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Abstract� We present a singularity-based ap-

proach to resolve the Gibbs phenomenon that ap-

pears in Padé-Chebyshev approximation of functions

with jump discontinuities. In this paper, we con-

sider the more di�cult case where the locations of

the jump discontinuities are not known. The identi-

�cation of unknown singularities is carried out using

a Padé-Chebyshev approximation. We provide nu-

merical examples to illustrate the method, including

an application on postprocessing computational data

corrupted by the Gibbs phenomenon.
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1 Introduction

Approximation of smooth functions by Fourier series or
by truncated orthogonal polynomial expansions in gen-
eral is known to be exponentially convergent and highly
accurate [2,4]. For functions with singularities, however,
convergence of a partial sum of orthogonal series is ad-
versely a�ected in the area over which the singularities
occur, a problem which has come to be known as the
Gibbs phenomenon. This phenomenon manifests in an
oscillatory behavior at the vicinity of the jumps.
A class of techniques aimed at resolving Gibbs phe-

nomenon comprises Padé-type approximations. An ap-
proximant of this type enjoys the advantage of utilizing a
rational function as this kind of function is broader and
richer in form than a polynomial and is considered the
simplest function that can have singularities, and hence
the likelihood of the poles of a rational approximant be-
ing close enough to the singularities of the function being
approximated [2,5].
Some Padé-based methods work without requiring in-

formation about the jump locations. However, locating
jump discontinuities can become a relevant issue when
the actual function is not explicitly known. In many
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cases, for instance, involving spectral approximations of
nonsmooth solutions to some partial di�erential equa-
tions, the solution comes in the form of computational
data that are contaminated by Gibbs phenomenon. As
these data are noisy, the standard procedure is to post-
process them to correct the phenomenon. One way
this can be done, as demonstrated in [1,5], is to use
Padé-type approximation. This Padé postprocessing ap-
proach, however, may turn out to be less successful un-
less fed with some information about the possible jump
positions which, as noted in [5], can be advantageous
for its e�ective implementation. As computational data
may not show explicitly the existence and whereabouts
of possible jumps, to somehow locate them can become
imperative.

A study by Driscoll and Fornberg [2] reveals just how
signi�cant the knowledge of the jump locations can be
in correcting the Gibbs phenomenon. Realizing that the
poles available in a rational approximant do not intrinsi-
cally and adequately reproduce the jump behaviors of a
discontinuous function f , they devised an approach that
incorporates the jump locations into the approximation
process. A similar approach that imbibes this concept
in the context of Padé-Chebyshev approximation is dis-
cussed in [9].

This paper is anchored on the Singular Padé -
Chebyshev approximation discussed in [9], a brief review
of which is presented in the next section. Section 3 dis-
cusses a Padé-based approach in identifying singularities
of the function. Section 4 focuses on the numerical re-
sults of the SPC implementation in reconstructing a test
function and postprocessing computational data.

2 A Singularity-based Padé-

Chebyshev Resolution

The Chebyshev expansion of a function f can be written
as

f(x) =
c0
2

+
∞∑
n=1

cnTn(x), (1)
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where Tn(x) are the Chebyshev polynomials de�ned as
Tn(x) = cos (nθ) , θ = cos−1(x), and x ∈ [−1, 1]. The
coe�cients cn are given by

cn =
2
π

ˆ 1

−1

f(x)Tn (x)√
1− x2

dx

and may be approximated using the following Gauss-
Chebyshev quadrature rule

ˆ 1

−1

h(x)ω(x)dx ∼=
m∑
k=1

Akh (xk) , (2)

where {xk} are the zeros of the Chebyshev polynomials
Tm(x) = cos (mθ), h(x) = f(x)Tn(x), ω(x) = 1√

1−x2 ,

and Ak = π
m for all k.

By the substitution z = eiθ, expansion (1) is trans-
formed into

f(z) =
1
2

( ∞∑′

n=0

cnz
n +

∞∑′

n=0

cnz
−n
)
,

where the primed sum indicates that the �rst term is
halved. Let

g(z) =
∞∑′

k=0

cnz
n. (3)

We refer to g(z) as the transformed Chebyshev series as-
sociated with f(z), and consequently with f(x).
Let f(x) be a piecewise analytic function de�ned on

[−1, 1] with s jump locations at x = ξk ∈ [−1, 1], k =
1, . . . , s, and consider its associated transformed Cheby-
shev series (3). The Singular Padé-Chebyshev (SPC) ap-
proximant to f(x) of order (N,M, V1, . . . , Vs) is de�ned
by the rational function

R(z) =

PN (z) +
s∑

k=1

RVk(z) log
(
1− z

eiθk

)
QM (z)

, (4)

where z = ei cos
−1(x) and

PN (z) =
N∑
j=0

pjz
j , QM (z) =

M∑
j=0

qjz
j 6= 0,

RVk(z) =
Vk∑
j=0

r
(k)
j zj , k = 1, . . . , s,

such that

QM (z)g(z)− [PN (z) + U(z)] = O
(
zη+1

)
,

with

U(z) =
s∑

k=1

RVk(z) log
(
1− z

eiθk

)
and

η = N +M + s+
s∑

k=1

Vk.

The unknown coe�cients of polynomials PN , QM , and
RVk are then computed through the following linear sys-
tem of η + 1 equations in η + 2 variables:

M∑∗

j=0

cN−j+tqj−
V1∑
j=0

a
(1)
N−j+tr

(1)
j −· · ·−

Vs∑
j=0

a
(s)
N−j+tr

(s)
j = 0,

M∑∗

j=0

cl−jqj −
V1∑
j=0

a
(1)
l−jr

(1)
j − · · · −

Vs∑
j=0

a
(s)
l−jr

(s)
j = pl,

where t = 1, . . . , η − N , l = 0, . . . , N , and the asterisk-
marked summation indicates that the term with c0 is
halved. We note that in this system, cn = 0, for n < 0.
It should be noted too that the a

(k)
n are the coe�cients in

the Taylor expansion of log
(
1− z

eiθk

)
and a

(k)
n = 0, for

n ≤ 0. Accordingly, R(N,M)(z) approximates g(z) which
implies that the real part of R approximates f(x).

3 Approximate Jump Locations of

a Discontinuous Function

There have been studies on locating jump discontinuities
of a function [3,7] and some of these explore the connec-
tion between jump locations and the di�erentiated series
expansion of the function. Estimating jump locations us-
ing Padé approximation is introduced in [2] and its appli-
cability is based on the idea that a Padé approximation
of the di�erentiated series expansion of a discontinuous
function f likely leads to an ordinary pole at a jump lo-
cation. As our approach is founded on Padé-Chebyshev
approximation, we further pursue this idea to generate
information about the jump locations of discontinuous
functions.

For the derivative of f , a Padé-Chebyshev approxi-
mant of order (N,M) may be de�ned as

Rf ′(z) =
(Pf ′)N (z)
(Qf ′)M (z)

, (5)

where z = ei cos
−1(x) and

(Pf ′)N (z) =
N∑
j=0

(pf ′)j z
j ,

(Qf ′)M (z) =
M∑
j=0

(qf ′)j z
j 6= 0,

such that

(Qf ′)M (z)g′(z)− (Pf ′)N (z) = O
(
zN+M+1

)
.

Finding the unknown coe�cients of polynomials (Pf ′)N
and (Qf ′)M is tantamount to solving the following linear
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system:

M∑
j=0

i(N + λ− j + 1)cN+λ−j+1 (qf ′)j = 0,

λ = 0, 1, 2, . . . ,M − 1,
M∑
j=0

i(λ− j)cλ−j (qf ′)j = (pf ′)λ ,

λ = 1, 2 . . . , N,

where i =
√
−1 and the expansion coe�cients ct = 0

for each t < 0. We remark that Rf ′ approximates g′(z)
which is the derivative of the transformed Chebyshev se-
ries associated with f(x) which implies the real part of
Rf ′ approximates f ′(x).
Recalling the de�nition of the Chebyshev polynomial,

we know that θ = cos−1(x) with x ∈ [−1, 1] and θ ∈
[0, π]. This de�nes a mapping from [−1, 1] onto [0, π].
The transformation z = eiθ consequently maps [−1, 1]
to the upper half of the unit circle in the complex plane
at which

∣∣eiθ∣∣ = 1. Now consider the Padé-Chebyshev
approximant Rf ′ to g

′. Let z0 be a zero of (Qf ′)M or a
pole of Rf ′ . We have z0 = eiθ0 for some θ0 ∈ [0, π]. By
the inverse mapping, |z0| = 1 implies that z0 corresponds
to a point x0 in [−1, 1]. As z0 is a singularity, x0 must be
a jump of f(x) in [−1, 1]. Furthermore, since z0 = cos θ0+
i sin θ0, the jump is located at x0 = cos θ0 = <e (z0).
The immediately preceding discussion may be summa-

rized by stating that a pole z0 of Rf ′ for which |z0| = 1
corresponds to a jump discontinuity of f(x) in [−1, 1]
which occurs at x = <e (z0). This provides a simple
criterion by which we may be able to locate a jump dis-
continuity of a piecewise continuous function using the
Padé-Chebyshev approximant of its di�erentiated series
expansion. As stated, we only need to consider those
zeros of (Qf ′)M for which the modulus is equal to (or
approximately) 1 in order to identify the zeroth-order
jumps of the function.

4 Numerical Results

We �rst implement the SPC method to reconstruct the
following test function

f(x) =


√

1− x2, 0 ≤ x ≤ 1
0, −1/2 ≤ x < 0
−x− 1, −1 ≤ x < −1/2.

(6)

As a second example, we show how the method re-
covers a function from a computational data set that is
contaminated by the Gibbs phenomenon. For this case,
we consider a function given in terms of computational
data from the numerical solution to the following viscous
Burgers' equation:

∂u

∂t
+ u

∂u

∂x
= ε

∂2u

∂x2
, x ∈ [−1, 1] , ε = 0.001 (7)

with boundary conditions

u(−1, t) = u(1, t) = 0 (8)

and initial condition

u(x, 0) = − tanh
(
x+ 0.5

2ε

)
+ 1. (9)

4.1 Reconstructing f

The exact Chebyshev coe�cients of the function f de-
�ned by (6) are given by

cn =


− 2

3 + 2+
√

3
π , n = 0

1+
√

3
π −

√
3

4π −
1
3 , n = 1

k, n ≥ 2,

where

k =
2n sin nπ2 − n sin 2nπ

3 −
√

3 cos 2nπ
3 − 2(

n2 − 1
)
π

+
2
nπ

sin
2nπ
3
.

Since f has known discontinuity at x = 0 and x = − 1
2 ,

its SPC approximant is determined by

P (z) +R1(z)L1(z) +R2(z)L2(z)
Q(z)

,

where
L1(z) = log

(
1− z

i

)
and

L2(z) = log

[
1− z

exp
(

2πi
3

)] .

Figure 1: Constrast between the exact f and its PC(15,
12) approximant
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Figure 2: Contrast between the exact f and its SPC
(15,12,10,10) approximant

Figure 3: Comparison of the pointwise error convergence
of the (a) PC(15,12) and (b) SPC (15,12,10,10) approx-
imants to f

In the following discussion, we denote by SPC
(N,M, V1, . . . , Vs) an SPC approximant of order
(N,M, V1, . . . , Vs) while its corresponding Padé-
Chebyshev (PC) approximant of order (N,M) is
denoted by PC(N,M).

Figure 1 shows the Gibbs phenomenon in a PC ap-
proximation of f . The oscillation caused by the phe-
nomenon is practically eliminated upon the inclusion of
the function's singularities into the approximation pro-
cess as shown in Figure 2. An SPC approximant of f is
shown in Figure 2 against the graph of the exact function.
The reconstruction is remarkably good that the graph of
the exact function is hardly noticeable. As shown in Fig-
ure 3, this impressive result by the SPC approximation is
clearly marked by an improved convergence of the point-
wise error drawn in logarithmic scale.

4.2 Recovering Solution to Burger's

Equation

Numerical solution to the Burgers' equation by spectral
method generates a set of computational data that is
corrupted by the Gibbs phenomenon in the sense that
solutions to such equation are known to develop sharp
gradient in time [1]. Here we present some results on the
use of the SPC approximation to postprocess or �clean
up� the data inorder to recover the solution to the viscous
Burger's equation de�ned in (7)-(9). This equation is
a suitable model for testing computational algorithms
for �ows where steep gradients or shocks are anticipated
because it allows exact solutions for many combinations
of initial and boundary conditions [1]. It should be noted
that the postprocessing needs only to be applied at time
levels at which a �clean� solution is desired, and not at
every time step [8].

Figure 4: Approximate shock location of u at x =
−0.4932143 when t = 0, using PC�IC (3,3) withm = 100

Figure 5: Approximate shock location of u at x =
−0.4066582 when t = 0.1, using PC (3,3) with m = 100
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Figure 6: Constrast between the exact solution and its
PC(3,3) approximant at t = 0

Figure 7: Constrast between the exact solution and its
PC(3,3) approximant at t = 0.1

In this case, the transformed Chebyshev series for the
solution assumes expansion coe�cients that are approx-
imated using (2). The input data are given at the m
Gauss-Chebyshev quadrature points. Working on the as-
sumption that there may be some inherent jump disconti-
nuities or sharp gradient not known or readily observable
from the data, we �rst seek the locations of these possible
jumps or shocks in the data by way of the Padé approxi-
mation applied to the di�erentiated expansion that rep-
resents the solution u. Incorporating the resulting shock
information into the SPC approximation generates a re-
constructed u. For illustration, let us consider the case
when time t = 0 and t = 0.1. Under each case, we take
as inputs some computed data that serve as values of u
at the given m Gauss-Chebyshev points.

Figure 4 produced by the PC(3,3) approximant to the
di�erentiated transformed Chebyshev expansion associ-
ated with u shows that at t = 0 a possible jump or

Figure 8: Contrast between exact solution and its
SPC(3,3,3) approximant at t = 0

Figure 9: Contrast between exact solution and its
SPC(3,3,3) approximant at t = 0.1

shock occurs somewhere very close to x = −0.5. The ze-
ros of the denominator of the PC(3,3) approximant are
−0.0076362 and −0.4932143 ± 0.8696562i . The com-
plex zero gives a modulus of 0.9997811 which strongly
indicates that a shock occurs at x = −0.4932143. This
con�rms what the plot shows. For the case when t = 0.1,
the PC(3,3) approximation shown in Figure 5 indicates
that there is a shock very near x = −0.4. The zeros of
the denominator of the PC(3,3) approximant in this case
are −0.4066582± 0.9140550i and −1.6168483. The com-
plex zero gives a modulus of 1.0004337 implying that a
shock location is at x = −0.4066582, which is what the
plot seems to suggest. In consideration of the two dif-
ferent shock positions at two di�erent points in time, we
note that the Burgers' solution involves time evolution
of a shock or a sharp gradient.

We present the PC(3,3) and SPC(3,3,3) reconstruc-
tions of u in Figures 6 and 8 for the case t = 0 and in
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Figure 10: Comparison of pointwise error convergence
of the (a) PC(3,3) and (b) SPC (3,3,3) approximants at
t = 0

Figure 11: Comparison of pointwise error convergence
of the (a) PC(3,3) and (b) SPC (3,3,3) approximants at
t = 0.1

Figures 7 and 9 for t = 0.1. They are plotted against
the exact solution. Both approximants in the two cases
take the PC approximated jump locations, that is, the
jump at x = −0.4932143 for t = 0 and the jump at
x = −0.4066582 for t = 0.1. The SPC results are quite
impressive notwithstanding the fact the we only use low
order approximants to generate them. Comparisons of
their respective pointwise error convergence are shown
in Figures 10 and 11.

5 Conclusion

The Singular Padé-Chebyshev (SPC) approximation
demonstrates how a Padé-Chebyshev (PC) reconstruc-
tion of a function with singularities is greatly enhanced
by utilizing its singularities in the approximation pro-

cess. If the singularities are known, the Singular
Padé-Chebyshev (SPC) approximation remarkably re-
constructs such function. Under restrictive conditions
where only approximated expansion coe�cients for the
transformed Chebyshev series of the function and ap-
proximated jump locations are used, as in the case
of postprocessing computational data, numerical results
still reveal that the SPC approximant successfully re-
volves the Gibbs phenomenon that occurs in the process
of recovering the function.
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