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Abstract—Nowadays, similarity search is becoming a field
of increasing interest because these kinds of methods can
be applied to different areas in science and engineering, for
instance, pattern recognition, information retrieval, etc. This
search is carried out over metric indexes decreasing the number
of distance evaluations during the search process, improving
the efficiency of this process. However, for real applications,
when processing large volumes of data, query response time
can be quite high. In this case, it is necessary to apply
mechanisms in order to significantly reduce the average query
response time. In this sense, the parallelization of the metric
structures processing is an interesting field of research. For
that purpose, modern GPU/Multi-GPU systems offer a very
impressive cost/performance ratio. In this paper, the authors
make a comparative study of the most popular metric structures
and pivot selection methods in order to stablish a set of
attractive features from the point of view of future GPU
implementations. Therefore, this work represents a state-of-
the-art paper setting up the starting point for future parallel
implementations of similarity search techniques.

Index Terms—Comparative study, range queries, similarity
search, metric spaces.

I. I NTRODUCTION

I N the last decade, the search of similar objects in a
large collection of stored objects in a metric database

has become a most interesting problem. This kind of search
can be found in different applications such as voice and
image recognition, data mining, plagiarism detection and
many others. A typical query for these applications is the
range search which consists in obtaining all the objects that
are at some given distance from the consulted object.

A. Similarity Search in Metric Spaces

Similarity is modeled in many interesting cases through
metric spaces, and the search of similar objects through
range search or nearest neighbors. A metric space(X, d) is
a setX and a distance functiond : X

2 → R, such that
∀x, y, z ∈ X fulfills the properties of positiveness[d(x, y) ≥
0, andd(x, y) = 0 ⇐⇒ x = y], symmetry [d(x, y) =
d(y, x)] and triangle inequality[d(x, y)+d(y, z) ≥ (d(x, z)].

In a given metric space(X, d) and a finite data setY ⊆ X,
a series of queries can be made. The basic query is therange
query (x, r), a query beingx ∈ X and a ranger ∈ R. The
range query aroundx with ranger (or radiusr) is the set
of objectsy ∈ Y such thatd(x, y) ≤ r. A second type of
query that can be built using the range query isk nearest
neighbors (kNN ), the query beingx ∈ X and objectk. k
nearest neighbors tox are a subsetA of objectsY, such that
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if |A| = k and an objecty ∈ A, there is no objectz 6∈ A
such thatd(z, x) ≤ d(y, x).

Metric access methods, metric space indexes or metric
data structures are different names for data structures built
over a set of objects. The objective of these methods is to
minimize the amount of distance evaluations made to solve
the query. Searching methods for metric spaces are mainly
based on dividing the space using the distance to one or more
selected objects.

Metric space data structures can be grouped into two
classes [1],clustering-based andpivots-based methods. The
clustering-based structures divide the space into areas, where
each area has a so-called centre. Some data is stored in
each area, which allows easy discarding the whole area by
just comparing the query with its centre. Algorithms based
on clustering are better suited for high-dimensional metric
spaces. Some clustering-based indexes areBST [2], GHT
[3], M-Tree [4], GNAT [5], EGNAT [6] and many others.

There exist two criteria to define the areas in clustering-
based structures:hyperplanes and covering radius. The for-
mer divides the space intoVoronoi partitions and determines
the hyperplane the query belongs to according to the cor-
responding centre. The covering radius criterion divides the
space into spheres that can be intersected and one query can
belong to one or more spheres.

In thepivots-based methods, a set of pivots is selected and
the distances between the pivots and database elements are
precalculated. When a query is made, the query distance to
each pivot is calculated and the triangle inequality is used
to discard the candidates. Its objective is to filter objects
during a request through the use of a triangular inequality,
without really measuring the distance between the object
under request and the discarded object. Mathematically, these
construction and searching processes can be expressed as
follows:

• Let {p1, p2, ..., pk} a set of pivots,pi ∈ X. For each
elementy of the databaseY the distance to thek pivots
(d(y, p1), ..., d(y, pk)) is stored. Given a queryq and
a ranger, the distance(d(q, p1), ..., d(q, pk)) to the k
pivots is calculated.

• If for some pivot pi the expression
|d(q, pi)− d(y, pi)| > r is holding, then for triangle
inequality d(q, y) > r, and therefore it is unnecessary
to explicitly evaluate d(q, y). All the objects not
discarded by this rule have to be directly compared to
the queryq.

Some pivots-based indexes areLAESA [7], FQT and its
variants [8],Spaghettis and its variants [9],FQA [10], SSS-
Index [11] and others.

Array-type structures implement these concepts directly.
The difference among the array-type structures lies on extra
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structures used to reduce the computational cost to obtain
the number of candidates keeping invariable the evaluation
of distances.

Many indexes are trees and the children of each node de-
fine areas of space. Range queries traverse the tree, entering
into all the children whose areas cannot be proved to be
disjoint with the query region.

The increased size of databases and the emergence of new
data types create the need to process a large volume of data.
Then, new research topics appear such as efficient use of
computational resources (storage and its hierarchy, proces-
sors, network, etc) that allows us to reduce the execution time
and to save energy. In this sense, recent appearance of GPUs
for general purpose computing platforms offers powerful
parallel processing capabilities at a low price and energy
cost. However, this kind of platforms has some constraints
related to the memory hierarchy.

The present work analyses, by means of a set of exper-
iments, the results obtained for several metric structures in
order to obtain those attractive features from the point of
view of a future GPU-based implementation: selection of
pivots and centres techniques, needed storage and simplicity
of the data structure.

The paper is structured as follows. In Section II the metric
structures considered in this paper are described. In Section
III the features to be evaluated are presented. Section IV
outlines the experimental results and discussion. Finally, the
conclusions and future work are commented in Section V.

II. M ETRIC STRUCTURES

The metric structures considered in this comparative study
are:

a) Generic Metric Structure (GMS): This structure rep-
resents the most basic structure: it is an array-type structure
based on pivots, which are obtained randomly. From this
generic structure could be derived the rest of structures based
on arrays and the choice of the pivots could be carried
out according to SSS-Index or MSD methods. These pivot
selection techniques will be introduced later.

b) Spaghettis: It is an array-type structure based on
pivots and does not assume any pivot selection method.
However, each entry in the array, that represents distances
between an element in the database and the pivots, is sorted
with respect to this distance, obtaining a reduction on the
execution time by means of a binary search. In this work,
the array is sorted considering only the first pivot.

c) SSS-Index: SSS-Index (Sparse Spatial Selection) [11]
is basically the generic structure varying the way in which the
pivots are selected. The selection methods will be introduced
later.

d) LAESA: Like SSS-Index, it is a structure similar to
the generic one, but the selection of pivots is carried out by
a method calledMaximun Sum of Distances (MSD).

e) EGNAT: Evolutionary GNAT [6] is a clustering tree-
type structure derived fromGNAT structure. This method
pretends to exploit the secondary memory hierarchy (see
Figure 1). This structure is far from the array-type of the
generic structure.
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Fig. 1. Construction ofEGNAT structure: data space and metric structure.

The choice of these metric structures is motivated because
they are representative of this field of knowledge, and we
have considered structures based on pivots and on clustering,
array-type and tree-type.

With respect to the choice of pivot selection, we have
considered the following:

a) Randomly: As the name suggests, this method con-
sists in selecting randomly the set of pivots of the database.

b) Sparse Spatial Selection (SSS): Sparse Spatial Se-
lection [11] is a method to select a dynamic set of pivots
or centres distributed in the space. Let(X, d) be a metric
space,U ⊂ X andM the largest distance between all pairs
of objects, i. e.M = max{d(x, y)/x, y ∈ U}. Initially, the
set of pivots contains the first element of the collection. After
that, an elementxi ∈ U, is selected as a pivot if and only
if the distance between it and the rest of selected pivots is
greater than or equal toM ∗ α, beingα a constant whose
optimum values are close to 0.4 [11] (see Figure 2).

Obj 1

Obj 2

Fig. 2. Partition of the space usingSSS methods.

c) Maximun Sum of Distances (MSD): MSD (Maximun
Sum of Distances) is used inLAESA (Linear Aproximating
Search Algorithm) [7], [12]. The underlying idea is to select
pivots considering that the distance between them is always
the maximum. Starting with a base pivot arbitrarily selected,
the distance between the objects and the selected pivot is
calculated, and then the new base pivot to be selected is
the one located to the maximum distance. The distances are
added in a vector to calculate the next base pivot. This is an
iterative process that ends when the required number of base
pivots is obtained.

III. M ETRIC STRUCTURES FEATURES TO BE EVALUATED

In the literature it is possible to find a wide range of metric
structures for similarity searching [1], [13].

In this work a set of representative metric structures have
been considered based on pivots, clustering, array-type or
tree-type. We have considered this variety of structures in or-
der to determine, experimentally, if the cost in the searching
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process compensates the complexity of the implementation,
taking into account that the decision taken here will condition
the future implementation on a GPU-based platform.

The relevant features considered in this work are:
a) Execution time: The execution time is a key factor in

order to determine the best implementation. In the literature
lot of papers are found talking about evaluation of distances
[6], [11], but they do not consider execution time (floating
point operations and I/O operations), memory accesses, etc.

b) Distance evaluations: In general, the reduction on
evaluation of distances has been considered as the main goal
of the new structures design, and evidently, it has a direct
impact on the execution time. However, the high processing
capacity of current computational platforms implies that
distance evaluation is not always the operation with a higher
computational cost. For instance, in GPU-based platforms,
sorting operation affects to the execution time more than the
evaluation of distances.

c) Storage requirements: A very interesting feature to
evaluate is the memory needed to store a structure, even
more if memory constraints are considered as is the case
of GPU platforms. We have only addressed main memory,
being secondary memory out of the scope of this paper. The
point is, "how much storage I am willing to sacrifice versus
performance?".

IV. EXPERIMENTAL EVALUATION

A. Case of studies and platform

In this section, the case studies used as benchmarks and
the testbed considered in this paper are described.

We considered two datasets: a subset of the Spanish
dictionary and a color histograms database, obtained from
the Metric Spaces Library1. The Spanish dictionary we used
is composed of 86,061 words. The edit distance was used.
Given two words, this distance is defined as the minimum
number of insertions, deletions or substitutions of characters
needed to make one of the words equal to the other. The
second space is a color histogram. It is a set of 112,682
color histograms (112-dimensional vectors) from an image
database. Any quadratic form can be used as a distance,
so we chose Euclidean distance as the simplest meaningful
alternative.

The results presented in this section belong to a set of
experiments with the following features:

• For all data structures considered in this paper, a set
of tests were carried out using pivots from 1 to 1362
for word space and from 1 to 244 for color histograms
(see Figure 3). From all the results, only the best results
have been plotting.

• For words space, each experiment has 8,606 queries
over aSpaghettis with 77,455 objects. For vectors space,
we have used a dataset of 101,414 objects and 11,268
queries.

• For each query, a range search between 1 and 4 was
considered for the first space, and for vectors space we
have chosen ranges which allow to retrieve 0.01%, 0.1%
and 1% from the dataset.

We have chosen this experimental environment because
is the most usual environment to evaluate this kind of

1www.sisap.org

algorithms. Also, these datasets are representative of discrete
and continuous searching, respectively.

The hardware platform used is called Marte and belongs
to the Albecete Research Institute of Informatics (I3A:
http://www.i3a.uclm.es.). Marte is a 2 Quadcore Xeon E5530
at 2.4GHz and 48GB of main memory, and Ubuntu 9.10
(64 bits) Linux Operating System. The compilation has been
done using gcc 4.3.4 compiler.

B. Experimental results and discussion

Although results are usually shown considering the search
ranges in the X axis, in this paper we have considered a
different approach. In order to compare the behaviour of
different pivot-based structures, in our opinion, it is more
interesting to show the results againts the number of pivots,
typically 4, 8, 16 and 32, but also 1 and a number of
pivots bigger than32, especially when we need to compare
with SSS-Index. This structure does not allow to choose the
number of pivots (they are calculated depending on several
parameters such as the value ofα and the kind of search
space) and usually uses a big number of pivots.

Figure 3 shows an overview of the behaviour of the generic
structure based on pivots for both datasets.

Usually in metric structures, the performance of a structure
increases with the number of pivots. Nevertheless, as can be
seen in Figure 3 for the generic structure, the performance
increases till a point (that depends on the range considered,
e.g. 32 pivots for range1) from where the performance
remains the same or decreases. This behaviour is common
to all the structures as shown in Figure 4. In this figure only
the results close to the best one are shown.

Notice that when using theSSS structure we cannot select
a priori an exact number of pivots. This is the reason why
the minimum number of pivots is44 (for word space) and
35 (for color histograms). For word space, as the distance
is discrete, there are not values between328 and 665, so
the value500 does not exist inSSS-Index. The value500
neither is shown inEGNAT because the needed structure
is bigger than the RAM memory, swapping is needed and
consequently performance is poor.

Analysing the results in Figure 4 we can conclude that
for small rangesSpaghettis has the overall best performance
considering both datasets. The reason is that the use of binary
search allows a quick search of the first element in the
database inside the range.GMS is very close toSpaghettis
performance, and the other 3 structures have a bad behaviour
in one of the two datasets, color histograms inMSD andSSS,
and the Spanish dictionary inEGNAT. Nevertheless when we
consider bigger search ranges, the advantage ofSpaghettis is
lost; in this case the price in time of the binary search is not
worthy because less elements are discarded.

Figure 5 shows the same scenario for distance evaluations.
The number of evaluations decreases when the number of
pivots increases. This means that, comparing Figures 4 and
5, at some point is not worthy to increase the number of
pivots because the time consumed in their management is
bigger than the time consumed in the distance evaluations
we save. We can also conclude that using more pivots is
better for big ranges, and it has little influence for small
ranges.
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Fig. 3. Execution time for the implementation considering a generic metric structure (GMS).
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Fig. 4. Execution time for the implementation considering all structures.
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Fig. 5. Distance evaluations for the implementation considering all structures.

TABLE I
EXECUTION TIME FOR THE BEST METHODS ON WORDS SPACE(COLUMN:

RANGE; ROW: DATA STRUCTURE)

Index 1 2 3 4

Spaghettis 32 18.24 270.39 1434.78 2769.06

MSD 32 on GMS 665 25.32 255.37 1453.01 2783.26

MSD 32 on GMS 1362 25.78 251.16 1436.40 2802.90

MSD-Laesa 32 25.84 291.08 1510.68 2879.07

GMS 32 26.18 274.37 1428.74 2754.02

MSD 32 on SSS 665 27.61 249.92 1489.16 2953.54

MSD 44 on random 1362 27.79 168.91 1200.94 2647.71

MSD 32 on SSS 1362 27.86 269.72 1506.16 2910.85

SSS-Index 44 (α= 0.55) 31.93 180.91 1404.33 3153.15

Tables I and II show, in detail, the execution time (in
seconds) of the best cases depending on the range or on
the data retrieved percentage, respectively. In these tables
several modifications of the generic structure are considered.
In these modifications the pivots were not selected randomly
but following the pivots selection methods used by the other
structures. Thus, first we get a subset of pivots from the
database randomly or usingSSS and thenMSD is applied
to get the number of pivots for the best performance case
(32 or 44 depending on the range). Only modifications of
the structure with a good performance are considered in the
tables (e.g. “MSDx on SSSy” cases are not included in
color histograms because they have a poor performance).

The results obtained for the modified generic structures are
good. For small rangesSpaghettis is still better, but when the
range increases the new structures have better performance.
The advantage of usingMSD over a big number of pivots
randomly chosen is that it allows to choose the best pivots
and the exact number of pivots desired and, consequently,
it allows to determine the size of the structure which is an
important factor to consider when we need to fit the structure
in a virtual page or in GPU memory.

Looking forward to the GPU implementation, the size
of the structure is a very important factor. A structure
that does not fit into GPU memory will not have a good
performance. Figure 6 shows thatEGNAT structure is much
bigger than pivot-based structures. As expected, the size of

TABLE II
EXECUTION TIME FOR THE BEST METHODS ON COLOR HISTOGRAMS

(COLUMN: DATA RETRIEVED PERCENTAJE; ROW: DATA STRUCTURE)

Index 0.01 0.1 1.0

Spaghettis 32 21.00 54.90 182.87

GMS 32 37.77 69.89 190.74

MSD 32 on GMS 119 39.28 71.85 190.26

MSD 32 on GMS 1014 46.55 96.10 246.91

EGNAT 32 53.01 91.86 180.89

SSS-Index 57 (α= 0.6) 55.77 95.91 249.85

MSD-Laesa 35 91.33 199.75 406.99

the structure in pivot-based structures is directly proportional
to the number of pivots. In order to have a more detailed
view, the bigger values were removed from the table (e.g. in
color histogramsEGNAT with 119 centres needs2 GBytes,
in word spaceEGNAT with 328 centres needs6 GBytes).

Tree-type structures have a good performance when the
radius increases, and they are very stable with respect to the
number of pivots or centres. This means that we can get a
good performance even selecting a small number of centres.
The problem with this kind of structure is that when a new
node in the tree is created, there is no guarantee that it will
be completed, leading to a situation in which the size of
the structure can grow a lot depending on how objects are
distributed in subtrees. In the tree-based structure used in
this paper we obtained that less than 20% of the nodes were
completed.

V. CONCLUSIONS ANDFUTURE WORKS

In this work a comparative study of different metric
structures has been carried out.

Different types of metric structures and pivot selection
methods have been considered in order to make a good
comparison. The comparison has been made according to
three criteria: execution time, evaluation of distances and
storage requirements.

According to the experimental results, it is not possible to
select a metric structure as the best one, because it depends
on the space distribution of the database. Three structures
are candidates to be eligible as the best:Spaghettis, Generic
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Fig. 6. Memory requirements for pivot-based structures (GMS, SSS, MSD, Spaghettis) and clustering-based structures (EGNAT)

structure + MSD and EGNAT. However from the point of
view of a future GPU implementation the best one isGeneric
+ MSD due to:

1) By using a generic structure it is not necessary to
apply a binary search likeSpaghettis. Binary search
operation is very expensive in a GPU-based platform
in comparison with the evaluation of distances.

2) Using a generic structure the storage requirements are
lower than using aEGNAT structure.

3) Thanks to the combination of generic structure and
MSD pivot selection, it is possible to reduce the number
of pivots till satisfying the memory constraints inherent
to the GPU-based platforms.

To sum up, using the generic structure we will take benefits
in terms of execution time, storage and, in addition, the code
is more simple.

As we said in the introduction, the work presented in
this paper allows us to choose the best option from the
point of view of a parallel implementation of the similarity
search method based on metric structures on a GPU platform,
representing that the future work.
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