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Abstract—In this paper, second order non-linear or-
dinary differential equations of Lane-Emden type are
solved using the boundary value technique. A class
of second derivative backward differentiation formula
is derived from some continuous multistep schemes
using the multistep collocation technique. The tech-
nique transforms the numerical methods to a system
of non-linear equations represented as a tridiagonal
matrix, thereby obtaining numerical solutions concur-
rently on the the entire range of integration. General
properties of the numerical method are presented as
well as the stability properties. Some equations of
Lane-Emden type are solved to demonstrate the effi-
ciency of the method.
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1 Introduction

In mathematical physics and astrophysics, the modeling
of the temperature variations of a spherical gas cloud un-
der the natural attraction of its molecules and subject to
the law of classical thermodynamics have been the Lane-
Emden type equation, which is generally expressed as,

y′′ + k
xy′ + f(x)g(y) = h(x) x > 0, k > 0

y(0) = a, y′(0) = b
(1)

A steady case, for k = 2, h(x) = 0 is known as the
generalized Emden-Fowler equation given by,

y′′ +
2
x

y′ + f(x)g(y) = 0 (2)

The derivation of equations (1) and (2) can be found in
the literatures [9],[17]. Several second order non-linear
ordinary differential equations of Lane-Emden type are
derived as special cases of (2). Examples of such are:

∗Department of Mathematics, University of Lagos, Nigeria,
sokunuga@unilag.edu.ng

†Corresponding Author: Department of Mathematics, Univer-
sity of Lagos, Nigeria, jehigie@unilag.edu.ng

‡Department of Computer Sciences, University of Lagos, Nige-
ria, absofoluwe@yahoo.com

when g(y) = ym and f(x) = 1,

(2) is known as the standard Lane-Emden equation, while
when,

g(y) =
(
y2 − C

) 3
2 and f(x) = 1

gives the white dwarf equation introduced in [4], in the
study of gravitational potential of the degenerate white
dwarf stars.

Many researchers have attempted the solution of second
order non-linear ordinary differential equations of Lane-
Emden type, they include [8], [9], [10], [13], [14], [17], [18],
[19], [20], [21]. But the results in Horedt [9], ”Polytropes
Application in Astrophysics and related fields” is used as
the model for this study.

Because of the singularity at the initial value of the prob-
lem, we propose a class of Second Derivative Backward
Differentiation Formulae (SDBDF) which shall be imple-
mented using the boundary value technique as in [1], [2],
[3], [11]. These formulae derived from multistep colloca-
tion technique allows the generation of the complemen-
tary method that shall be used together with the main
method as a boundary value method.

The article is organized as follows: The theoretical pro-
cedure is presented in section 2 which involves the frame-
work for the derivation of the second derivative backward
differentiation formulae for special cases of k = 3 and
k = 4. Some properties such as the error constants and
the region of absolute stability of the second derivative
backward differentiation formula is presented in section
3. The implementation strategy is given in section 4. Fi-
nally, some experimental illustration are solved to show
the efficiency and accuracy of the methods in section 5.

2 Theoretical Procedure

The Lane-Emden type equation (1) is transformed to a
system of first order ODEs,

y′ = z y(0) = a
z′ = − (

k
xz + f(x)g(y) − h(x)

)
z(0) = b

(3)
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Hence for simplicity, we consider the scalar first order
ordinary differential equation,

y′ = f(x, y), y(a) = y0, x ∈ [a, b] (4)

The proposed second derivative backward differentiation
formula will be of the form,

yn+k =
k−1∑
j=0

αjyn+j + hβkfn+k + h2δkgn+k (5)

where yn+j = y(xn + jh),fn+k ≡ f(xn + jh, y(xn +
jh), y′(xn + jh)) and

gn+k ≡ df

dx
|x=xn+k
y=yn+k

xn is a node point and αj , βj and δj are parameters to
be obtained from the multistep collocation technique.[5],
[11], [15], [16]. To derive this method, we use the basis
function,

y(x) =
p∑

j=0

aj

(
x − xn

h

)j

(6)

Equation (6) is then interpolated at points xn+j , j =
0, 1, 2, · · · , k − 1, while y′(x) and y′′(x) are collocated at
point xn+k. The system of equations obtained is solved
for variables a0, a1, a2, · · · , ak+1 which is substituted back
in (6) to obtain the continuous second derivative back-
ward differentiation formula of the form,

y(x) =
k−1∑
j=0

αj(x)yn+j + hβk(x)fn+k + h2δk(x)gn+k (7)

The main method is obtained at evaluation of (7) at x =
xn+k and complementary methods are obtained on differ-
entiating (7) and evaluating at xn+j , j = 1, 2, · · · , k − 1.

2.1 Derivation of the Second Derivative
Backward Differentiation Formula for
k = 3

Using the multistep collocation method to derive the con-
tinuous Second Derivative Backward Differentiation For-
mula, In the basis function y(x) in (6), we set p = k + 1,
Hence,

y(x) =
4∑

j=0

aj

(
x − xn

h

)j

(8)

interpolating (8) at point x = xn+j , j = 0, 1, 2, collocat-
ing y′(x) and y′′(x) at x = xn+3. We obtain a system of
equations represented in the matrix form,

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
1 1 1 1 1
1 2 4 8 16
0 1 6 27 108
0 0 2 18 108

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

a0

a1

a2

a3

a4

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

yn

yn+1

yn+2

hfn+3

h2gn+3

⎞
⎟⎟⎟⎟⎠

solving the system for ai, i = 0(1)4, we get

a0 = yn

a1 = − 351

170
yn +

324

85
yn+1 +

58

85
hfn+3 − 39

85
h
2
gn+3 − 297

170
yn+2

a2 = − 243

170
yn − 342

85
yn+1 − 99

85
hfn+3 +

139

170
h
2
gn+3 +

441

170
yn+2

a3 = − 69

170
yn +

116

85
yn+1 +

47

85
hfn+3 − 36

85
h
2
gn+3 − 163

170
yn+2

a4 =
7

170
yn − 13

85
yn+1 − 6

85
hfn+3 +

11

170
h
2
gn+3 +

19

170
yn+2

substituting ai, i = 0(1)4 in (8) yields the continuous
second derivative backward differentiation formula,

y(x) =(
1 − 351

170

(
x−xn

h

)
+ 243

170

(
x−xn

h

)2 − 69
170

(
x−xn

h

)3
+ 7

170

(
x−xn

h

)4
)

yn

+
(

324
85

(
x−xn

h

)
− 342

85

(
x−xn

h

)2
+ 116

85

(
x−xn

h

)3 − 13
85

(
x−xn

h

)4
)

yn+1

+
(
− 297

170

(
x−xn

h

)
+ 441

170

(
x−xn

h

)2 − 163
170

(
x−xn

h

)3
+ 19

170

(
x−xn

h

)4
)

yn+2

+h

(
58
85

(
x−xn

h

)
− 99

85

(
x−xn

h

)2
+ 47

85

(
x−xn

h

)3 − 6
85

(
x−xn

h

)4
)

fn+3

+h2
(
− 39

85

(
x−xn

h

)
+ 139

170

(
x−xn

h

)2 − 36
85

(
x−xn

h

)3
+ 11

170

(
x−xn

h

)4
)

gn+3

(9)

evaluating (9) at x = xn+3 yields the main method given
in (10) below, while differentiating (9) and evaluating at
points x = xn+1 and x = xn+2 {xn+1, xn+2} yields the
complementary methods (11) and (12).

yn+3 =
4

85
yn − 27

85
yn+1 +

108

85
yn+2 +

66

85
hfn+3 − 18

85
h
2
gn+3 (10)

hfn+1 = − 22

85
yn − 64

85
yn+1 +

86

85
yn+2 − 23

85
hfn+3 +

14

85
h
2
gn+3 (11)

hfn+2 =
1

10
yn − 4

5
yn+1 +

7

10
yn+2 +

2

5
hfn+3 − 1

5
h
2
gn+3 (12)

2.2 Derivation of Second Derivative Back-
ward Differentiation Formula for k = 4

The same technique follows for k = 4 and a continuous
second derivative backward differentiation formula is,

y(x) =⎛
⎝ 1 − 2842

1245

(
x−xn

h

)
+ 4669

2490

(
x−xn

h

)2 − 2357
3320

(
x−xn

h

)3

+ 157
1245

(
x−xn

h

)4 − 17
1992

(
x−xn

h

)5

⎞
⎠ yn

+

⎛
⎝ 2064

415

(
x−xn

h

)
− 2644

415

(
x−xn

h

)2
+ 1219

415

(
x−xn

h

)3

− 483
830

(
x−xn

h

)4
+ 7

166

(
x−xn

h

)5

⎞
⎠ yn+1

+

⎛
⎝ − 1986

415

(
x−xn

h

)
+ 7057

830

(
x−xn

h

)2 − 15483
3320

(
x−xn

h

)3

+ 426
415

(
x−xn

h

)4 − 53
664

(
x−xn

h

)5

⎞
⎠ yn+2

+

⎛
⎝ 2608

1245

(
x−xn

h

)
− 4988

1245

(
x−xn

h

)2
+ 1011

415

(
x−xn

h

)3

− 1421
2490

(
x−xn

h

)4
+ 23

498

(
x−xn

h

)5

⎞
⎠ yn+3

+h

⎛
⎝ − 57

83

(
x−xn

h

)
+ 115

83

(
x−xn

h

)2 − 305
332

(
x−xn

h

)3

+ 20
83

(
x−xn

h

)4 − 7
332

(
x−xn

h

)5

⎞
⎠ fn+4

+h2

⎛
⎝ 168

415

(
x−xn

h

)
− 691

830

(
x−xn

h

)2
+ 947

1660

(
x−xn

h

)3

− 131
830

(
x−xn

h

)4
+ 5

332

(
x−xn

h

)5

⎞
⎠ gn+4

(13)

Again, evaluating (13) at x = xn+4 yields the main
method (14), while differentiating (13) and evaluating x
at the 3 points {xn+1, xn+2, xn+3} yields the complemen-
tary methods (15) - (17) as given below:
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yn+4 = − 9
415yn + 64

415yn+1 − 216
415yn+2 + 576

415yn+3 + 60
83hfn+4 − 72

415h2gn+4

(14)
hfn+1 = − 333

1660yn − 891
830yn+1 + 3213

1660yn+2 − 549
830yn+3 + 31

166hfn+4 − 87
830h2gn+4

(15)
hfn+2 = 127

2490yn − 212
415yn+1 − 229

830yn+2 + 916
1245yn+3 − 12

83hfn+4 + 31
415h2gn+4

(16)
hfn+3 = − 187

4980yn + 237
830yn+1 − 1911

1660yn+2 + 2249
2490yn+3 + 51

166hfn+4 − 111
830h2gn+4

(17)

3 Some Properties of the Second Deriva-
tive Backward Differentiation Formula

The error constants Cp+1 of the second derivative multi-
step methods (10), (11), (12), (14), (15), (16) and (17)
recovered are obtained by associating the equations re-
spectively with the equation,

LT E = L[y(xn; h)] =

⎡
⎣ k∑

j=0
y(x + jh) − hβky

′(x + kh) − h
2

δky
′′(x + kh)

⎤
⎦

LTE = Cp+1h
p+1y(p+1)(xn) (18)

On expansion and collecting in terms of the Taylor’s se-
ries [12], the order and the error constants for the derived
numerical methods in this paper are presented in the Ta-
ble 1 below.

Table 1: Order and Error Constants for the Methods
Method Order Error Constant (Cp+1)

(10) 4 9
425

(11) 4 − 127
2550

(12) 4 11
300

(14) 5 24
2075

(15) 5 531
16600

(16) 5 − 601
37350

(17) 5 859
49800

The stability of a linear multistep method determines the
manner in which the error is propagated as the numeri-
cal computation proceeds. Hence, it would be necessary
to investigate the stability properties of the main meth-
ods, that is the multistep methods methods recovered on
evaluation of (9) and (13) at x = xn+k

Definition

The stability region S of methods (10) and (14) is the set
of all points z ∈ C such that all roots ξk(z) of character-
istic equation lie on the unit disc |ξi| ≤ 1 and those with
modulus one are simple.

Applying methods (10) and (14) to the test problem,

y′ = λy

with substitution z = λh, we obtain the character-
istic equation for method (10) as,

(
1 − 66

85
z +

18
85

z2

)
ξ3 − 108

85
ξ2 +

27
85

ξ − 4
85

= 0 (19)

while the characteristic equation for method (14) is ob-
tained as,

(
1 − 60

83
z +

72
415

z2

)
ξ4− 576

415
ξ3+

216
415

ξ2− 64
415

ξ+
9

415
= 0

(20)
The region of absolute stability (RAS) of the methods
(10) and (14) from their respective characteristics equa-
tions (19) and (20) are plotted using the maple software
in figures 1 and 2 respectively: Remark: The RAS for

Figure 1: RAS for SDBDF for k = 3 and k = 4

the Second Derivative Backward Differentiation Formula
presented shows that the main methods (10) and (14) are
A-stable for order p = 4 and p = 5.

4 Implementation Strategy of the Meth-
ods

In what follows, a general procedure for the implemen-
tation of the methods using a Boundary Value tech-
nique or method in matrix form as in Fatunla [6] is pre-
sented. To obtain the approximate solutions for yn+j ,
j = 0, 1, 2, · · · , N = b−a

h points on the bound of integra-
tion [a, b], with N -vector YN , FN and GN specified, we
define the following,
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YN = [yn+1, yn+2, yn+3, ..., yn+N ]T

YN−1 = [yn−N+1, yn−N+2, yn−N+3, ..., yn]T

FN = [fn+1, fn+2, fn+3, ..., fn+N ]T

GN = [gn+1, gn+2, gn+3, ..., gn+N ]T

where yn+j = y(xn + jh), fn+j = f(xn + jh, y(xn +
jh)) and gn+j ≡ df(x,y(x))

dx |x=xn+j
y=yn+j . The integration on

the entire block shall be written compactly as,

AYN = BYN−1 + hCFN + h2DGN (21)

Which forms a non-linear equation because of the implicit
nature, hence we employ the Newton-iteration for the
evaluation of the approximate solutions. Hence, (21) can
be written as,

AYN − BYN−1 − hCFN − h2DGN = 0 (22)

Using the Newton’s approach for the implementation of
implicit schemes as given in [12], we have that the solu-
tions of the block is given as,

Y
(i+1)

N = Y
(i)

N −J
−1

(YN )
(

AYN − BYN−1 − hCFN − h
2
DGN

)
(23)

where J−1(YN ) the Jacobian matrix is,

J−1(YN ) =
(

A − hC
∂FN

∂Y
− h2D

∂GN

∂Y

)−1

Hence on transformation into matrix form, we have,

AYN = BYN−1 + hCFN + h2DGN (24)

such that for k = 2,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

64
85 − 86

85 0 · · · 0 0
4
5 − 7

10 0 · · · 0 0
27
85 − 108

85 1 · · · 0 0

0
. . . . . . . . . 0 0

0 0 27
85 − 108

85 1 0
0 0 0 27

85 − 108
85 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 − 22
85

0 0 0 · · · 0 1
10

0 0 0 · · · 0 4
85

0 0 0 0 0 0
...

...
...

...
...

...
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 −23
85 0 · · · 0

0 −1 2
5 0 · · · 0

0 0 66
85 0 · · · 0

0 0 0 66
85 0 0

0 0
... 0

. . . 0
0 0 0 0 0 66

85

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 14
85 0 0 0

0 0 − 1
5 0 0 0

0 0 −18
85 0 0 0

0 0 0 −18
85 0 0

...
...

... 0
. . . 0

0 0 0 0 0 −18
85

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and for k = 4, we have,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

891
830 − 3213

1660
549
830 0 · · · 0 0

212
415

229
830 − 916

1245 0 · · · 0 0
− 237

830
1911
1660

2249
2490 0 · · · 0 0

− 64
415

216
415 − 576

415 1 · · · 0 0

0
. . . . . . . . . . . . 0 0

0 0 − 64
415

216
415 − 576

415 1 0
0 0 0 − 64

415
216
415 − 576

415 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 · · · 0 − 333
1660

0 0 0 0 · · · 0 127
2490

0 0 0 0 · · · 0 − 187
4980

0 0 0 0 · · · 0 − 9
415

0 0 0 0 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 31
166 0 · · · 0

0 −1 0 −12
83 0 · · · 0

0 0 −1 51
166 0 · · · 0

0 0 0 60
83 0 · · · 0

0 0 0 0 60
83 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0 60
83

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 − 87
830 0 · · · 0

0 0 0 31
415 0 · · · 0

0 0 0 −111
830 0 · · · 0

0 0 0 − 72
415 0 · · · 0

0 0 0 0 − 72
415 0 0

...
...

...
...

. . .
...

0 0 0 0 · · · 0 − 72
415

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Remark: The boundary value technique with (23) is
made possible using the Newton’s iteration features in
the maple software.

5 Experimental Problems

In this section we consider some second order non-linear
ordinary differential equations of Lane-Emden type (2)
which are transformed to system of first order differential
equations. The boundary value methods for k = 3 and
k = 4 will be denoted as BVM3 and BVM4 respectively
in the presentation of numerical results.

Problem 5.1 White-dwarf Equation: Consider the
White dwarf equation,

y′′ +
2
x

y′(x) +
(
y2 − C

) 3
2 = 0 (25)
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introduced in [4] in the study of gravitational potential
of the degenerate white-dwarf stars is solved with the
BVMs for C = 0.2, 0.4, 0.6 and 0.8, where at C = 0, (25)
becomes the standard Lane-Emden for m = 3. (25) can
be transformed to the system,

y′ = z y(0) = 1

z′ = −
(

2
xz +

(
y2 − C

) 3
2
)

z(0) = 0
(26)

Solving (26) using the BVMs for k = 3 and k = 4 is
denoted as BVM3 and BVM4 respectively, the numerical
results are compared with the results obtained in [9] and
[10] and are presented in Tables 2 and 3, while graphi-
cal results is presented for C = 0, 0.2, 0.4, 0.6 and 0.8 in
Figure 3 and 4.

Figure 2: Graphical Result for White Dwarf Equation
Using BVM3 and BVM4

Table 2: Numerical result for C = 0 using BVM3 for
h = 0.05

x BVM3 BVM4 Hojjati and Parand [9] Horedt [10]
0.5 0.9598393004 0.9598390586 0.959839069883 0.959839
1.0 0.8550578750 0.8550575772 0.855057568546 0.855058
5.0 0.1108196525 0.1108198152 0.110819835160 0.110820
6.0 0.0437378675 0.0437379642 0.043737983910 0.043738

Table 3: Numerical result for C = 0 using BVM3 for
h = 0.01

x BVM3 BVM4 Hojjati and Parand [9] Horedt [10]
0.5 0.9598390702 0.9598390699 0.959839069883 0.959839
1.0 0.8550575691 0.8550575686 0.855057568546 0.855058
5.0 0.1108198348 0.1108198351 0.110819835160 0.110820
6.0 0.0437379836 0.0437379839 0.043737983910 0.043738

Remark: From the Table 2 and 3, it is easily seen that
the boundary value methods (BVM3 and BVM4) are
comparable to the results obtained in Hojjati and Parand
[9] and Horedt [10].

Problem 5.2 We also consider the second order differ-
ential equation:

y′′ +
2
x

y′(x) + 4
(
2ey + e

y
2

)
= 0 (27)

Problem (27) has an analytical solution: y(x) =
−2 ln

(
1 + x2

)
. To solve (27) numerically, we again recast

it to a system of first order ordinary differential equation
of the form,

y′ = z y(0) = 0
z′ = − 2

xz − 4
(
2ey + e

y
2
)

z(0) = 0
(28)

The problem is then solved using the derived SDBDF
methods by BVM. The Numerical results obtained are
presented in Tables 4, 5, 6 and 7 for solution using h =
0.05 and h = 0.01. Remark: See from Tables 4,

Table 4: Numerical Results for Problem 5.2 for BVM3
using h = 0.05

x Exact BVM3 Error
0.25 -0.121249243633 -0.121239888642 9.35E-06
0.50 -0.446287102628 -0.446275599224 1.15E-05
0.75 -0.892574205257 -0.892570430056 3.77E-06
1.00 -1.386294361199 -1.386294361120 2.80E-06

Table 5: Numerical Results for Problem 5.2 for BVM3
using h = 0.01

x Exact BVM3 Error
0.25 -0.121249243633 -0.121249230231 9.35E-08
0.50 -0.446287102628 -0.446287082373 2.02E-08
0.75 -0.892574205257 -0.892574195535 9.72E-09
1.00 -1.386294361199 -1.386294365367 4.24E-09

Table 6: Numerical Results for Problem 5.2 for BVM4
using h = 0.05

x Exact BVM4 Error
0.25 -0.121249243633 -0.121249559058 3.15E-07
0.50 -0.446287102628 -0.446286113311 9.89E-07
0.75 -0.892574205257 -0.892573230121 9.75E-07
1.00 -1.386294361199 -1.386294072225 2.88E-07

5, 6 and 7, that methods of BVM4 performs better than
the methods of BVM3, which justifies that the higher the
order of convergence of the BVM the higher the accuracy
to be expected viz a viz the step length.
Problem 5.3 The final example in this paper is also
given by:

y′′ +
2
x

y′(x) − 2
(
2x2 + 3

)
y = 0 (29)

Equation (29) is of Lane-Emden problem type with an
analytical solution given by: y(x) = ex2

. Equation (29)
transforms to the system of first order ordinary differen-
tial equation given as,

y′ = z y(0) = 0
z′ = − 2

xz + 2
(
2x2 + 3

)
y z(0) = 0 (30)

The Tables 8, 9, 10 and 11 shows the numerical results
obtained using the BVM3 and BVM4 methods.

Remark: Again numerical results of Problem 5.3 as pre-
sented in Tables 8, 9, 10 and 11 shows that methods of
BVM4 performs better than the methods of BVM3 which
affirms that the higher the order of convergence of the
BVM, the higher the accuracy to be expected viz a viz
the step length.
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Table 7: Numerical Results for Problem 5.2 for BVM4
using h = 0.01

x Exact BVM4 Error
0.25 -0.121249243633 -0.121249243938 3.04E-10
0.50 -0.446287102628 -0.446287102319 3.09E-10
0.75 -0.892574205257 -0.892574204718 5.39E-10
1.00 -1.386294361199 -1.386294361120 3.34E-10

Table 8: Numerical Results for Problem 5.3 for BVM3
using h = 0.05

x Exact BVM3 Error
0.25 1.0644944589179 1.0644898251043 4.63E-06
0.50 1.2840254166877 1.2839987348882 2.67E-05
0.75 1.7550546569603 1.7549853685547 6.92E-05
1.00 2.7182818284590 2.7180041217896 2.78E-04

6 Conclusion

We have been able to derive some mixed boundary value
methods via the multistep collocation technique. The
methods obtained have been represented as a boundary
value methods using the representation of block schemes
(21). Properties such as order of convergence and re-
gion of absolute stability were highlighted using tables
and figures respectively. These BVMs methods were im-
plemented on second order nonlinear ordinary differential
equations of Lane-Emden’s Type and their results were
found to be sufficiently accurate for various values of step
length.
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