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Fractional Partial Differential Equations Driven
by Fractional Gaussian Noise
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Abstract—Some fraction parabolic partial differen-
tial equations driven by fraction Gaussian noise are
considered.
tions are studied. Some properties of the solutions
are given under suitable conditions and with Hurst
parameter less than half.

Initial-value problems for these equa-
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1 Introduction

In this note stochastic partial differential equations of
the form:

dv(z,t) = dBg(t) + f(z,t, Lyu(z,t))dt, (1.1)
are considered, where 0 < H < %, t>0,z € R",
o~ t
v(x,t) = Oulz,t) _ Lyu(z,t), (1.2)
ot
Liu= Z ag(x)D%%, Lou = Z by(x)Du,
lg|<2m lq|<2m—1

0]
D7 = D‘lh_D,(r]l",D] = 8—517]’0 <a< ].,
R"™ is the n-dimensional Euclidean space, ¢ = (¢1, ---, ¢n)
is an n-dimensional multi index |q| = ¢1 + ... + ¢n , Bu(t)
is fractional Brownian motion with Hurst parameter H €
[0,1] , Bu(0) = E[Bu(t)] =0, for all t € R = (—o0, 00)
and

1
E[BH(t)BH(S)] = 5 {|8|2H + |t|2H - |S - t|2H} 5 S,t, € R,

(E[X] denotes the expectation of a random variable X).

If H =1, then Bp(t) coincides with classical Brownian
motion B(t). For H # % , Bg(t) is not a semi martin-
gale, so one cannot use the general theory of stochastic
calculus for semi martingale on By (t), (see[1],[2],[3])-
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Denote by K* the linear operator defined on the set of
all step functions to a subset of the set of all square inte-
grable function L,[0,7", such that:

OKp(r,s)

T
(Kir)(s) = Kn(t:5) 9(6)+ [ [o(r)=o(o) T8,

where
I .
Ku(t.s) = (FH +3)) (=" EFa.beo)

I" denotes the gamma function, a = H — %, b= % - H,
c=H+1z=1-"%and F is the Gauss hyper geometric
function. The process By has an integral representation:

t

By (t) :/ Kp(t,s) dB(s), (1.3)
0

where B = {B(t) : t € [0,t]} is the Brownian motion

defined by

B(t) = B[(K7) ™" (X)),

where (x[o,17) is the indicator function).
Let f: R — R such that E[f?>(Bgr(t))] < oo, then

(1.4)

f(Br(t) = B[f(B(T))] + / $(t,w)d Bu(t),  (L5)
where

vtw) = [ZBUE+BaT-0)

see [1].

It is supposed that:

(1) All the coefficients ag, by satisfy a uniform Hélder con-
dition on R",

(2)All the coefficients a4, b, are bounded on R",

(3)The operator % = Xjg|=2m q(x)D? is uniformly
parabolic on R".

This means that

D)™ > ag@)y? > ey e >0,
lg|=2m

for all z,y € Ry # (0,..,0), where y?¢ =
yP oyl |y|? = y? + ...+ y2 and c is a positive constant,
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(4) The function f is continuous on R™ x [0,T] x R.
It is assumed that
ou(x,0
u(e,0) = uo(e), 2T _ @), )

where ug,u; are given sufficiently smooth bounded func-
tions on R".

Without loss of generality, we can assume that ug(z) =
ui(z) =0

In sections 2,3 the solution of the stochastic Cauchy prob-
lem (1.1),(1.5) is studied.

The fractional Brownian motion has many different im-
potent applications with amazing range. This amazing
range makes fractional Brownian motion a very interest-
ing object to study, (see [4-7]).

2 Formal Solutions

The solution of equation (1.2) is formally given by:

t
v(z,t) = B +/ f(z,0, Lou(x, 6)do, (2.1)
0
where
t [e'e]
u(z,t) = a/o /0 . (a(0)G* (2, &,t,5,0)dE db ds,

(2.2)

where

G* =0(t —5)*"0(&,5)G(z, & (t — 5)°0)

and G is the fundamental solution of the parabolic equa-
tion:

Ou(x,t)
o 2

lg|<2m

ag(xz)D%u(z,t).

The function G satisfies the following inequality:

|DqG($a£7t)| < 'ytmemp[_C?p]a (23)
where 5
m
— _ ’I’)’L1tm2 —
P |l' £| , Ty o — 15
me = — ! o =-2 +d]
> Tom -1 o2m

v and ¢y are positive constants, [8-10]. The definition of
the function (,(f#)can be found in [8].

3 Fractional Integral Representation

Let I?, be the fractional integral operator defined by

1% f(t) = ﬁ/ (t — $)*"1 f(s)ds, a > 0.

Denote by I, (Lz[a, b]) the image of Ls[a, b] by the oper-
ator I®, . The operator K on Ly(0,T') associated with
kernel Ky (t,s) is an isomorphism from

Ls[0,T] onto I3 (L0, 77)
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and it can be expressed in terms of fractional integrals by

(K g)(s) = I+ s

/Kts

The inverse operator K H is given by

(Ku g)(s

K, g—s2 HDE_H H__DQJr g,
H+3i . .
for all g € I *(L2[0,T7]). If g is absolutely continuous,

it can be proved that

1 d
Kg'g=s"01 st g g =20 (3)

where D¢, is the fractional derivative defined by

/: <tg—(ss)>a o

see [3],[6]. A weak solution of equation (2.1) is defined by
a couple of adapted processes (Bg,v), for every fixed z
on a filtered probability space (Q, F, P,{F; : t € [0,T1]}),
such that

(a) By is an F; - fractional Brownian motion,

(b) v and By satisfy (2.1).

Suppose that equation (2.5) has a weak solution. Then
using the definitions of the operators Ky, K;II and the
representation(1.1), one can write equation (2.1) in the
form

1 4
IN(l—a)dt

DZ‘+ g(t) =

o(z, 1) = /0 Ku(t, s)dB(, ), (3.2)

Ba.t) = B)+ [ n(a.5)ds
0, s) = Ki'g(@, )(s),
[
o@.0)= [ s, Loute.s))ds.

Theorem 3.1. Let H < % and v be a weak solution of

equation (2.5). If f is a Borel function on R" x [0,T] x R
and satisfies the linear growth condition
|f(z,t,u)] < C(1 + [ul), (3.3)

for all u € R,z € R",t € [0,T], (where C is a positive

constant), then g(z,.) € Igf%(Lg[O,T]).
proof. From (2.1), (2.2), (2.3) and (3.3) it can be de-
duced that

V() <|Bu(t)|+Ct+ Cy /t V(s)ds

where C; > 0 is a constant and V(t) = Sup,|v(z,t)|.
The last inequality leads to

t

V() < |Bu(®]+Cy [ 00 B8+ Cole -1,
0

(3.4)
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Thus from (3.4) we get

t t
/ V2(s)ds < 03/ B%(s)ds + Cy,
0 0

where Cy > 0,C3 > 0 are constants.
(3.5), we get

T T
/ g*(x,0)dd < C,T + 05/ B} (s)ds +Cs, (3.6)
0 0

where C4, Cs and Cg are positive constants.
It is easy to see that

- |/t—s

12 9(w, 5)ds|

IN

The required result follows from (3.5) and (3.6).
It is clear that Kglg(a:,.) € Ly[0,T] aus.

o(r.) € gy ¥ (L(0.7]) a
(z,5)dB(s) — L [T n2(z, s)ds].

Let ((z,T) = exp|— fo 5 Jo
If f is bounded, then ¢ (:n T) defines for every » € R" a

random variable such that the measure P given by dP =
((z,T)dP is a probability measure equivalent to P. If EP

denotes the expectation with respect to P, then
EP[((2,T) = 1.
From (3.1

Hurst parameter H under the probability P, (see [7]).
Lemma 3.1. If f is bounded ,then

EP[¢* (2, T)] < explC|(2a — 1)(a = D)|T],

where C is a positive constant.
Proof. We can deduce from the results in [ 7 ] that

_ T T
Epemp(—Qa/ n(z,s)dB(s) — 2a2/ n*(z,s)ds) =1,
0 0

for all« € R

Using (3.1),[comp7]

we get
n(z.s)| = sTRIT TS5 f(a, s, Lou(a, 5)
M S
a—— SH_2/(S 9)~>-Hgz—H g
T - H) o

where M is a positive constant,(|f| < My). Thus

EPexp [2]a® + —|/

(z,s)ds < exp[2|a® + —|M2 1,
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(3.5)

From (3.3) and

r<a>(/0(t Pt st

if and only if

(3.7)

), (3.7), theorem (3.1) and Girsanov theorem,
we see that v is an F} - fractional Brownian motion with

where M, is a positive constant.

Using the fact that
EP[( (@, 7)) = B¢ (2. 7)),

we get the required result.

We can deduce from (3.1) that the operator K" pre-

serves the adaptability property. In other words the pro-

cess 1)(x, s) is adapted.

Let b be a positive Borel function defined on [0,T] x R

such that the following integral.

1B lgr=1 /R DIt v)dv) de]

exists, where ¢ > 1,7 > —=

In this case we say that b belongs to L, ., then by using
lemma (3.1) the results of Naulart and Ouknine in [7] can
be directly generalized to obtain the following estimations

T
E/ b(t,v(z,t)dt < C|| b lg,,
0

T
E exp| / b(t,o(z, t)dt < Q| b [lo)],

where C is a positive constant and Q is a real analytic
function, [11].

Theorem 3.2. If f is continuous on R™ x
satisfies the Lipschitz condition;

|f(a:,t,u) -

for all z € R™,t € [0,T],u,v € R, where C is a positive
constant, then there is weak solution v of equation (2.5).
Moreover

[0,7] x R and

f(z,t,0)] < Clu — v

E[*(z,t)] < oo.

Proof. We shall use the method of successive approxi-
mations.
Set

Uk41(z,t) = B

t
+ / f(z,0, Loug(x,0))db,
0

up (o, 1) = a/ot /OOO [ G w6 5, 0)dc a0 ds.
vo(, 1) = 0,
where
o (€, 5)G (2, €, (t — 5)0)
Thus

k

< ﬁ | =01 iBace)a.

k41 (2, 8) = vp (2, 1)]

it follows that the sequence {vj} uniformly converges
with respect to x to a stochastic process v.

This complete the proof of the theorem (see [10-15]).
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