

Abstract—Software fault prediction based on mining of code

and design metrics has been considered by many researchers.
Fault detection systems predict faults by using software
metrics and data mining techniques. Various classifiers have
already been used in this case; however Naïve Bayes classifier
is the most commonly used. According to the results of a study
performed by Lessman, no significant performance difference
could be detected among the top 17 classifiers.
In this paper, we will extend that study by examining the
performance of 37 different classifiers in fault detection
systems. We will review the results and aim to choose an
appropriate classifier (Bagging) which depicts a higher
performance and accuracy compared to the others. Finally, we
propose a fault detection system with higher performance
which manages to decrease the cost of software fault detection
simultaneously. We investigate our classifier selection by
evaluating the methods on a number of other datasets. Our
results indicate that Bagging classifier has the highest
performance in fault detection.

Index Terms— Bagging Classifier, Data Mining, Software
Fault Detection, Software Metrics

I. INTRODUCTION

y definition, fault is a structural defect that may
eventually lead to deterioration of the systems.
Software testing is one of the most critical and costly

phases in software development. Defect predictors have
been effective secondary tools to help test terms to locate
potential defects accurately [1]. Software defect prediction
is the task of classifying software modules into fault-prone
(fp) and non-fault-prone (nfp) ones by means of metric-
based classification [2], [3].
 Use of software metrics to predict software faults was
initiated by Porter and Selby in 1990 [4], [5]. Since then,
there has been an extensive interest on metric based fault
prediction [6], [7], [1], [8]. Interestingly, Turhan et al. [8]
shows that we can build classifiers based on software
metrics from a Turkish refrigerator manufacturer and predict
faults in NASA software modules of a space shuttle. It has
been shown that defect predictors which employ data

A.A Shahrjooi Haghighi is graduated from Department of computer

engineering, Science and Research Branch, Islamic Azad University,
Khouzestan, Iran (e-mail: ali.shahrjoo@gmail.com).

M. Abbasi Dezfuli is with Department of computer engineering, Science
and Research Branch, Islamic Azad University, Khouzestan, Iran (e-mail:
m.abbasi@khouzestan.srbiau.ac.ir).

S.M. Fakhrahmad is with Department of computer engineering, Islamic
Azad university, Shiraz branch, Iran (e-mail: mfakhrahmad
@cse.shirazu.ac.ir).

mining module-based features have over 70% prediction
accuracy [9]. In comparison to the 60% detection rate of
manual software review (based on a panel in IEEE Metrics
2002) [10] and considering the ability of an expert reviewer
who can merely inspect 8 to 20 LOC/minute, it becomes
apparent why automatic defect predictors based on design
and code attributes are such an active research area.
 Catal and Diri [11] performed a research on studies in the
field of software defect prediction. They focused on metrics,
methods and datasets used in software defect prediction
area. According to their studies, the percentage of using
public datasets has greatly increased. Moreover, the use of
machine learning algorithms has gradually increased since
2005. They have also investigated the statistics related to
published articles in this field. According to their research,
published articles in the field of software defect prediction
started growing from 1990. Most of the publications are
from 2000 onwards. Also according to statistics, in over
60% of researches, Method level metrics has been used. In
addition, statistical and machine learning methods have the
highest use in this area. Menzies et al [12] concluded that
using data mining techniques can not lead to more accurate
detection systems. The goal should be changed therefore
they proposed to enhance training of each detection system
for a specific use.
 One of the challenges in fault detection systems is the
metrics through which faults can be detected. Two kinds of
metrics are used in these systems: Code level and Design
level metrics. However, obtaining design metrics is
challenging (e.g., complexity metrics) and not always
straightforward. It requires availability of design phase
artifacts and design diagrams such as DFDs, control flow
graphs, Formal Description Language (FDL) graphs and
UML diagrams. In our previous research [13] we presented
a set of metrics with higher accuracy.
 During the past decade, several classification systems
have been proposed, which perform predictive modeling
efforts for detection of modules that are likely to contain
faults. The evaluation of such systems has almost been
carried out using a set of datasets available from NASA
MDP repository [14]. A comparative study like [1]
provided a baseline and dataset for this research. Each
module is described by a set of code-level and design-level
attributes. All discovered faults of the system are also
registered in each dataset, together with the number of
modules containing the fault.
 Based on a set of experiments on NASA MDP datasets,
Lessman et al. [15] concluded that there is no statistically
significant difference between predictive performances of
dissimilar classifier. He made his comparisons among

Applying Mining Schemes to Software Fault
Prediction: A Proposed Approach Aimed at Test

Cost Reduction

A.A. Shahrjooi Haghighi, M. Abbasi Dezfuli, S.M. Fakhrahmad

B

Proceedings of the World Congress on Engineering 2012 Vol I
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19251-3-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

classifiers based on state-of-the-art statistical methods
designed for comparing different classifiers over different
datasets [9]. We will extend this research by studying 37
various classifiers and comparing their performances on five
other datasets. By evaluating the classifiers based on their
performance measure, (Accuracy (ACC) and area under
curve (AUC)), we determine the best classification
performance.
 During the past years, many researchers have attempted
to evaluate different methods and several defect prediction
systems have been proposed. The results of these systems
are given in terms of classification accuracy, precision,
performance, etc. However, these factors do not really show
the goodness of the model. This paper extends our
preceding results that presented a set of low cost metrics for
fault detection systems [13]. In our previous work, by using
AD-Miner algorithm [16], we proposed a set of metrics
which demonstrate higher performance and accuracy for
fault prediction systems. In this paper we are going to
deploy the accuracy by finding a classifier which performs
better than others in fault detection systems. Since our
intention is to reduce cost and provide higher performance
in fault detection systems, in this paper we will peruse
classifiers to find a classifier which obtains higher accuracy
in fault prediction systems.
 The rest of the paper is organized as follows. In Section
2, we present the definitions. Section 3 reviews various
classifiers on NASA datasets and chooses a classifier with
highest performance in fault detection systems. Moreover,
the obtained results and empirical rules are presented.
Finally, in Section 4 we draw a conclusion and propose
future works.

II. DEFINITIONS

 In this section a brief description of Metrics Data
Program (MDP) and various metrics used in fault prediction
systems are presented. Moreover, the process of bagging
classification, which is proved to be the most efficient
classifier amongst the set of classifiers in our experiments,
is enlightened.

A. Metrics Data Program (MDP)

 The NASA IV&V Metrics Data Program project is being
developed by Galaxy Global Corporation, Inc. for NASA.
The primary objective of the Metrics Data Program is to
collect, validate, organize, store and deliver software
metrics data. MDP provides access to the data repository
containing software metrics and associated error data at the
function/method level. The data repository stores and
organizes the data which has been collected and validated
by the Metrics Data Program. The repository contains
software metrics and the associated error data at the
function/method level for NASA software development
projects. The data is neither representative of nor generated
by IV&V analysis.
The repository metrics include:

 McCabe Software Metrics
 Halstead Metrics
 Line of Code Metrics
 Error metrics derived from the association between

errors and functions/modules
 Requirement Metrics

The association between the error data and metrics data in
the repository provides the opportunity for users to
investigate the relationship of metrics or combinations of
metrics to the software. The primary goal of the repository
is to provide project non-specific data to the software
community. The data that is made available to general users
has been sanitized and authorized for publication through
the MDP website by officials representing the projects from
which the data has originated. The database uses unique
numeric identifiers to describe individual error records and
product entries. The repository data is available at no cost
[14]. Datasets used in fault prediction systems often include
Metrics that are shown in Table I. The description of each
Metric is mentioned in its adjacent cell in the table.

TABLE I

 Attributes Within the MDP Datasets

Metric Comment

1 Loc McCabe's line count of code

2 v(g) McCabe "cyclomatic complexity"

3 ev(g) McCabe "essential complexity"

4 iv(g) McCabe "design complexity"

5 N Halstead total operators + operands

6 V Halstead "volume"

7 L Halstead "program length"

8 D Halstead "difficulty"

9 I Halstead "intelligence"

10 E Halstead "effort"

11 B Halstead "error"

12 T Halstead's time estimator

13 loCode Halstead's line count

14 loComment Halstead's count of lines of comments

15 loBlank Halstead's count of blank lines

16 loCodeAndComments Count of code and comment lines

17 uniq_Op unique operators

18 uniq_Opnd unique operands

19 total_Op total operators

20 total_Opnd total operands

21 BranchCount Count of the flow graph

22 Problems
Module has/has not one or more
reported effects

B. Bagging Classifier

 Classification is learning a function that maps a data item
into one of several predefined classes. Examples of
classification methods used as part of knowledge discovery
applications include classifying trends in financial markets
and automated identification of objects of interest in large
images databases [17]. In fault detection systems, classifiers
are used to predict whether each module contains fault or
not.

Bagging is a method for generating multiple versions of a
predictor and using them to get an aggregated predictor. The
aggregation averages over the versions when predicting a

Proceedings of the World Congress on Engineering 2012 Vol I
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19251-3-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

numerical outcome and does a plurality vote when
predicting a class. The multiple versions are formed by
making bootstrap replicates of the learning set and using
these as new learning sets. Tests on real and simulated
datasets using classification and regression trees and subset
selection in linear regression show that bagging can give
substantial gains in accuracy. The vital element is the
instability of the prediction method. If perturbing the
learning set can cause significant changes in the predictor
constructed, then bagging can improve accuracy [18].

III. RESULTS AND DISCUSSION

 Due to the variety of classifiers the WEKA supports and
also its efficient environment for experimental data analysis,
we used the WEKA software. As it was stated previously
Lessman et al. [15] already had conducted research in this
field. According to his opinion classifiers do not differ much
from each other. We will extend this research by studying
more classifiers. We are interested in determining an
appropriate classifier for our proposed method. Therefore,
the values of AUC, ACC are calculated for several

classifiers and eventually according to these values, the best
classifier is selected.

The AUC is recommended as the primary accuracy
indicator for comparative studies in software defect
prediction since it separates predictive performance from
class and cost distributions, which are project specific
characteristics that may be unknown or subject to change.
Therefore, the AUC- based evaluation has the potential to
significantly improve convergence across studies [15].
Table II shows the results of evaluating 37 classifiers on
five different NASA datasets. In order to compare the
performance of the mentioned classifiers, two of the most
commonly used criteria are chosen. ACC and AUC values
are calculated as an indication of how classifiers perform on
each dataset. Since AUC is usually chosen as the most
significant criteria for this purpose, we have concentrated on
this value. In each column of the table, the cells containing
the highest AUC (with less difference from the highest
AUC value) are highlighted.

TABLE II

 Investigating Classifiers’ Performances on NASA Datasets

Dataset KC1 KC2 CM1 PC1 JM1

Classifier ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

1 BayesNet 69.89 0.791 78.35 0.824 64.65 0.689 74.39 0.703 68.05 0.701

2 NaiveBayes 82.36 0.790 83.52 0.834 85.34 0.658 89.17 0.650 80.42 0.679

3 NaiveBayes Updateable 82.36 0.790 83.52 0.834 85.34 0.658 89.17 0.650 80.42 0.679

4 Logistic 85.68 0.796 82.95 0.808 88.15 0.730 92.42 0.809 81.35 0.713

5 Multilaye Perceptron 85.91 0.771 84.67 0.828 87.55 0.734 93.59 0.723 80.95 0.690

6 SGD 85.20 0.539 84.48 0.663 89.55 0.497 93.05 0.512 80.77 0.504

7 SimpleLogistic 85.72 0.798 84.29 0.838 89.15 0.544 92.60 0.651 81.12 0.711

8 SMO 84.77 0.516 82.75 0.597 89.55 0.497 92.96 0.500 80.72 0.502

9 Voted Perceptron 83.73 0.548 30.26 0.575 90.16 0.500 92.60 0.499 52.21 0.559

10 IBK 84.40 0.735 80.45 0.643 84.73 0.589 90.06 0.740 76.97 0.640

11 Kstar 83.97 0.832 79.11 0.612 87.14 0.644 91.79 0.655 78.56 0.638

12 LWL 84.44 0.765 79.50 0.779 89.75 0.682 93.23 0.713 80.65 .667

13 AdaBoostM1 84.96 0.783 81.41 0.784 90.16 0.700 93.05 0.803 80.79 0.710

14 Attribute Selected Classifier 84.30 0.699 82.56 0.739 89.35 0.542 93.41 0.740 80.86 0.666

15 Bagging 85.44 0.809 82.95 0.823 89.75 0.720 93.50 0.915 81.42 0.742

16 Classification Via Regression 85.58 0.793 81.80 0.820 89.35 0.752 93.14 0.868 81.24 0.720

17 CV Parameter Selection 84.54 0.496 79.50 0.487 90.16 0.490 93.05 0.486 80.65 0.499

18 Filtered Classifier 84.87 0.752 82.37 0.762 90.16 0.490 93.50 0.589 81.12 0.696

19 Logit Boost 85.39 0.784 83.52 0.824 88.95 0.724 93.14 0.843 80.89 0.713

20 Multi Class Classifier 85.68 0.796 82.95 0.808 88.15 0.730 92.42 0.809 81.35 0.713

21 Multi Scheme 84.54 0.496 79.50 0.487 90.16 0.490 93.05 0.486 80.65 0.499

22 Random Committee 85.49 0.804 81.22 0.786 87.75 0.731 93.59 0.762 81.06 0.723

23 Random SubSpace 85.44 0.789 83.90 0.816 90.16 0.627 93.23 0.835 81.41 0.733

24 Stacking 84.54 0.496 79.50 0.487 90.16 0.490 93.05 0.486 80.65 0.499

25 Vote 84.54 0.496 79.50 0.487 90.16 0.490 93.05 0.486 80.65 0.499

Proceedings of the World Congress on Engineering 2012 Vol I
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19251-3-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

26 Input Mapped Classifier 84.54 0.496 79.50 0.487 90.16 0.490 93.05 0.486 80.65 0.499

27 Decision Table 84.87 0.785 83.14 0.823 89.15 0.626 92.87 0.738 80.90 0.703

28 JRIP 84.54 0.587 82.18 0.698 89.35 0.529 93.32 0.602 81.04 0.570

29 OneR 83.64 0.569 81.22 0.657 88.35 0.517 92.87 0.529 79.43 0.533

30 PART 84.82 0.747 82.18 0.753 88.75 0.721 93.68 0.926 80.74 0.712

31 ZeroR 84.54 0.496 70.50 0.487 90.16 0.490 93.05 0.486 80.65 0.499

32 Decision Stump 84.54 0.711 70.69 0.773 90.16 0.643 93.05 0.690 80.65 0.655

33 J48 84.54 0.689 81.41 0.704 87.95 0.558 93.32 0.668 79.50 0.653

34 LMT 85.72 0.798 84.29 0.838 89.15 0.555 92.87 0.693 81.24 0.711

35 Random Forest 85.15 0.771 82.95 0.802 88.55 0.710 93.68 0.825 80.84 0.722

36 Random Tree 82.69 0.608 80.84 0.620 84.33 0.549 91.07 0.661 75.45 0.592

37 REP Tree 85.11 0.822 81.60 0.725 89.15 0.502 93.59 0.782 80.67 0.704

As it is illustrated in Table II, Bagging usually depicts a

high AUC for each dataset. Although other classifiers might
acquire a high performance for a specific dataset, they don’t
perform well overall but bagging classification manages to
perform better than the other classifiers. For instance
classification via regression approach illustrates high AUC
values but still lower than bagging. Hence we have chosen
Bagging as the appropriate classification algorithm for
defect prediction systems.

A. Bagging Performance Evaluation

In this section, bagging classification, which was chosen
according to our experiments, is compared against the most
commonly used classifier in fault detection systems (Naïve
Bayes) as well as classification via regression approach that
managed to illustrate acceptable results in the previous
datasets. We determined the best approach by evaluating
classifiers on 5 NASA datasets. In order to evaluate bagging
and its performance on other datasets, we conduct our
experiments on 11 different datasets. In the following
experiments, the input features are determined by an
approach discussed in [13]. Table III depicts the selected
metrics.

TABLE III
 Selected Set of Metrics for Fault Detection Systems

We have conducted another experiment in order to

compare the performance of three of the best classifiers.

These classifiers were determined by the results of the
previous experiment. Table IV illustrates the outcome of
this comparison. By testing Bagging, Naïve Bayes and
Classification via Regression on each dataset, AUC and
ACC were determined. As it is depicted in table IV,
Bagging manages to outperform the two rival approaches,
Naïve Bayes and Classification via Regression, in 7
datasets.

TABLE IV
Comparison of the appropriate Classifier (Bagging) and one of the most
commonly used Classifiers in fault detection systems (Naïve Bayes)

Classifier

Dataset

Classification via
Regression

Naïve Bayes Bagging

AUC ACC AUC ACC AUC ACC

0.791 85.20 0.757 83.59 0.807 85.68 KC1 1

0.835 82.95 0.806 83.90 0.839 83.33 KC2 2

0.856 92.87 0.641 89.90 0.811 93.32 PC1 3

0.699 88.95 0.615 86.14 0.733 89.95 CM1 4

0.713 81.13 0.646 80.58 0.733 81.04 JM1 5

0.907 89.36 0.814 89.50 0.907 90.60 PC4 6

0.814 88.80 0.764 63.46 0.817 89.25 PC3 7

0.760 99.58 0.770 98.31 0.778 99.58 PC2 8

0.831 91.56 0.696 86.35 0.674 91.81 MW1 9

0.949 99.42 0.868 95.25 0.931 99.41 MC1 10

0.814 90.39 0.794 88.42 0.806 89.51 KC3 11

IV. CONCLUSION

 In this paper, we have investigated comparison of 37
classification algorithms over 5 public NASA datasets. By
comparing different classification algorithms, we figured
that Bagging shows a better performance than the rest of
classifiers in fault detection systems. So, we chose Bagging
as our appropriate classifier. For verification of the selected
classifier, performance of Bagging, Naïve Bayes and
Classification via Regression were compared on more
datasets. The results illustrated that Bagging has the highest

Metric Comment

v(g) McCabe "cyclomatic complexity"

ev(g) McCabe "essential complexity"

iv(g) McCabe "design complexity"

E Halstead "effort"

T Halstead's time estimator

loCode Halstead's line count

loBlank Halstead's count of blank lines

loCodeAndComments Halstead's count of lines of comments

uniq_Opnd unique operands

BranchCount Count of the flow graph

Proceedings of the World Congress on Engineering 2012 Vol I
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19251-3-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

performance on fault detection systems. Therefore by
employing Bagging as the appropriate classifier, the
prediction system is more accurate.

As future work, we can focus on Bagging algorithm and
through its optimization for fault detection systems, increase
the detecting performance.

REFERENCES
[1] A. Porter, R. Selby, "Empirically Guided Software Development

Using Metric-Based Classification Trees", IEEE Software, no. 7,
pp. 46-54, 1990.

[2] L.C Briand, W.L. Melo, J. Wu, "Assessing the Applicability of Fault-
Proneness Models Across Object-Oriented Software Projects", IEEE
Trans, Software Eng, 28 (7), pp. 706-720, 2002.

[3] Menzies T.; Greenwald J.; A. Frank, "Data Mining Static Code
Attributes to Learn Defect Predictors", IEEE Transactions on
Software Engineering, vol.33, no.12-13, 2007.

[4] A. Porter, R. Selby, "Evaluating Techniques for Generating Metric-
Based Classification Trees", J. Systems Software, vol. 12, pp. 209-
218, 1990.

[5] S. Lessmann, B. Baesens, C. Mues, S. Pietsch, "Benchmarking
Classification Models for Software Defect Prediction: A Proposed
Framework and Novel Findings", IEEE Trans. on Software
Engineering, 34 (4), pp. 485-496, 2008.

[6] M. Fagan, "Advances in software inspections", IEEE Trans. on
Software Engineering, pages 744-751, 1986.

[7] B. Turhan, T. Menzies, A. Bener, J. Distefano, "On the relative value
of cross-company and within-company data for defect prediction",
Empirical Software Engineering Journal, pp.46-54, 2009.

[8] S. M. Fakhrahmad, M. H. Sadreddini, M. Zolghadri Jahromi, "AD -
Miner: A new incremental method for discovery of minimal
approximate dependencies using logical operations", Intelligent Data
Analysis 12, pp. 1-13, 2008.

[9] F. Shull, V. Basili, B. Boehm, A. Brown, P. Costa P, M. Lindvall, D.
Port, I. Rus, R. Tesoriero, M. Zelkowitz, "What we have learned
about fighting defects," in Proceedings of 8th International Software
Metrics Symposium, Ottawa, Canada, pp. 249-258, 2002.

[10] C Catal, B Diri, "A systematic review of software fault prediction
studies", Expert systems with applications 36, 7346-7354, 2009.

[11] A. A. Shahrjooi Haghighi, M. Abbasi Dezfuli, S. M. Fakhrahmad,
"Modeling a system using methods to detect software errors Data
mining", Fifth Conference of Iranian Data mining, AUT, Iran, 2011.

[12] T. Menzies, Z. Milton, B. Turhan B, B. Cukic, Y. Jiang, A. Bener,
"Defect prediction from static code features: current results,
limitations", new approaches, Springer Science + Business Media,
Autom Software Engineering, 2010.

[13] M. Chapman, P. Callis, W. Jackson, "Metrics Data Program", NASA
IV and V Facility, http://mdp.ivv.nasa.gov/, 2004.

[14] J. Dem_sar, "Statistical Comparisons of Classifiers over Multiple
Datasets", Machine Learning Research, 7, pp. 1-30, 2006.

[15] T. Menzies, J. DiStefano, A. Orrego, R. Chapman, "Assessing
Predictors of Software Defects", In Proc. Workshop Predictive
Software Models, 2004.

[16] Y. Jiang, B. Cukic, T. Menzies, N. Bartlow, "Comparing Design and
Code Metrics for Software Quality Prediction", Proceedings of the
PROMISE 2008 Workshop (ICSE), 2008.

[17] T. Bao Hu, “Introduction to Knowledge Discovery and Data Mining”,
Institute of Information Technology, National Center for Natural
Science and Technology.

[18] L. Breiman, "Bagging Predictors", Machine Learning, 24, pp.123-140,
1996.

Proceedings of the World Congress on Engineering 2012 Vol I
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19251-3-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012

