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Abstract—Nowadays, similarity search is becoming a field

if |A| = k& and an objecy € A, there is no object ¢ A

of increasing interest because these kinds of methods cangych thatd(z, z) < d(y, z).

be applied to different areas in science and engineering, for
instance, pattern recognition, information retrieval, etc. This
search is carried out over metric indexes decreasing the number

Metric access methods, metric space indexes or metric
data structures are different names for data structures built

of distance evaluations during the search process, improving OVer a set of objects. Th? objective of these methods is to
the efficiency of this process. However, for real applications, minimize the amount of distance evaluations made to solve
when processing large volumes of data, query response timethe query. Searching methods for metric spaces are mainly

can be quite high. In this case, it is necessary to apply
mechanisms in order to significantly reduce the average query
response time. In this sense, the parallelization of the metric
structures processing is an interesting field of research. For
that purpose, modern GPU/Multi-GPU systems offer a very
impressive cost/performance ratio. In this paper, the authors
make a comparative study of the most popular metric structures
and pivot selection methods in order to stablish a set of
attractive features from the point of view of future GPU
implementations. Therefore, this work represents a state-of-
the-art paper setting up the starting point for future parallel
implementations of similarity search techniques.

Index Terms—Comparative study, range queries, similarity
search, metric spaces.

I. INTRODUCTION
I N the last decade, the search of similar objects in

based on dividing the space using the distance to one or more
selected objects.

Metric space data structures can be grouped into two
classes [1]clustering-based angivots-based methods. The
clustering-based structures divide the space into areas, where
each area has a so-called centre. Some data is stored in
each area, which allows easy discarding the whole area by
just comparing the query with its centre. Algorithms based
on clustering are better suited for high-dimensional metric
spaces. Some clustering-based indexesBSE [2], GHT
[3], M-Tree [4], GNAT [5], EGNAT [6] and many others.

There exist two criteria to define the areas in clustering-
based structuredyperplanes and covering radius. The for-
mer divides the space indoronoi partitions and determines
the hyperplane the query belongs to according to the cor-
r@sponding centre. The covering radius criterion divides the

large collection of stored objects in a metric databag®,ce into spheres that can be intersected and one query can
has become a most interesting problem. This kind of Searﬁglong to one or more spheres.

can be found in different applications such as voice and, the pivots-based methods, a set of pivots is selected and
image recognition, data mining, plagiarism detection ange gistances between the pivots and database elements are

many others. A typical query for these applications is t
range search which consists in obtaining all the objects th
are at some given distance from the consulted object.

A. Smilarity Search in Metric Spaces

ecalculated. When a query is made, the query distance to

ach pivot is calculated and the triangle inequality is used
to discard the candidates. Its objective is to filter objects
during a request through the use of a triangular inequality,
without really measuring the distance between the object

Similarity is modeled in many interesting cases throug#nder request and the discarded object. Mathematically, these

metric spaces, and the search of similar objects throu

range search or nearest neighbors. A metric spéce) is
a setX and a distance functiod : X2 — R, such that
Va,y, z € X fulfills the properties of positivenesd(z, y) >
0, andd(z,y) = 0 <= z = y], symmetry [d(z,y) =
d(y,z)] and triangle inequalityd(z, y)+d(y, z) > (d(z, 2)].
In a given metric spaceX, d) and a finite data séf C X
a series of queries can be made. The basic query istiyge
query (x,r), a query beinge € X and a range € R. The
range query around with ranger (or radiusr) is the set
of objectsy € Y such thatd(z,y) < r. A second type of
query that can be built using the range queryisearest
neighbors (kN N), the query being: € X and objectk. k
nearest neighbors te are a subseA of objectsY, such that
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gﬁnstruction and searching processes can be expressed as
ollows:

o Let {p1,ps,...,px} @ set of pivots,p; € X. For each
elementy of the databas& the distance to thé pivots
(d(y,p1), .-, d(y,px)) is stored. Given a query and
a ranger, the distancgd(q, p1), ...,d(q,px)) to the k
pivots is calculated.

o If for some pivot p; the expression
|d(q,p;) — d(y,p:;)| > r is holding, then for triangle
inequality d(¢q,y) > r, and therefore it is unnecessary
to explicitly evaluate d(q,y). All the objects not
discarded by this rule have to be directly compared to
the queryg.

Some pivots-based indexes dr8ESA [7], FQT and its
variants [8],Spaghettis and its variants [9]FQA [10], SSS
Index [11] and others.

Array-type structures implement these concepts directly.
The difference among the array-type structures lies on extra
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structures used to reduce the computational cost to obtain
the number of candidates keeping invariable the evaluation 8
of distances.

Many indexes are trees and the children of each node de-
fine areas of space. Range queries traverse the tree, enteri

i

into all the children whose areas cannot be proved to be & 8 pl p2 p3 p4
disjoint with the query region. p14
. . p2 pl5 O pl0opl2 pPS5p7pllpl5 p9 p6p8pl3pl4
The increased size of databases and the emergence of nevd O 013
data types create the need to process a large volume of data. = O o8
O

Then, new research topics appear such as efficient use of

computational resources (storage and its hierarchy, proces-

. . Fig. 1. Construction oEGNAT structure: data space and metric structure.
sors, network, etc) that allows us to reduce the execution timé P

and to save energy. In this sense, recent appearance of GPUs , . , ,
for general purpose computing platforms offers powerful The choice of these metric structures is motivated because

parallel processing capabilities at a low price and ener{)eY are representative of this field of knowledge, and we
cost. However, this kind of platforms has some constraintéve considered structures based on pivots and on clustering,

related to the memory hierarchy. array-type and tree-type.

The present work analyses, by means of a set of exper-W'th respect to the choice of pivot selection, we have

iments, the results obtained for several metric structuresqﬂns'delged;hr?ifc_)uzw'?hg: ts. thi thod
order to obtain those attractive features from the point of a) Randomly: As the name suggests, this method con-

view of a future GPU-based implementation: selection gfsts in selecting randomly the set of pivots of the database.

. : . b) Sparse Spatial Selection (SSS): Sparse Fpatial Se-
pivots and centres techniques, needed storage and simplicity. . i .
of the data structure. Fea{lon [11] is a method to select a dynamic set of pivots

Th ris structured as follows. In Section Il the metr& centres distributed in the space. L&, d) be a metric
€ paper Is structured as Tollows. ectio € metng ace,U C X and M the largest distance between all pairs
structures considered in this paper are described. In Sect (?n

X objects, i. e M = max{d(z,y)/x,y € U}. Initially, the
i the features to_ be evaluated are p_resent_ed. S_ectlon t of pivots contains the first element of the collection. After
outlines the experimental results and discussion. Finally, the

conclusions and future work are commented in Section V a, an element; € U, is selected as a pivot if and only
if the distance between it and the rest of selected pivots is

greater than or equal td/ x «, beinga a constant whose

Il. METRIC STRUCTURES optimum values are close to 0.4 [11] (see Figure 2).

The metric structures considered in this comparative stud
are:

a) Generic Metric Sructure (GMS): This structure rep-
resents the most basic structure: it is an array-type structyre x
based on pivots, which are obtained randomly. From this X
generic structure could be derived the rest of structures based @ x Jx
on arrays and the choice of the pivots could be carried
out according to SSS-Index or MSD methods. These pival. 2. Partition of the space usirgS methods.
selection techniques will be introduced later.

b) Spaghettis: It is an array-type structure based on  ¢) Maximun Sum of Distances (MSD): MSD (Maximun
pivots and does not assume any pivot selection meth&lm of Distances) is used IDAESA (Linear Aproximating
However, each entry in the array, that represents distang@grch Algorithm) [7], [12]. The underlying idea is to select
between an element in the database and the pivots, is sog@ts considering that the distance between them is always
with respect to this distance, obtaining a reduction on thige maximum. Starting with a base pivot arbitrarily selected,
execution time by means of a binary search. In this workhe distance between the objects and the selected pivot is
the array is sorted considering only the first pivot. calculated, and then the new base pivot to be selected is

€) SSSIndex: SSSIndex (Sparse Spatial Selection) [11]  the one located to the maximum distance. The distances are
is basically the generic structure varying the way in which thedded in a vector to calculate the next base pivot. This is an
pivots are selected. The selection methods will be introducierative process that ends when the required number of base
later. pivots is obtained.

d) LAESA: Like SSSInde, it is a structure similar to
the generic one, but the selection of pivots is carried out bljil. M ETRIC STRUCTURES FEATURES TO BE EVALUATED
a method calledMaximun Sum of Distances (M3D). In the literature it is possible to find a wide range of metric

€) EGNAT: Evolutionary GNAT [6] is a clustering tree- structures for similarity searching [1], [13].
type structure derived fron&GNAT structure. This method In this work a set of representative metric structures have
pretends to exploit the secondary memory hierarchy (skeen considered based on pivots, clustering, array-type or
Figure 1). This structure is far from the array-type of th&ee-type. We have considered this variety of structures in or-
generic structure. der to determine, experimentally, if the cost in the searching
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process compensates the complexity of the implementatiatgorithms. Also, these datasets are representative of discrete
taking into account that the decision taken here will conditicemd continuous searching, respectively.
the future implementation on a GPU-based platform. The hardware platform used is called Marte and belongs
The relevant features considered in this work are: to the Albecete Research Institute of Informatics (I3A:
a) Executiontime: The execution time is a key factor inhttp://www.i3a.uclm.es.). Marte is a 2 Quadcore Xeon E5530
order to determine the best implementation. In the literatusg¢ 2.4GHz and 48GB of main memory, and Ubuntu 9.10
lot of papers are found talking about evaluation of distanc¢4 bits) Linux Operating System. The compilation has been
[6], [11], but they do not consider execution time (floatingione using gcc 4.3.4 compiler.
point operations and I/O operations), memory accesses, etc.
b) Distance evaluations: In general, the reduction on ) ) .
evaluation of distances has been considered as the main JbaP*Perimental results and discussion
of the new structures design, and evidently, it has a directAlthough results are usually shown considering the search
impact on the execution time. However, the high processingnges in the X axis, in this paper we have considered a
capacity of current computational platforms implies thatifferent approach. In order to compare the behaviour of
distance evaluation is not always the operation with a higheifferent pivot-based structures, in our opinion, it is more
computational cost. For instance, in GPU-based platfornisteresting to show the results againts the number of pivots,
sorting operation affects to the execution time more than thgpically 4, 8, 16 and 32, but also1 and a number of
evaluation of distances. pivots bigger tharg2, especially when we need to compare
c) Storage requirements: A very interesting feature to with SSSIndex. This structure does not allow to choose the
evaluate is the memory needed to store a structure, evemmber of pivots (they are calculated depending on several
more if memory constraints are considered as is the cgs#rameters such as the value @fand the kind of search
of GPU platforms. We have only addressed main memospace) and usually uses a big number of pivots.
being secondary memory out of the scope of this paper. TheFigure 3 shows an overview of the behaviour of the generic
point is, "how much storage | am willing to sacrifice versustructure based on pivots for both datasets.

performance?". Usually in metric structures, the performance of a structure
increases with the number of pivots. Nevertheless, as can be

IV. EXPERIMENTAL EVALUATION seen in Figure 3 for the generic structure, the performance
A. Case of studies and platform increases till a point (that depends on the range considered,

In this section, the case studies used as benchmarks Sri¥ 3_2 pivots for rangel) from whgre the performance
the testbed considered in this paper are described. remains the same or decreas_es. _Thls behaV|o_ur_|s common
We considered two datasets: a subset of the Span‘QH"‘” the structures as shown in Figure 4. In this figure only

dictionary and a color histograms database, obtained frcmﬁa re_sults close to th? best one are shown.

the Metric Spaces Libraty The Spanish dictionary we used Notice that when using th8SS structure we cannot select
is composed of 86,061 words. The edit distance was us8dProri an exact number of pivots. This is the reason why
Given two words, this distance is defined as the minimuf}® minimum number of pivots ig4 (for word space) and
number of insertions, deletions or substitutions of charactets (for color histograms). For word space, as the distance
needed to make one of the words equal to the other. TifediSCrete, there are not values betwe2s and 665, so
second space is a color histogram. It is a set of 112,68¥ value500 does not exist inSSSIndex. The value500

color histograms (112-dimensional vectors) from an imadi§ither is shown inEGNAT because the needed structure

database. Any quadratic form can be used as a distadceP!99€r than the RAM memory, swapping is needed and

so we chose Euclidean distance as the simplest meanindfefiseauently performance is poor.

alternative. Analysing the results in Figure 4 we can conclude that
The results presented in this section belong to a set f8f Small rangesspaghettis has the overall best performance
experiments with the following features: considering both datasets. The reason is that the use of binary

o For all data structures considered in this paper, a Sse[arch aIIpw; a quick search of the first element ?n the
of tests were carried out using pivots from 1 to 136 atabase inside the rang@MS is very close toSpaghettis
for word space and from 1 to 244 for color his,[Ogr(,imgen‘ormance, and the other 3 structures have a bad behaviour
(see Figure 3). From all the results, only the best resulls°N€ el t.WO d_at{asets, color histogram$48D and S5
have been plotting. and the Spanish dictionary EGNAT. Nevertheless when we

eogwsider bigger search ranges, the advanta@paghettis is

« For words space, each experiment has 8,606 querjes,~." " . A . ;
over aSpaghettis with 77,455 objects. For vectors SpaC(-IOSt’ in this case the price in time of t_he binary search is not
%rthy because less elements are discarded.

we have used a dataset of 101,414 objects and 11,2% . . . .
Figure 5 shows the same scenario for distance evaluations.

queries. :
« For each query, a range search between 1 and 4 vwse number of evaluations decreases when the number of

considered for the first space, and for vectors space {piyots increases. This means that, comparing Figures 4 and

have chosen ranges which allow to retrieve 0.01%, 0.15/1) at some point is not worthy to i”,creas? the number Of
and 1% from the dataset pivots because the time consumed in their management is

We have chosen this experimental environment beca bsigger than the time consumed in the distance evaluations
€ have chose S expenme '{/Y save. We can also conclude that using more pivots is

is the most usual environment to evaluate this kind %etter for big ranges, and it has little influence for small

Iwww.sisap.org ranges.
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Search Costs for Generic Structure (n=86,061 words)

Search Cost for Generic Structure (n=112,682 vectors)
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(a) General result for Spanish dictionary. (b) General result for color histograms.
Fig. 3. Execution time for the implementation considering a generic metric structure)(GMS
Search Cost for Implemented Methods (n=86,061 words)
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(a) General result for Spanish dictionary.
Search Cost for Implemented Methods (n=112,682 vectors)
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(b) General result for color histograms.
Fig. 4. Execution time for the implementation considering all structures.
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Search Cost for Implemented Methods (n=86,061 words) Search Cost for Implemented Methods (n=112,682 vectors)
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(a) General result for Spanish dictionary. (b) General result for color histograms.
Fig. 5. Distance evaluations for the implementation considering all structures.
TABLE | TABLE Il
EXECUTION TIME FOR THE BEST METHODS ON WORDS SPACECOLUMN: EXECUTION TIME FOR THE BEST METHODS ON COLOR HISTOGRAMS
RANGE; ROW. DATA STRUCTURE) (COLUMNZ DATA RETRIEVED PERCENTAJE ROW. DATA STRUCTURE)
Index 1 2 3 4 Index 0.01 0.1 1.0
Spaghettis 32 18.24 || 270.39 || 1434.78 || 2769.06 Spaghettis 32 21.00 54.90 182.87
MSD 32 on GMS 665 25.32 || 255.37 || 1453.01|| 2783.26 GMS 32 37.77 69.89 190.74
MSD 32 on GMS 1362 || 25.78 || 251.16 || 1436.40 || 2802.90 MSD 32 on GMS 119 || 39.28 71.85 190.26
MSD-Laesa 32 25.84 || 291.08 || 1510.68 || 2879.07 MSD 32 on GMS 1014 || 46.55 96.10 246.91
GMS 32 26.18 || 274.37 || 1428.74 || 2754.02 EGNAT 32 53.01 91.86 180.89
MSD 32 on SSS 665 27.61 || 249.92 || 1489.16 || 2953.54 SSS-Index 57 (= 0.6) 55.77 95.91 249.85
MSD 44 on random 1362/| 27.79 || 168.91 || 1200.94 || 2647.71 MSD-Laesa 35 91.33 || 199.75 || 406.99
MSD 32 on SSS 1362 || 27.86 || 269.72 || 1506.16 || 2910.85
SSS-Index 44 (o= 0.55) 31.93 || 180.91 || 1404.33 || 3153.15

the structure in pivot-based structures is directly prapogl
to the number of pivots. In order to have a more detailed
the execution time (irYieW’ the bigger values were removed from the table (e.g. in

seconds) of the best cases depending on the range orCQIPT histogramsEGNAT with 119 centres needs GBytes,

the data retrieved percentage, respectively. In these taffddord SpaceEGNAT with 328 centres needs GBytes).
several modifications of the generic structure are considered ] €€-type structures have a good performance when the
In these modifications the pivots were not selected randonfRAiUS increases, and they are very stable with respect to the
but following the pivots selection methods used by the othBpmber of pivots or centres. Th's means that we can get a
structures. Thus, first we get a subset of pivots from tt§0d performance even selecting a small number of centres.
database randomly or usirgsS and thenMSD is applied The p_roblem Wlth this kind of strugture is that when a new
to get the number of pivots for the best performance ca@@de in the tree is created, there is no guarantee that it will
(32 or 44 depending on the range). Only modifications dpe completed, leading to a situation in which the size of

the structure with a good performance are considered in #§ Structure can grow a lot depending on how objects are
tables (e.g. “MSDz on SSSy” cases are not included in distributed in subtrees. In the tree-based structure used in

color histograms because they have a poor performance)?his paper we obtained that less than 20% of the nodes were

The results obtained for the modified generic structures acr%mpleted.

good. For small rangeSpaghettis is still better, but when the

range increases the new structures have better performance. V- CONCLUSIONS ANDFUTURE WORKS

The advantage of usinyISD over a big number of pivots In this work a comparative study of different metric

randomly chosen is that it allows to choose the best pivaiguctures has been carried out.

and the exact number of pivots desired and, consequentlyDifferent types of metric structures and pivot selection

it allows to determine the size of the structure which is afethods have been considered in order to make a good

important factor to consider when we need to fit the structug@mparison. The comparison has been made according to

in a virtual page or in GPU memory. three criteria: execution time, evaluation of distances and
Looking forward to the GPU implementation, the sizetorage requirements.

of the structure is a very important factor. A structure According to the experimental results, it is not possible to

that does not fit into GPU memory will not have a goodelect a metric structure as the best one, because it depends

performance. Figure 6 shows tHBGNAT structure is much on the space distribution of the database. Three structures

bigger than pivot-based structures. As expected, the sizeapé candidates to be eligible as the b&aghettis, Generic

Tables | and Il show, in detail,
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Memory Requirements for Metric Structures (n=86,061 words)
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(a) General result for Spanish dictionary.

Fig. 6.

structure + MSD and EGNAT. However from the point of
view of a future GPU implementation the best on&aheric
+ MSD due to:

1) By using a generic structure it is not necessary to
apply a binary search lik&paghettis. Binary search

operation is very expensive in a GPU-based platfornpg]

in comparison with the evaluation of distances.
2)
lower than using &GNAT structure.

3) Thanks to the combination of generic structure and

MSD pivot selection, it is possible to reduce the numbqio]

of pivots till satisfying the memory constraints inherent
to the GPU-based platforms.

. . . [11]
To sum up, using the generic structure we will take benefits

in terms of execution time, storage and, in addition, the code
is more simple.

As we said in the introduction, the work presented if2]

this paper allows us to choose the best option from the
point of view of a parallel implementation of the similarityy; 5

search method based on metric structures on a GPU platform,

representing that the future work.
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