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Abstract—Energy conservation is one of the major concerns 

in the modern high tech era due to the limited amount of 

energy resources and the increasing cost of energy. Predicting 

an efficient use of energy in thermal systems like heat 

exchangers can only be achieved if the second law of 

thermodynamics is accounted for. The performance of heat 

exchangers can be substantially improved by many passive 

heat transfer augmentation techniques. These latters permit 

to improve heat transfer rate and to increase exchange 

surface, but on the other side, they also increase the friction 

factor associated with the flow. This raises the question of how 

to employ these passive techniques in order to minimize the 

useful energy. The objective of this present study is to use a 

porous substrate attached to the walls as a passive 

enhancement technique in heat exchangers and to find the 

compromise between the hydrodynamic and thermal 

performances under turbulent flow conditions, by using a 

second law approach. A modified k- ε model is used to 

simulate the turbulent flow in the porous medium and the 

turbulent shear flow is accounted for in the entropy 

generation equation. A numerical modeling, based on the 

finite volume method is employed for discretizing the 

governing equations. Effects of several parameters are 

investigated such as the porous substrate properties and the 

flow conditions. Results show that under certain conditions of 

the porous layer thickness, its permeability and its effective 

thermal conductivity the minimum rate of entropy production 

is obtained. 

 

Index Terms—Energy conservation, Heat exchanger, 

second law approach, numerical modeling  

 

I. INTRODUCTION 

he depleting energy resources and increasing energy 

costs call for more effective use of available energy. 

Heat transfer and the design of heat transfer equipment 

continue to be an important issue in energy conservation. 

Therefore, developing and improving heat exchanger 

effectiveness have been the main attempts of many studies. 

Developing and improving heat exchanger effectiveness 

have been the main attempts of many studies. Owing to the 

fact that enhancement techniques are always achieved at 

the expense of fluid friction losses, an optimal trade-off has 

become the critical challenge for the design work. The 
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optimal design can be achieved through the efficient use of 

energy and if the second law of thermodynamic is 

accounted for.  

The use of porous medium as a passive augmentation 

technique increases exchange surface and improves heat 

transfer rate, but generates a high pressure drop. In order to 

find the compromise between hydrodynamics and thermal 

performances, a second law approach, based on the entropy 

generation seems very suited. Yet only few numbers of 

studies considered entropy generation in convection heat 

transfer with porous media. The majority of these studies 

are presented for laminar flows [1-3]. Until now, the study 

of second law in turbulent flow with a porous media is 

almost nonexistent.  

The present work mainly investigates the entropy 

generation and the irreversibilities due to the turbulent flow 

in porous annular heat exchanger (Fig. 1) and to find the 

optimal conditions that allow to reduce pressure drop, to 

enhance heat transfer and to minimize energy losses. The 

mathematical model based on the modified - model and 

turbulent entropy generation equation is developed and 

solved by using the finite volume method. 

 

 

 
Fig. 1.  Schematic of physical domain   

 

II. MATHEMATICAL MODEL 

The fluid is assumed to be incompressible and the flow 

two-dimensional and axisymmetric. The porous substrate 

is considered homogeneous, isotropic and saturated with a 

single-phase. The fluid is in local thermal equilibrium with 

the solid matrix.  

The average continuity, momentum, energy, and local 

entropy generation equations in cylindrical coordinates are 

[4-7]:  
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Continuity equation: 
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Momentum equation in axial direction: 
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Momentum equation in radial direction: 
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VU ,  are the time-averaged fluid velocities,  
2kCt    is 

the eddy viscosity,  is the porosity, K is the porous  

medium permeability and feJ  is the viscosity ratio. 

 

Energy equation: 

 




















































































r

T
r

R

rr

z

TR

zr

Tr

r

V

z

T
U

t

tc

t

tc

















Pr

1

Pr

)(

               (4) 

T is the average temperature, Pr is the Prandtl number and 

fecR   is the thermal conductivity ratio. 

 

Local rate of entropy generation equation: 

 

The local rate of entropy generation in incompressible 

turbulent shear flows for Newtonian fluids is: 
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The rate of entropy generation over the cross section is 

calculated by integration: 
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The subscript j in j and j  stands for h in the hot side 

and for c in the cold side, while in the porous region, j 

indicates the effective thermal conductivity in j . 

 The model equations used for the turbulent kinetic 

energy and dissipation rate are: 

 

Model equation for turbulent kinetic energy ( k ) 
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Model equation for dissipation rate (  ) 

 

 

 

 

 

 

 

 

 

 

(10) 

 

 

 

 

 

 

 

C , 1C , 2C , 3C , sC ,  ,  and t are the constants 

used in the transport equations [8,9]. 
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The boundary conditions are: 

- Prescribed velocities, temperatures, turbulent kinetic 

energies and dissipation rates at the inlet. 

- Velocity and turbulent kinetic energy are set equal to zero, 

and 22 rk  , at the walls. 

-  The outer cylinder is perfectly insulated.  

-  A wall function approach was used for treating the flow 

close to the wall [5]. 

- At the porous-clear fluid interface, the stress jump is 

described by an adjustable coefficient   which accounts for 

the stress jump at the interface, as in [10]: 
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III. NUMERICAL DETAILS 

A control volume approach is used to solve the model 

equations (1)-(10) with the specified boundary conditions. 

The well-established SIMPLE algorithm is followed for 

handling the pressure-velocity coupling. The governing 

equations are converted into a system of linear algebraic 

equations through integration over each control volume 

method. The algebraic equations are solved by using a line 

by line iterative method. The method sweeps the domain of 

integration along the r and z-axis and uses the tri-diagonal 

matrix inversion algorithm to solve the system of equations. 

After several trial computations to test the code sensitivity, 

a uniform zonal grid with different step sizes in each region 

(porous and fluid) is utilized. The convergence criterion is 

monitored in terms of the normalized residue of the 

algebraic equation. The maximum residue allowed for 

convergence check is set to 10-4 and the maximum absolute 

error on the heat flux transferred between the two fluids 

over the entire heat exchanger is less than 10-6.  

IV. RESULTS AND DISCUSSION 

Computations are carried out for water flow in tubular 

heat exchanger of diameter ratio equal to 2. The effective 

viscosity in the porous medium equals the fluid viscosity 

(Brinkman assumption, J=1). The porosity of the porous 

material equals 0.95 and the inertia coefficient in the 

porous medium FC  is taken equal to 0.1.  

For low thermal conductivity porous material (Rc=1) 

which can be used for insulation, Figure 2 exhibits the 

variation of the Nusselt number as function of the porous 

layer thickness (e) for different values of the Darcy number 

characterizing the permeability of the porous material (Da). 

As it shown in this figure, the heat transfer is improved for 

lower porous layer thickness and even passes the fluid case 

without porous medium (e=0). There exist optimal values of 

the Nusselt number that depend on the Darcy number. The 

more permeable is the medium, the higher is the heat 

transfer. 

Fig. 2.   Effect of porous layer thickness on Nusselt number for different 

values of Darcy number. 

 

The effects of the porous layer thickness and the Darcy 

number on the rate of total entropy generation due to both 

heat transfer and dissipation are illustrated in Fig. 3. The 

entropy generation seems to be very sensitive to the porous 

layer thickness variation. There exist optimal and critical 

values of porous layer thicknesses of which minima and 

maxima entropy generation rate are obtained. These values 

depend greatly on permeability. This is due to the heat 

transfer and fluid flow irreversibility distribution in the 

annular heat exchanger. Also, we can notice that for weaker 

values of porous layer thickness where the heat transfer is 

enhanced, the total entropy generation is reduced. 

Fig. 3.  Effect of porous layer thickness and Darcy number on the rate of total 

entropy generation ( 1cR ).  

 

Considering now the case of porous medium with a 

higher thermal conductivity ( 1cR ) which in practical 

situation is more often to occur. The temperature of the cold 

fluid at the exit of the heat exchanger increases with the 

increase of the thermal conductivity ratio whatever the 
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porous layer thickness is.  Moreover, there exists a critical 

value of the thermal conductivity ratio above which the cold 

fluid temperature is augmented and even passes the one of 

the fluid case without the porous substrate (Fig. 4). This 

critical value decreases when the permeability increases.  

Fig. 4.  Effect of thermal conductivity ratio on temperature of the cold fluid. 

 

A substantial reduction of the rate of total entropy is 

obtained for lower values of porous layer thickness (e≤40%) 

and when the porous substrate is a good thermal conductor. 

The effect of the thermal conductivity ratio is displayed in 

Fig. 5, for a given permeability (Da = 10-2). We can notice 

that for the thin porous layers, there exists an optimal value 

corresponding to minimum entropy generation. This case is 

thermodynamically more advantageous.  

Fig. 5.  Effect of thermal conductivity ratio on the rate of total entropy 

generation (Da=10
-2

). 

V. CONCLUSION 

Computations for turbulent flow with the modified - 

model and the entropy generation equation that accounts 

for the turbulent stress, in annular heat exchanger partially 

or totally filled with porous material were performed. The 

numerical predictions based on the finite volume method 

show that for a given Darcy number and lower values of 

porous layer thickness, an increase in the thermal 

conductivity ratio leads to an improvement of the heat 

transfer and minimization of the rate of total entropy 

generation.   
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TABLE I 

 NOMENCLATURE  

Symbol Quantity Units 

Cp 

cF 

Dh 

Da 

e 

specific heat of fluid 

Forchheimer inertia coefficient 

hydraulic diameter 

Darcy number 

porous layer thickness 

J/(kg.K) 

- 

m 

- 

m 

J 

k 

viscosity ratio 

turbulent kinetic energy 

- 

m
2
/s

2 

K 

Nu 

P 

Permeability 

Nusselt number 

pressure 

m
2
 

- 

Pa 

Pr 

r 

Prandtl number 

radial direction 

- 

- 

Rc    

S  

conductivity ratio 

entropy generation rate per volume unit 

- 

W/(m
3
.K) 

 

S entropy generation rate W/K 

T  
time averaged temperature  K 

U     

V    

z 

  
  

axial time-averaged fluid velocity 

radial time-averaged fluid velocity 

axial direction 

thermal conductivity 

density 

m/s 

m/s 

- 

W/(m
2
.K) 

kg/m
3
 

  dynamic viscosity kg/(m.s) 

  
  

kinematic viscosity 

dissipation rate 

m
2
/s 

- 

  
 

Subscript 

c 

e 

f 

h 

in 

g 

p 

t 

Porosity 

 

 

cold 

effective 

fluid 

hot 

inlet 

total 

porous 

turbulent 

- 

   

 

 

Proceedings of the World Congress on Engineering 2012 Vol III 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-2-0 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



 

[9]     B. E. Launder, B. E, and D. B. Spalding, , “The numerical computation 

of turbulent flow”, Comput. Meth. Appl. Mech. Eng., vol. 3, pp. 269-

289, 1974.   

[10] R. A. Silva and M. J. S. de Lemos, “Turbulent flow in a channel 

occupied by a porous layer considering the stress jump at the interface,” 

Int. J. of Heat and Mass Transfer, vol. 46, pp. 5113-5121, 2003. 

 

 

 

Proceedings of the World Congress on Engineering 2012 Vol III 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19252-2-0 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012




