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Abstract—The purpose of this paper is to investigate the
existence of periodic solution of a general neutral delay two-
species competitive non-autonomous system. With the help of
the continuation theorem for composite coincidence degree and
some techniques, a set of sufficient conditions are derived for
the existence of at least one strictly positive periodic solution.
Furthermore, some numerical simulations demonstrate our
results.

Index Terms—Periodic solution, Neutral delay, Continuation
theorem, Composite coincidence degree.

I. I NTRODUCTION

T IME delay arises naturally in connection with sys-
tem process and information flow for different part of

dynamic systems. Practical systems with time delays now
occupy a place of central importance in all areas of science,
which have been received great interest and attention by
many scholars, e.g. [1]–[3].

A neutral time-delay system contains time delays both
in its state, and in its derivatives of state. Such system
can be applied to many fields, such as population ecology
[1], distributed networks containing lossless transmission
lines [2], heat exchangers [3], robots in contact with rigid
environments [4], and so on. Due to its wider application,
neutral systems with constant or varying time delay have
been of considerable interest by many authors for decades
[5]–[11].

The well-known periodic single-species population growth
models with periodic delay can be written as:y′(t) =
y(t)[r(t) − a(t)y(t) − b(t)y(t − τ(t))], which was first
proposed by Freedman and Wu in [12]. Furthermore, Liu
established two corresponding periodic Lotka-Volterra com-
petitive systems involving multiple delays in [13]:



y′1(t) = y1(t) [r1(t)− a1(t)y1(t)

−
n∑

i=1

b1i(t)y1(t− τi(t))−
m∑

j=1

c1j(t)y2(t− ρj(t))

]
,

y′2(t) = y2(t) [r2(t)− a2(t)y2(t)

−
m∑

j=1

b2j(t)y2(t− ηj(t))−
n∑

i=1

c2i(t)y1(t− σi(t))

]
,

(1)
where a1, a2, b1i, b2j , c1j , c2i ∈ C(R, [0,+∞)), τi, ρj ,
ηj , σi ∈ C1(R, [0,+∞)) are ω-periodic functions. Here,
the intrinsic growth ratesrk(t) ∈ C(R,R) are ω-periodic
functions with

∫ ω

0
rk(t)dt > 0, k = 1, 2.
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In this paper, we consider periodic solution of the fol-
lowing two-species competition system with general periodic
neutral delay:




y′1(t) = y1(t) [r1(t)− a1(t)y1(t)

−
n∑

i=1

b1i(t)y1(t− τi(t))−
m∑

j=1

c1j(t)y2(t− ρj(t))

− e1(t)y′1(t− δ1(t))],
y′2(t) = y2(t) [r2(t)− a2(t)y2(t)

−
m∑

j=1

b2j(t)y2(t− ηj(t))−
n∑

i=1

c2i(t)y1(t− σi(t))

− e2(t)y′2(t− δ2(t))] .
(2)

where ek(t) ∈ C1(R, [0,+∞)), δk(t) ∈ C2(R, [0,+∞))
(k = 1, 2) are ω-periodic functions, other parameters are
the ω-periodic functions as in (1).

The present paper is organized as follows: In the next sec-
tion we introduce some notations and an important existence
theorem developed in [9], [14]. By applying this theorem
and some other techniques, we study the existence of positive
periodic solutions of system (2) in Section 3. In Section 4, an
illustrative example is given to demonstrate the effectiveness
of the main result.

II. A N EXISTENCE LEMMA AND NOTATIONS

In this section, we shall summarize a few concepts and
results from [9] and state an existence theorem.

For a fixedτ ≥ 0, let C := C ([−τ, 0];Rn). If x ∈ C ([σ−
τ, σ + δ];Rn), for someδ > 0 andσ ∈ R, thenxt ∈ C for
t ∈ [σ, σ + δ] is defined byxt(θ) = x(t+ θ) for θ ∈ [−τ, 0].
The supremum norm inC is denoted by‖ · ‖, that is,‖ϕ‖ =
maxθ∈[−τ,0]|ϕ(θ)| for ϕ ∈ C, where| · | denotes the norm in
Rn, and |u| = ∑n

i=1 |ui| for u = (u1, · · · , un) ∈ Rn.
Consider the following neutral functional differential equa-

tion:
d
dt

[x(t)− b(t, xt)] = f(t, xt), (3)

where f : R × C → Rn is completely continuous andb :
R× C → Rn is continuous. Moreover, we assume:
(H1) There existsω > 0 such that for every(t, ϕ) ∈ R ×

C, we haveb(t + ω, ϕ) = b(t, ϕ) and f(t + ω, ϕ) =
f(t, ϕ).

(H2) There exists a constantk < 1 such that|b(t, ϕ) −
b(t, ψ)| ≤ k‖ϕ− ψ‖ for t ∈ R andϕ,ψ ∈ C.

Lemma 1: ( [14]). Suppose that there exists a constant
M > 0 such that:

1) for anyλ ∈ (0, 1) and anyω-periodic solutionx of the
system

d
dt

[x(t)− λb(t, xt)] = λf(t, xt), (4)

we have|x(t)| < M for t ∈ R;
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2) g(u) :=
∫ ω

0
f(s, û)ds 6= 0 for u ∈ ∂BM (Rn), where

BM (Rn) = {u ∈ Rn : |u| < M}, and û denotes the
constant mapping from[−τ, 0] to Rn with the value
u ∈ Rn;

3) deg(g, BM (Rn)) 6= 0.

Then there exists at least oneω-periodic solution of the
system

d
dt

[x(t)− b(t, xt)] = f(t, xt), (5)

that satisfiessupt∈R|x(t)| < M .
The following remark is introduced by Fang (see Remark

1 in [15]).
Remark 1: ([15]). Lemma 1 still remains valid if the

assumption (H2) is replaced by
(H ′

2) there exists a constantk < 1 such that|b(t, ϕ) −
b(t, ψ)| ≤ k‖ϕ− ψ‖ for t ∈ R andϕ,ψ ∈ {ϕ ∈ C : ‖ϕ‖ <
M} with M as given in condition (1) of Lemma 1.

We will also need the following results.
Lemma 2: ([16]). Suppose% ∈ C1

ω = {h : h ∈
C1(R,R), h(t + ω) ≡ h(t)} and %′(t) < 1, ∀ t ∈ [0, ω].
Then the functiont−%(t) has a unique inversev(t) satisfying
v ∈ C(R,R) with v(a + ω) = v(a) + ω, ∀a ∈ R.
Remark 2: ([16]). By using Lemma 2, we see that ifg ∈

C0
ω = {h : h ∈ C(R,R), h(t + ω) ≡ h(t)}, % ∈ C1

ω and
%′(t) < 1,∀t ∈ [0, ω]. Then g(v(t + ω)) = g(v(t) + ω) =
g(v(t)),∀t ∈ [0, ω], where v(t) is the inverse function of
t − %(t), which together withv ∈ C(R,R), implies that
g(v(t)) ∈ C0

ω.
Lemma 2 and Remark 2 can also be found in Lemma 4 of
[17].

In the following, we denote

h̄ = 1
ω

∫ ω

0
h(t)dt, hm = mint∈[0,ω]h(t),

|h|0 = maxt∈[0,ω]|h(t)|,
for a givenh ∈ C0

ω.

III. T HE MAIN RESULT

Theorem 1: Assume that the following conditions are
satisfied.

1) The system of algebraic equations
{ (

ā1 +
∑n

i=1 b̄1i

)
µ1 +

∑m
j=1 c̄1jµ2 = r̄1,∑n

i=1 c̄2iµ1 +
(
ā2 +

∑m
j=1 b̄2j

)
µ2 = r̄2,

has a unique positive solutionµ∗ = (µ∗1, µ
∗
2);

2) τ ′i(t) < 1, ρ′j(t) < 1, η′j(t) < 1,
σ′i(t) < 1, δ′k(t) < 1, Γkl > 0,
ā1 +

∑n
i=1 b̄1i > 0, ā2 +

∑m
j=1 b̄2j > 0,

r̄1 >
r̄2

∑m
j=1 c̄1j

ā2+
∑m

j=1 b̄2j
, r̄2 >

r̄1
∑n

i=1 c̄2i

ā1+
∑n

i=1 b̄1i
,

(i = 1, · · · , n; j = 1, · · · ,m; k, l = 1, 2);
3) k0 := ceM0 < 1.

Then system (2) has at least one positiveω−periodic solu-
tion. Here we have

c = max{|d1|0 + |d2|0, |c1|0 + |c2|0},
M0 = max{| lnµ∗1|+ | lnµ∗1|,K, ωH∗ + H1 + H2},
K = max{K1,K2}, R̄k = 1

ω

∫ ω

0
|rk(t)|dt,

Kk = ln r̄k

ϑk
+ r̄k

ϑk
+ (R̄k + Γkr̄k)ω

Γ11(s) = a1(s)− d′1(γ1(s))
1−δ′1(γ1(s))

+
n∑

i=1

b1i(u1i(s))
1−τ ′i(u1i(s))

,

Γ12(s) =
m∑

j=1

c1j(v1j(s))
1−ρ′j(v1j(s))

, Γ21(s) =
n∑

i=1

c2i(v2i(s))
1−σ′i(v2i(s))

,

Γ22(s) = a2(s)− d′2(γ2(s))
1−δ′2(γ2(s))

+
m∑

j=1

b2j(u2j(s))
1−η′j(u2j(s))

,

dk(t) = ek(t)
1−δ′k(t) , Γ1

12 = Γ12, Γ1
21 = Γ21,

Γ1
11 = a1(s) +

n∑
i=1

b1i(u1i(s))
1−τ ′i(u1i(s))

+ |d′1(γ1(s))|
1−δ′1(γ1(s))

,

Γ1
22 = a2(s) +

m∑
j=1

b2j(u2j(s))
1−η′j(u2j(s))

+ |d′2(γ2(s))|
1−δ′2(γ2(s))

,

P ,
n∑

i=1

(|b1i|0 + |c2i|0)eK1 ,

Q ,
m∑

j=1

(|c1j |0 + |b2j |0)eK2 , ϑk = (Γkk)m(1−δ′k)m

(1−δ′k)m+|dk|0 ,

H∗ =
P+Q+

2∑
k=1

|rk|0+
2∑

k=1
|ak|0eKk

1−
2∑

k=1
|ek|0eKk

,

Γk = max
{(

Γ1
kl(s)

Γkl(s)

)
0
, l = 1, 2

}
,

H1 = max





∣∣∣ln r̄1
ā1+

∑n
i=1 b̄1i

∣∣∣ ,

∣∣∣∣∣∣
ln

r̄1−
r̄2

∑m
j=1 c̄1j

ā2+
∑m

j=1 b̄2j

ā1+
∑n

i=1 b̄1i

∣∣∣∣∣∣



 ,

H2 = max

{∣∣∣ln r̄2
ā2+

∑m
j=1 b̄2j

∣∣∣ ,

∣∣∣∣∣ln
r̄2− r̄1

∑n
i=1 c̄2i

ā1+
∑n

i=1 b̄1i

ā2+
∑m

j=1 b̄2j

∣∣∣∣∣

}
.

andu1i, v1j , γ1, u2j , v2i, γ2 represent theinverse functions
of t− τi(t) = s, t− ρj(t) = s, t− δ1(t) = s, t− ηj(t) = s,
t− σi(t) = s and t− δ2(t) = s, respectively.

To prove the above theorem, we make the change of
variables

yi(t) = exi(t), i = 1, 2. (6)

Then the system (2) becomes




x′1(t) = r1(t)− a1(t)ex1(t)

−
n∑

i=1

b1i(t)ex1(t−τi(t)) −
m∑

j=1

c1j(t)ex2(t−ρj(t))

−e1(t)(1− δ′1(t))x
′
1(t− δ1(t))ex1(t−δ1(t)),

x′2(t) = r2(t)− a2(t)ex2(t)

−
m∑

j=1

b2j(t)ex2(t−ηj(t)) −
n∑

i=1

c2i(t)ex1(t−σi(t))

−e2(t)(1− δ′2(t))x
′
2(t− δ2(t))ex2(t−δ2(t)).

In fact, in this case, (2) should be reduced to




x′1(t) = r1(t)− a1(t)ex1(t)

−
n∑

i=1

b1i(t)ex1(t−τi(t)) −
m∑

j=1

c1j(t)ex2(t−ρj(t))

−e1(t)x′1(t− δ1(t))ex1(t−δ1(t)),
x′2(t) = r2(t)− a2(t)ex2(t)

−
m∑

j=1

b2j(t)ex2(t−ηj(t)) −
n∑

i=1

c2i(t)ex1(t−σi(t))

−e2(t)x′2(t− δ2(t))ex2(t−δ2(t)).

(7)

Let Θ denote the linear space of real value continuous
ω−periodic functions onR. The linear spaceΘ is a Banach
space with the usual norm‖x‖0 = maxt∈R

∑2
i=1 |xi(t)| for

a givenx = (x1, x2) ∈ Θ.
We define the following maps:

b : R× C → R2,
b(t, ϕ) = (b1(t, ϕ), b2(t, ϕ)),
b1(t, ϕ) = − e1(t)

1−δ′1(t)
eϕ1(−δ1(t)),

b2(t, ϕ) = − e2(t)
1−δ′2(t)

eϕ2(−δ2(t)), f : R× C → R2,

f(t, ϕ) = (f1(t, ϕ), f2(t, ϕ)),
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f1(t, ϕ) = r1(t)− a1(t)eϕ1(0) −
n∑

i=1

b1i(t)eϕ1(−τi(t))

−
m∑

j=1

c1j(t)eϕ2(−ρj(t)) + ( e1(t)
1−δ′1(t)

)′eϕ1(−δ1(t)),

f2(t, ϕ) = r2(t)− a2(t)eϕ2(0) −
m∑

j=1

b2j(t)eϕ1(−ηj(t))

−
n∑

i=1

c2i(t)eϕ1(−σi(t)) + ( e2(t)
1−δ′2(t)

)′eϕ2(−δ2(t)),

whereC := C([−τ, 0];R2).
Clearly,b : R×C → R2 andf : R×C → R2 are complete

continuation functions and system (7) takes the form

d
dt

[x(t)− b(t, xt)] = f(t, xt). (8)

In the proof of our main result below, we will use the
following two lemmas.
Lemma 3: If the assumptions of Theorem 1 are satisfied

and if Ω = {ϕ ∈ C : ‖ϕ‖ < M}, whereM > M0 is such
that k = ceM < 1, then |b(t, ϕ) − b(t, ψ)| ≤ k‖ϕ − ψ‖ for
t ∈ R andϕ,ψ ∈ Ω.
Proof. For t ∈ R andϕ,ψ ∈ Ω, we get

|bi(t, ϕ)− bi(t, ψ)| ≤ di(t)|eϕi(−δi(t)) − eψi(−δi(t))|
≤ di(t)eθiϕi(−δi(t))+(1−θi)ψi(−δi(t))

·|ϕi(−δi(t))− ψi(−δi(t))|,

for someθi ∈ (0, 1), i = 1, 2. Then we have

|bi(t, ϕ)− bi(t, ψ)| ≤ |di|0eM‖ϕ− ψ‖, (i = 1, 2).

Hence,

|b(t, ϕ)− b(t, ψ)| ≤ (|d1|0 + |d2|0)eM‖ϕ− ψ‖
≤ ceM‖ϕ− ψ‖ = k‖ϕ− ψ‖.

Thus, the proof is complete. 2

Lemma 4: Assume that the assumption of theorem 1 are
satisfied. Then every solutionx ∈ Θ of the system

d
dt

[x(t)− λb(t, xt)] = λf(t, xt), λ ∈ (0, 1)

satisfies‖x‖0 ≤ M0.
Proof. Let d

dt [x(t)−λb(t, xt)] = λf(t, xt) for x ∈ Θ, that
is,





X ′
1(t) = λ

[
r1(t)− a1(t)ex1(t)

−
n∑

i=1

b1i(t)ex1(t−τi(t)) −
m∑

j=1

c1j(t)ex2(t−ρj(t))

+
(

e1(t)
1−δ′1(t)

)′
ex1(t−δ1(t))

]
,

X ′
2(t) = λ

[
r2(t)− a2(t)ex2(t)

−
m∑

j=1

b2j(t)ex2(t−ηj(t)) −
n∑

i=1

c2i(t)ex1(t−σi(t))

+
(

e2(t)
1−δ′2(t)

)′
ex2(t−δ2(t))

]
,

(9)

whereXi(t) = xi(t) + λ ei(t)
1−δ′i(t)

exi(t−δi(t)) (i = 1, 2).

System (9) yields, after integrating from0 to ω, that




∫ ω

0

[
a1(t)ex1(t) +

n∑

i=1

b1i(t)ex1(t−τi(t))

+
m∑

j=1

c1j(t)ex2(t−ρj(t)) − d′1(t)e
x1(t−δ1(t))


dt

=
∫ ω

0

r1(t)dt = r1ω,

∫ ω

0


a2(t)ex2(t) +

m∑

j=1

b2j(t)ex2(t−ηj(t))

+
n∑

i=1

c2i(t)ex1(t−σi(t)) − d′2(t)e
x2(t−δ2(t))

]
dt

=
∫ ω

0

r2(t)dt = r2ω,

(10)
wheredk(t) = ek(t)

1−δ′k(t) , k = 1, 2. Sinceτ ′i(t) < 1, the inverse
function t = u1i(s) of t− τi(t) = s, t ∈ [0, ω], exists. Then
we have
∫ ω

0

b1i(t)ex1(t−τi(t))dt =
∫ ω−τi(ω)

−τi(0)

b1i(u1i(s))
1− τ ′i(u1i(s))

ex1(s)ds.

(11)
According toRemark 2, we have

∫ ω

0

b1i(t)ex1(t−τi(t))dt =
∫ ω

0

b1i(u1i(s))
1− τ ′i(u1i(s))

ex1(s)ds.

(12)
Similarly,




∫ ω

0

c1j(t)ex2(t−ρj(t))dt =
∫ ω

0

c1j(v1j(s))
1− ρ′j(v1j(s))

ex2(s)ds,

∫ ω

0

d′1(t)e
x1(t−δ1(t))dt =

∫ ω

0

d′1(γ1(s))
1− δ′1(γ1(s))

ex1(s)ds,

∫ ω

0

b2j(t)ex2(t−ηj(t))dt =
∫ ω

0

b2j(u2j(s))
1− η′j(u2j(s))

ex2(s)ds,

∫ ω

0

c2i(t)ex1(t−σi(t))dt =
∫ ω

0

c2i(v2i(s))
1− σ′i(v2i(s))

ex1(s)ds,

∫ ω

0

d′2(t)e
x2(t−δ2(t))dt =

∫ ω

0

d′2(γ2(s))
1− δ′2(γ2(s))

ex2(s)ds,

(13)
where v1j , γ1, u2j , v2i, γ2 are thecorresponding inverse
functions.

So from (10), (12) and (13), we can get

∫ ω

0

2∑

k=1

Γik(s)exk(s)ds = r̄iω, i = 1, 2 (14)

From (9) we have
∫ ω

0

∣∣∣∣
[
x1(t) + λd1(t)ex1(t−δ1(t))

]′∣∣∣∣ dt

= λ

∫ ω

0

∣∣∣r1(t)− a1(t)ex1(t)

−
n∑

i=1

b1i(t)ex1(t−τi(t)) −
m∑

j=1

c1j(t)ex2(t−ρj(t))

+d′1(t)e
x1(t−δ1(t))

∣∣∣ dt
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≤ λ

∫ ω

0

|r1(t)|dt + λ

∫ ω

0

[
a1(t)ex1(t)

+
n∑

i=1

b1i(t)ex1(t−τi(t)) +
m∑

j=1

c1j(t)ex2(t−ρj(t))

+|d′1(t)|ex1(t−δ1(t))
]
dt. (15)

In view of (10)-(14) and by a similar analysis, we have
∫ ω

0

[
a1(t)ex1(t) +

n∑

i=1

b1i(t)ex1(t−τi(t))

+
m∑

j=1

c1j(t)ex2(t−ρj(t)) + |d′1(t)|ex1(t−δ1(t))


dt

=
∫ ω

0

2∑

k=1

Γ1
1k(s)exk(s)ds

=
∫ ω

0

2∑

k=1

(
Γ1

1k(s)
Γ1k(s)

)
Γ1k(s)exk(s)ds

≤
∫ ω

0

2∑

k=1

(
Γ1

1k(s)
Γ1k(s)

)

0

Γ1k(s)exk(s)ds

≤ Γ1

∫ ω

0

2∑

k=1

Γ1k(s)exk(s)ds, (16)

It follows from (14)-(16) that
∫ ω

0

∣∣∣∣
[
x1(t) + λd1(t)ex1(t−δ1(t))

]′∣∣∣∣ dt ≤ (R̄1 + Γ1r̄1)ω.

(17)
Similarly

∫ ω

0

∣∣∣∣
[
x2(t) + λd2(t)ex2(t−δ2(t))

]′∣∣∣∣ dt ≤ (R̄2 + Γ2r̄2)ω,

(18)
From(14), we have

r̄1ω =
∫ ω

0

[
Γ11(t)ex1(t) + Γ12(t)ex2(t)

]
dt

=
∫ ω

0

[
ϑ1ex1(t) + ϑ1d1(t)ex1(t−δ1(t))

]
dt

+
∫ ω

0

[
Γ11(t)ex1(t) + Γ12(t)ex2(t)

−ϑ1ex1(t) − ϑ1d1(t)ex1(t−δ1(t))
]
dt. (19)

Similarly to (10)-(14) we can get
∫ ω

0

[
Γ11(t)ex1(t) + Γ12(t)ex2(t) − ϑ1ex1(t)

−ϑ1d1(t)ex1(t−δ1(t))
]
dt

=
∫ ω

0

[(
Γ11(t)− ϑ1 − ϑ1

d1(γ1(t))
1− δ′1(γ1(t))

)
ex1(t)

+Γ12(t)ex2(t)
]
dt.

As ϑ1 = (Γ11)m(1−δ′1)m

(1−δ′1)m+|d1|0 , it follows

Γ11(t)− ϑ1 − ϑ1
d1(γ1(t))

1− δ′1(γ1(t))
≥ 0.

So wefind from (19) that

r̄1ω ≥
∫ ω

0

ϑ1ex1(t) + ϑ1d1(t)ex1(t−δ1(t))dt. (20)

By the mean value theorem, we see that there exist points
ξ1 such that

r̄1 ≥ ϑ1ex1(ξ1) + ϑ1d1(ξ1)ex1(ξ1−δ1(ξ1)), (21)

which implies that

x1(ξ1) < ln
r̄1

ϑ1
, d1(ξ1)ex1(ξ1−δ1(ξ1)) <

r̄1

ϑ1
. (22)

By (17) and (22), we can see

x1(t) + λd1(t)ex1(t−δ1(t))

≤ x1(ξ1) + λd1(ξ1)ex1(ξ1−δ1(ξ1))

+
∫ ω

0

∣∣∣∣
[
x1(t) + λd1(t)ex1(t−δ1(t))

]′∣∣∣∣ dt

< ln
r̄1

ϑ1
+

r̄1

ϑ1
+ (R̄1 + Γ1r̄1)ω := K1.

Similarly

x2(t) + λd2(t)ex2(t−δ2(t)) < ln
r̄2

ϑ2
+

r̄2

ϑ2
+ (R̄2 + Γ2r̄2)ω

:= K2.

whereϑ2 = (Γ22)m(1−δ′2)m

(1−δ′2)m+|d2|0 .

As λdi(t)exi(t−δi(t)) > 0, i = 1, 2, we can find that

xi(t) < Ki, i = 1, 2. (23)

Besides, from (9) we get




x′1(t) = λ
[
r1(t)− a1(t)ex1(t) −

n∑

i=1

b1i(t)ex1(t−τi(t))

−
m∑

j=1

c1j(t)ex2(t−ρj(t))

− e1(t)x′1(t− δ1(t))ex1(t−δ1(t))
]
,

x′2(t) = λ
[
r2(t)− a2(t)ex2(t) −

m∑

j=1

b2j(t)ex2(t−ηj(t))

−
n∑

i=1

c2i(t)ex1(t−σi(t))

− e2(t)x′2(1− δ2(t))ex2(t−δ2(t))
]
.

Then by (23) we have



|x′1(t)| ≤ λ
[
r1(t) + a1(t)ex1(t) +

n∑

i=1

b1i(t)ex1(t−τi(t))

+
m∑

j=1

c1j(t)ex2(t−ρj(t))

+ e1(t)|x′1(t− δ1(t))|ex1(t−δ1(t))
]
,

≤ |r1|0 + |a1|0eK1 +
n∑

i=1

|b1i|0eK1

+
m∑

j=1

|c1j |0eK2 + |e1|0|x′1|0eK1 ,

|x′2(t)| ≤ |r2|0 + |a2|0eK2 +
m∑

j=1

|b2j |0eK2

+
n∑

i=1

|c2i|0eK1 + |e2|0|x′2|0eK2 .
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Furthermore, wehave

‖x′‖0 ≤ |x′1(t)|0 + |x′2(t)|0

≤
2∑

k=1

|rk|0 +
2∑

k=1

|ak|0eKk +
n∑

i=1

(|b1i|0 + |c2i|0)eK1

+
m∑

j=1

(|c1j |0 + |b2j |0)eK2 +
2∑

k=1

|ek|0‖x′‖0eKk .

By the assumption (3) of Theorem 1, we see

2∑

k=1

|ek|0eKk ≤
2∑

k=1

|ek|0eK ≤
2∑

k=1

|ek|0eM0 < 1.

Then

‖x′‖0 < H∗, (24)

Now, recalling (14) we can see that

r̄iω =
2∑

k=1

∫ ω

0

Γik(s)exk(s)ds, i = 1, 2,

and by using the extended integral mean value theorem, we
can find pointsηk ∈ [0, ω] (k = 1, 2) such that

r̄iω =
2∑

k=1

∫ ω

0

Γik(s)exk(s)ds

=
2∑

k=1

exk(ηk)

∫ ω

0

Γik(s)ds, i = 1, 2. (25)

Sincet = u1i(s) is the inverse function oft − τi(t) = s,
t ∈ [0, ω], and in view of the Lemma 2, we can seeu1i(ω) =
u1i(0) + ω, so

∫ ω

0

b1i(u1i(s))
1− τ ′i(u1i(s))

ds =
∫ u1i(ω)

u1i(0)

b1i(t)(1− τ ′i(t))
1− τ ′i(t)

dt

=
∫ u1i(0)+ω

u1i(0)

b1i(t)dt = b̄1iω.

Similarly,
∫ ω

0

d′1(γ1(s))
1− δ′1(γ1(s))

ds =
∫ γ1(ω)

γ1(0)

d′1(t)(1− δ′1(t))
1− δ′1(t)

dt = 0,

∫ ω

0

Γ12(s)ds =
∫ ω

0

m∑

j=1

c1j(v1j(s))
1− ρ′j(v1j(s))

ds =
m∑

j=1

c̄1jω.

Thus
∫ ω

0

Γ11(s)ds = (ā1 +
n∑

i=1

b̄1i)ω,

∫ ω

0

Γ12(s)ds =
m∑

j=1

c̄1jω. (26)

Similarly
∫ ω

0

Γ21(s)ds =
n∑

i=1

c̄2iω,

∫ ω

0

Γ22(s)ds = (ā2 +
m∑

j=1

b̄2j)ω. (27)

It follows from (25), (26) and (27) that

r̄1 = ex1(η1)(ā1 +
n∑

i=1

b̄1i) + ex2(η2)
m∑

j=1

c̄1j ,

r̄2 = ex1(η1)
n∑

i=1

c̄2i + ex2(η2)(ā2 +
m∑

j=1

b̄2j). (28)

From (28), we have

x1(η1) ≤ ln
r̄1

ā1 +
∑n

i=1 b̄1i
,

x2(η2) ≤ ln
r̄2

ā2 +
∑m

j=1 b̄2j
. (29)

On theother hand, from (28) and (29) we get

r̄1 = ex1(η1)(ā1 +
n∑

i=1

b̄1i) + ex2(η2)
m∑

j=1

c̄1j

≤ ex1(η1)(ā1 +
n∑

i=1

b̄1i) +
r̄2

∑m
j=1 c̄1j

ā2 +
∑m

j=1 b̄2j
,

r̄2 = ex1(η1)
n∑

i=1

c̄2i + ex2(η2)(ā2 +
m∑

j=1

b̄2j)

≤ r̄1

∑n
i=1 c̄2i

ā1 +
∑n

i=1 b̄1i
+ ex2(η2)(ā2 +

m∑

j=1

b̄2j).

Therefore, by the assumption (2) of Theorem 1 we obtain

x1(η1) ≥ ln
r̄1 − r̄2

∑m
j=1 c̄1j

ā2+
∑m

j=1 b̄2j

ā1 +
∑n

i=1 b̄1i
,

x2(η2) ≥ ln
r̄2 − r̄1

∑n
i=1 c̄2i

ā1+
∑n

i=1 b̄1i

ā2 +
∑m

j=1 b̄2j
. (30)

(29) and(30) imply

|xi(ηi)| ≤ Hi, i = 1, 2 (31)

From (24) and (31), we have

|xi| ≤ |xi(ηi)|+
∫ ω

0

|x′i|dt ≤ Hi +
∫ ω

0

|x′i|dt, i = 1, 2.

Hence,

‖x‖0 ≤
2∑

i=1

Hi +
∫ ω

0

‖x′‖0dt ≤
2∑

i=1

Hi + H∗ω ≤ M0. (32)

Obviously, M0 is independent ofλ, the proof is complete.
2

Based on the above results, we can now apply Lemma 1
and Remark 1 to (7) and obtain a proof of Theorem 1.

Proof of Theorem 1.Obviously, for M as give in Lemma
3, condition (1) in Lemma 1 is satisfied. Letg(µ) =
(g1(µ), g2(µ)).
Since

g1(µ) = ω


r̄1 −


(ā1 +

n∑

i=1

b̄1i)eµ1 +
m∑

j=1

c̄1jeµ2





 ,

g2(µ) = ω


r̄2 −




n∑

i=1

c̄2ieµ1 + (ā2 +
m∑

j=1

b̄2j)eµ2





 .

andM > | lnµ∗1| + | lnµ∗2|, we haveg(µ) 6= 0 for any µ ∈
∂BM (R2). That is, condition (2) in Lemma 1 holds.
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Fig. 1. Phase portrait of a solution of system (2) with2π-periodic solution
as its limit cycle.
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Fig. 2. Time-series ofy1(t) evolved in system (2).
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Fig. 3. Time-series ofy2(t) evolved in system (2).

At last, we verify that condition (3) of Lemma 1 also
holds. By assumption (1) of Theorem 1 and the formula for
the Brouwer degree, a straightforward calculation shows that

deg(g, BM (R2)) =
∑

µ∈g−1(0)
⋂

BM (R2)

sign detDg(µ)

= sign
{∣∣∣∣

ā1 +
∑n

i=1 b̄1i

∑m
j=1 c̄1j∑n

i=1 c̄2i ā2 +
∑m

j=1 b̄2j

∣∣∣∣ eµ1+µ2

}
6= 0.

By now all the assumptions required in Lemma 1 hold. It
follows from Lemma 1 and Remark 1 that system (7) has an
ω−periodic solution. Returning toyi(t) = exi(t), i = 1, 2,
we conclude that (2) has at least one positiveω−periodic
solution. The proof of Theorem 1 is complete.2

IV. SOME SIMULATIONS

In this section, we shall discuss an example to illustrate
our main results. For system (2), we taker1(t) = 0.05 +
0.01 sin t, r2(t) = 0.05+0.01 cos t, a1(t) = 0.08+0.05 sin t,
a2(t) = 0.08+0.05 cos t, b11(t) = 0.05+0.01 sin t, b12(t) =
0.05+0.01 cos t, b21(t) = 0.05+0.01 cos t, b22(t) = 0.05+
0.01 cos t, c11(t) = c12(t) = 0.005 + 0.001 sin t, c21(t) =
0.005 + 0.001 sin t, c22(t) = 0.002 + 0.001 sin t, e1(t) =

0.0002 + 0.00005 sin t, e2(t) = 0.0002 + 0.00005 cos t,
m = n = 2, τ1(t) = 0.08, τ2(t) = 0.05, ρ1(t) = 0.13,
ρ2(t) = 0.09, δ1(t) = δ2(t) = 0.05, η1(t) = 0.01,
η2(t) = 0.05, σ1(t) = 0.07, σ2(t) = 0.06. When t ≤ 0,
we takey1(t) = 0.255+0.01 sin t, y2(t) = 0.26+0.01 cos t.
It can be easily check that all conditions of Theorem 1 are
satisfied. Then system (2) under the above conditions has at
least one positiveω−periodic solution (see Fig.1-Fig.3).

V. CONCLUSION

In this paper, a two-species competition system with
general periodic neutral delay has been investigated. With the
help of the continuation theorem for composite coincidence
degree and some techniques, a set of sufficient conditions
have been derived for the existence of at least one strictly
positive periodic solution. Simulation examples have shown
the effectiveness of the conditions presented in this paper.
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