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Abstract—A simple adjustment to parametric failure-time
distributions, which allows for much greater flexibility in the
shape of the hazard-rate function, is considered. Analytical
expressions for the distributions of the power-law adjusted
Weibull, gamma, log-gamma, generalized gamma, lognormal
and Pareto distributions are given. Most of these allow for
bathtub shaped and other multi-modal forms of the hazard
rate. The new distributions are fitted to real failure-time data
which exhibit a multi-modal hazard-rate function and the fits
are compared.

Index Terms—survival analysis; bathtub hazard; accelerated
failure time (AFT) regression; power-law distribution.

I. INTRODUCTION

Parametric distributions play an important role in the
analysis of lifetime data especially in accelerated failure time
(AFT) regression models. Generally speaking analysis based
on a parametric model will be more precise than that based
on a nonparametric or semi-parametric model, because it will
have fewer unknown parameters. However this is contingent
on it being possible to find a suitable parametric model to fit
the data. Unfortunately for most of the common distributions
employed there is very little flexibility in the shape of the
hazard rate function. In particular none of the two-parameter
distributions customarily employed can be used to model a
bathtub-shaped hazard.

There are a number of three-parameter distributions which
allow a bathtub-shaped hazard including the exponentiated
Weibull [3], the generalized Weibull [4] and the generalized
gamma (see e.g. [1]) distributions. An addition to these was
proposed in a recent article by Reed [5]. This distribution,
which is a special case of a double Pareto-lognormal distri-
bution [6], can be characterised as the product of independent
random variables, one with a lognormal distribution and the
other with a power-law distribution on [0, 1]. For this reason
the new distribution was called the lognormal-power function
distribution. It can be thought of as an extension of the
lognormal distribution.

In this article it is shown how any simple parametric
failure-time distribution can be extended in a similar way
to allow for much greater flexibility in its form, including
in most cases the possibility of bathtub shaped hazard-rate
functions. Precisely, the failure time T is modelled as the
product T

d
= T0U , where T0 follows the “simple” failure-

time distribution and U follows the power-law distribution
with density λuλ−1 on [0, 1]. Alternatively this can be
expressed as T

d
= T0/V where V has a Pareto distribution,

with density λ/vλ+1 on [1,∞).
As might be expected, it is not possible for every paramet-

rically specified distribution (of T0) to obtain an analytical
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expression for the resulting power-law modified density.
However it turns out to be possible to do so for a number
of the more common failure-time distributions including the
lognormal (Reed, 2011), exponential, Weibull, gamma, log-
gamma, Pareto and generalized gamma distributions. These
distributions are considered in this article. In all cases, except
the lognormal and Pareto, the resulting power-function mod-
ified densities can be expressed in terms of an incomplete
gamma function.

In Sec.2 the distribution theory associated with the power-
law modification is presented, and in Sec.3 maximum likeli-
hood estimation discussed. In Sec.4 the results of fitting the
various power-law modified failure-time distributions to data
with a multi-modal shaped hazard rate, are presented.

II. THEORY

Let T0 be a random variable with a known continuous
failure-time distribution. The power-law modified form of
this distribution can be represented by a random variable T
with

T
d
= T0U

where U , independent of T0, follows the power-law distri-
bution with density λuλ−1 (λ > 0) on the interval [0, 1].
Taking logarithms leads to

X = log(T )
d
= Z0 −

1

λ
E

where Z0 = log T0 (with survivor function and density S0(z)
and f0(z), say) and E is a standard (unit mean) exponential
random variable. The survivor function for X can be found
as a convolution as follows:

SX(x) = P(Z0 − E/λ ≥ x)

= P(E ≤ λ(Z0 − x))

= E{P(E ≤ λ(Z0 − x))|Z0}
= E{[1− e−λ(Z0−x)] I[Z0 − x > 0]}

=

� ∞

x
[1− e−λ(z−x)]f0(z)dz

= S0(x)− eλx
� ∞

x
e−λzf0(z)dz (1)

where the expectation E is with respect to Z0 and I is a
Bernoulli indicator random variable. Upon integrating by
parts one obtains

SX(x) = λeλx
� ∞

x
e−λzS0(z)dz. (2)

From this, by differentiation and using (1), one obtains the
corresponding formula for the density of X

fX(x) = λeλx
� ∞

x
e−λzf0(z)dz. (3)
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From (2) and (3) the survivor function and density of T
in terms of those of T0 (ST0(t) and fT0(t)) can be easily
obtained:

ST (t) = λtλ
� ∞

t
u−λ−1ST0(u)du. (4)

fT (t) = λtλ−1

� ∞

t
u−λfT0(u)du. (5)

We now consider power-law modified forms of some specific
failure-time distributions.

Weibull and exponential model. If T0 has a Weibull
distribution with hazard rate function hT0(t) = αβtβ−1, its
survivor function and density are ST0(t) = exp(−αtβ) and
fT0(t) = αβtβ−1 exp(−αtβ). The hazard rate is monotone
increasing for β > 1 and monotone decreasing for β < 1.
In the case β = 1 it is constant and the Weibull distribution
reduces to an exponential distribution. The survivor function
and density for Z0 = log T0 are

S0(z) = exp(−αeβz) and f0(z) = αβ exp(βz−αeβz).

From (2) and (3), the survivor function and density of
X = log T , where T follows the power-law adjusted Weibull
distribution, are

SX(x) =
λαλ/β

β
eλx I(αeβx,−λ/β)

fX(x) = λαλ/β eλx I(αeβx, 1− λ/β)

where I is the incomplete gamma function

I(y,θ ) =

� ∞

y
uθ−1e−udu. (6)

Note that although the ordinary gamma function can be
expressed as the integral Γ(θ) =

�∞
0 uθ−1e−udu only for

θ > 0, the incomplete gamma function I(y,θ ) evaluated at
y > 0 converges for all real θ. Thus SX(x) and fX(x) above
are well-defined since αeβx > 0.

The survivor function, density and hazard-rate function for
T are easily computed from the above as

ST (t) = SX(log t); fT (t) =
1

t
fX(log t); hT (t) =

fT (t)

ST (t)

Fig.1 (top row) illustrates three shapes that the hazard rate
function of the power-law adjusted Weibull distribution can
assume.

Gamma model. If T0 follows a gamma distribution with
scale parameter θ−1 and shape parameter κ, then the density
and survivor function of Z0 = log T0 are

S0(z) =
I(θez, κ)

Γ(κ)
and f0(z) =

θκ

Γ(κ)
exp(κz−θez)

From (2) and (3), the survivor function and density of
X = log T , where T follows the power-law adjusted gamma
distribution, are

SX(x) =
1

Γ(κ)

�
I(θex, κ)− θλeλxI(θex, κ− λ)

�

fX(x) =
λθλ

Γ(κ)
eλxI(θex, κ− λ)
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Fig. 1. Some shapes of the hazard rate function for for various power-law
adjusted distributions. Top row: Weibull distribution with α = 1: (l.hand)
β = 1 (exponential distribution) and λ = 0.02; (centre) β = 2 and λ = 2;
r.hand β = 3 and λ = .02. Second row: gamma distribution with θ = 0.25:
(l.hand) κ = .01 and λ = 1; (centre) κ = .01 and λ = 2.5; (r.hand)
κ = .1 and λ = 7. Third row: log-gamma distribution with θ = 20:
(l.hand) κ = 50 and λ = .01; (centre) κ = 10 and λ = .01; (r.hand)
κ = 5 and λ = .5. Bottom row: Pareto distribution with τ0 = 1.5: (l.hand)
α = 1 and λ = 0.1; (centre) α = 15 and λ = 2; (r.hand): α = 15 and
λ = 0.2

Fig.1 (second row) illustrates some shapes that the hazard
rate function of the power-law adjusted gamma distribution
can assume.

Log-gamma model. If Z0 = log T0 follows a
gamma distribution, so that T0 has density fT0(t) =
θκ

Γ(κ) t
−(θ+1)(log t)κ−1 with support on [1,∞) then from (2)

and (3), it is easy to show that the power-law adjusted random
variable T has support on (0,∞) and that X = log T has
survivor function and density

SX(x) =





1− eλx

�
θ

θ+λ

�κ
if x ≤ 0

1
Γ(κ)

�
I(θx,κ )−

�
θ

θ+λ

�κ
eλxI([θ + λ]x,κ )

�
if x > 0

and

fX(x) =





λeλx

�
θ

θ+λ

�κ
if x ≤ 0

λeλx
�

θ
θ+λ

�κ
I([θ+λ]x,κ)

Γ(κ) if x > 0

Fig.1 (third row) illustrates some shapes that the hazard rate
function of the power-law adjusted log-gamma distribution
can assume.

Pareto model. If T0 follows a Pareto distribution with
support on (τ0,∞) and pdf fT0(t) =

α
τ0

�
t
τ0

�−(α+1)
thereon,

one can show that the power-law adjusted form has support
on (0,∞) and (using (4)) that the survivor function of the
power-law adjusted form is

ST (t) =






1− α
α+λ

�
t
τ0

�λ
if t ≤ τ0

λ
α+λ

�
t
τ0

�−α
if t > τ0
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and using (5) that the corresponding pdf is

fT (t) =






αλ
α+λ

1
τ0

�
t
τ0

�λ−1
if t ≤ τ0

αλ
α+λ

1
τ0

�
t
τ0

�−α−1
if t > τ0

Fig.1 (bottom row) illustrates some shapes that the hazard
rate function of the power-law adjusted Pareto distribution
can assume.

Lognormal model. Consider the case where Z0 = log T0

follows a normal distribution with mean µ and variance σ2.
Reed (2011) The power-law adjusted version of this distri-
bution (the lognormal-power function or lNpf distribution)
was considered in [5] where it is shown that the survivor
function and density of X = log T , where T follows the
lNpf distribution, are

SX(x) = φ

�
x− µ

σ

��
R

�
x− µ

σ

�
−R

�
λσ +

x− µ

σ

��

and
fX(x) = λφ

�
x− µ

σ

�
R

�
λσ +

x− µ

σ

�

where R is Mills’ ratio of the complementary cumulative
distribution function (cdf) to the pdf of a standard normal
distribution:

R(z) =
Φc(z)

φ(z)
.

Generalized gamma model. The three-parameter general-
ized gamma distribution includes the Weibull, gamma and
lognormal models as special or limiting cases. It has density

fT0(t) = αθκtακ−1 exp(−θtα)/Γ(κ)

With some work using (2) and (3), the survivor function
and density of X = log T , where T follows the power-law
adjusted gamma distribution, can be shown to be

SX(x) =
1

Γ(κ)

�
I(θeαx, κ)− θλ/αeλxI(θeαx, κ− λ/α)

�

fX(x) =
λθλ/α

Γ(κ)
eλxI(θeαx, κ− λ/α)

It should be noted that while the (unadjusted) log-gamma
and Pareto distributions have support bounded away from
zero, their power law adjusted versions have support on
[0,∞) as indeed occurs in all of the power law adjusted
models discussed in this paper. Thus in these models there
are no problems with the range of support depending on
a parameter, as occurs for example with the generalized
Weibull distribution.

III. PARAMETER ESTIMATION BY MAXIMUM
LIKELIHOOD.

The parametric likelihood for much failure-time data is
proportional to

n�

i=1

[fTi(ti)]
δi [STi(ti)]

1−δi

where δi is an indicator variable with value 1 for an observed
failure time, and value 0 for a right-censored observation. If
there are no covariates and the failure times are considered
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Fig. 2. Kernel smoothed non-parametric estimate of the hazard rate function
for electrical appliances data. The Epanechnikov kernel with a bandwith of
1500 was used. Note that the right-hand part (> 6000) of the estimated
hazard is unreliable, being based on only two observations.

to be identically distributed following a power-law adjusted
distribution with pdf and survivor function fT and ST , then
up to an additive constant the log-likelihood is

n�

i=1

δi log fT (ti) +
n�

i=1

(1− δi) logST (ti)

which is the same as
n�

i=1

δi log fX(log ti)+
n�

i=1

(1− δi) logSX(log ti)−
n�

i=1

log ti

Thus for each of the models discussed above an analytical
expression for the log-likelihood can be obtained. This will
need to be maximized numerically to obtain maximum
likelihood estimates using an optimization routine such as
optim in R. For starting values one can use the MLEs of the
two parameters of the unadjusted distribution and an arbitrary
value (say 1) for λ.

Covariates ZT = (Z1, Z2, . . . , Zp) can be incorporated in
an accelerated failure time (AFT) regression model:

log T = β0 + βTZ +X (7)

where X is a random variable with one of the power-
law adjusted distributions of the previous section. Note that
for all but the log-gamma these distributions can be re-
parameterized in terms of a location parameter and two other
parameters. In these cases the intercept term β0 in (7) is not
needed (and indeed will result in a non-identifiable model if
it is included).

IV. AN EXAMPLE.

Electrical appliances. Lawless (p. 256) [2] presents data on
the numbers of cycles to failure for 60 electrical appliances
put on test. All of the sixty appliances eventually failed,
the largest failure times being 6065 and 9701 cycles. Fig.2
shows a kernel-smoothed non-parametric estimate of the
hazard rate for these data. There is clearly a suggestion of
multi-modality. To assess and compare the various power-
law adjusted models discussed in the previous section each
was fitted to these data. Maximization of the log-likelihood
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Fig. 3. Maximum likelihood estimates of various power-law adjusted
distributions for the electrical appliance data. They are (clockwise from
upper left) Weibull, log gamma, lognormal and Pareto.

was performed in R using the Nelder-Mead method in the
routine optim and in all cases required only a minute or two
of computation.

The values of the maximized log-likelihood and of the
Akaike Information Criterion (AIC) for the power-law ad-
justed forms of the two-parameter models are given in
Table 1. In all cases, the improvement in fit obtained by
including the power-law adjustment was highly significant
(P << .001) as one would expect since none of the two-
parameter forms allows for a bathtub shape. From Table 1 it
can be seen that the power-law adjusted Pareto distribution
provides the best fit of these models.

Fig.3 shows the MLES of the hazard rate for (clockwise
from upper left) the power-law adjusted Weibull, log-gamma,
lognormal and Pareto distributions. While these plots may
appear very different to the non-parametric estimate of the
hazard function (Fig.2) at the upper end, it should be noted
that the upper part of the non-parametric estimate is not very
precise, since in the dataset there are only two observations
greater than 6000 (with values 6065 and 9701). Fig.4 shows
the fitted power-law adjusted Pareto hazard rate function
superimposed on the non-parametric estimate on the range 0
to 6000 cycles. Also Fig.5 shows the Kaplan-Meier estimate
of the survivor function and the fitted survivor function
for the power-law adjusted Pareto distribution. Both plots
suggest a good fit.

Attempts at fitting the four-parameter power-law adjusted
generalized gamma distribution were not successful, with
different maxima arising with different starting values. This
suggests the possibility of identifiability problems with this
model. Indeed the generalized gamma distribution without
the power-law adjustment is capable of exhibiting a bathtub
shaped hazard.

For comparison purposes the three 3-parameter distribu-
tions mentioned in the introduction which have been pre-
viously used to model data with a bathtub shaped hazard
(exponentiated Weibull, generalized Weibull and generalized
gamma) were fitted to the electrical appliances data. The
results are shown in Table 2. From comparison with Table
1 it can be seen that of all eight models the best fitting
is the power-law adjusted Pareto, followed by the gener-
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Fig. 4. Kernel smoothed non-parametric estimate of the hazard rate function
for electrical appliances data and the MLE of the power-law adjusted Pareto
hazard-rate.
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Fig. 5. Non-parametric Kaplan-Meier estimate (step function) of the
survivor function for the electrical appliance data and the maximum likeli-
hood estimate of the survivor function using the power-law adjusted Pareto
distribution.

alized Weibull. Furthermore all of the power-law adjusted
2-parameter models, save the Weibull, have a better fit
than the generalized gamma and the exponentiated Weibull
distributions, suggesting that the consideration of power-law
adjusted models may provide a useful addition to the toolkit
of practitioners.

V. CONCLUSIONS.
This article shows how existing parametric failure-time

distributions can be modified by a simple power-law ad-
justment, thereby rendering them more flexible, including
in many cases having the possibility of a bathtub shaped
hazard-rate function. The power-law adjustment involves
the introduction of an extra parameter. While the article
considers only distributions for which there are analytical
expressions for the density and survivor function, the idea
could still be applied to other common failure distributions
(e.g. log-logistic, Gompertz, etc.) In such cases the density
and survivor function would need to be computed numeri-
cally, using quadrature methods for evaluating the integrals
(2) and (3). This would replace the computation involved
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in evaluating the incomplete gamma functions which occur
in the distributions discussed in this paper and so the extra
computation involved might not be too great.
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