG EOS and air is governed by van der Waals EOS, curve (III) water is
governed by Tait’s EOS and air is governed by SG EOS, curve (IV) water
is governed by Tait’s EOS and air is governed by van der Waals EOS.
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Fig. 5. Water-faucet L2 error norm (a) for volume fraction (b) for water
velocity. Curve (I) water and air are governed by SG EOS, curve (II) water
is governed by SG EOS and air is governed by van der Waals EOS, curve
(III) water is governed by Tait’s EOS and air is governed by SG EOS, curve
(IV) water is governed by Tait’s EOS and air is governed by van der Waals
EOS.

accuracy and are in good agreement in all simulations with
the exact and the reference results.

TABLE IV
THE TIME STEPS AND THE CPU RUN TIME FOR WATER-FAUCET, (III)
WATER IS GOVERNED BY TAIT’S EOS AND AIR IS GOVERNED BY SG

EOS, (IV) WATER IS GOVERNED BY TAIT’S EOS AND AIR IS GOVERNED
BY VAN DER WAALS EOS.

III IV
Mesh Time step CPU time (s) Time step CPU time (s)

100 2130 0 2133 0
200 4257 1 4263 1
500 10638 8 10866 9

1000 21274 30 22124 37
1500 31912 69 33500 83
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