
 

 
Abstract—Software fault prediction based on mining of code 

and design metrics has been considered by many researchers. 
Fault detection systems predict faults by using software 
metrics and data mining techniques. Various classifiers have 
already been used in this case; however Naïve Bayes classifier 
is the most commonly used. According to the results of a study 
performed by Lessman, no significant performance difference 
could be detected among the top 17 classifiers. 
In this paper, we will extend that study by examining the 
performance of 37 different classifiers in fault detection 
systems. We will review the results and aim to choose an 
appropriate classifier (Bagging) which depicts a higher 
performance and accuracy compared to the others. Finally, we 
propose a fault detection system with higher performance 
which manages to decrease the cost of software fault detection 
simultaneously. We investigate our classifier selection by 
evaluating the methods on a number of other datasets. Our 
results indicate that Bagging classifier has the highest 
performance in fault detection. 

Index Terms— Bagging Classifier, Data Mining, Software 
Fault Detection, Software Metrics 
 

I. INTRODUCTION 

y definition, fault is a structural defect that may 
eventually lead to deterioration of the systems. 
Software testing is one of the most critical and costly 

phases in software development. Defect predictors have 
been effective secondary tools to help test terms to locate 
potential defects accurately [1]. Software defect prediction 
is the task of classifying software modules into fault-prone 
(fp) and non-fault-prone (nfp) ones by means of metric-
based classification [2], [3]. 
 Use of software metrics to predict software faults was 
initiated by Porter and Selby in 1990 [4], [5].  Since then, 
there has been an extensive interest on metric based fault 
prediction [6], [7], [1], [8].  Interestingly, Turhan et al. [8] 
shows that we can build classifiers based on software 
metrics from a Turkish refrigerator manufacturer and predict 
faults in NASA software modules of a space shuttle. It has 
been shown that defect predictors which employ data 
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mining module-based features have over 70% prediction 
accuracy [9].  In comparison to the 60% detection rate of 
manual software review (based on a panel in  IEEE Metrics 
2002) [10] and considering the ability of an expert reviewer 
who can merely inspect 8 to 20 LOC/minute, it becomes 
apparent why automatic defect predictors based on design 
and code attributes are such an active research area.  
 Catal and Diri [11] performed a research on studies in the 
field of software defect prediction. They focused on metrics, 
methods and datasets used in software defect prediction 
area. According to their studies, the percentage of using 
public datasets has greatly increased. Moreover, the use of 
machine learning algorithms has gradually increased since 
2005. They have also investigated the statistics related to 
published articles in this field. According to their research, 
published articles in the field of software defect prediction 
started growing from 1990. Most of the publications are 
from 2000 onwards. Also according to statistics, in over 
60% of researches, Method level metrics has been used. In 
addition, statistical and machine learning methods have the 
highest use in this area. Menzies et al [12] concluded that 
using data mining techniques can not lead to more accurate 
detection systems. The goal should be changed therefore 
they proposed to enhance training of each detection system 
for a specific use. 
 One of the challenges in fault detection systems is the 
metrics through which faults can be detected. Two kinds of 
metrics are used in these systems: Code level and Design 
level metrics. However, obtaining design metrics is 
challenging (e.g., complexity metrics) and not always 
straightforward.  It requires availability of design phase 
artifacts and design diagrams such as DFDs, control flow 
graphs, Formal Description Language (FDL) graphs and 
UML diagrams. In our previous research [13] we presented 
a set of metrics with higher accuracy. 
 During the past decade, several classification systems 
have been proposed, which perform predictive modeling 
efforts for detection of modules that are likely to contain 
faults. The evaluation of such systems has almost been 
carried out using a set of datasets available from NASA 
MDP repository [14].  A comparative study like [1] 
provided a baseline and dataset for this research.  Each 
module is described by a set of code-level and design-level 
attributes. All discovered faults of the system are also 
registered in each dataset, together with the number of 
modules containing the fault.  
 Based on a set of experiments on NASA MDP datasets, 
Lessman et al. [15] concluded that there is no statistically 
significant difference between predictive performances of 
dissimilar classifier. He made his comparisons among 
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classifiers based on state-of-the-art statistical methods 
designed for comparing different classifiers over different 
datasets [9]. We will extend this research by studying 37 
various classifiers and comparing their performances on five 
other datasets. By evaluating the classifiers based on their 
performance measure, (Accuracy (ACC) and area under 
curve (AUC)), we determine the best classification 
performance. 
 During the past years, many researchers have attempted 
to evaluate different methods and several defect prediction 
systems have been proposed. The results of these systems 
are given in terms of classification accuracy, precision, 
performance, etc. However, these factors do not really show 
the goodness of the model. This paper extends our 
preceding results that presented a set of low cost metrics for 
fault detection systems [13]. In our previous work, by using 
AD-Miner algorithm [16], we proposed a set of metrics 
which demonstrate higher performance and accuracy for 
fault prediction systems.  In this paper we are going to 
deploy the accuracy by finding a classifier which performs 
better than others in fault detection systems. Since our 
intention is to reduce cost and provide higher performance 
in fault detection systems, in this paper we will peruse 
classifiers to find a classifier which obtains higher accuracy 
in fault prediction systems. 
 The rest of the paper is organized as follows. In Section 
2, we present the definitions.  Section 3 reviews various 
classifiers on NASA datasets and chooses a classifier with 
highest performance in fault detection systems. Moreover, 
the obtained results and empirical rules are presented. 
Finally, in Section 4 we draw a conclusion and propose 
future works. 

II. DEFINITIONS 

 In this section a brief description of Metrics Data 
Program (MDP) and various metrics used in fault prediction 
systems are presented. Moreover, the process of bagging 
classification, which is proved to be the most efficient 
classifier amongst the set of classifiers in our experiments, 
is enlightened. 

A. Metrics Data Program (MDP) 

 The NASA IV&V Metrics Data Program project is being 
developed by Galaxy Global Corporation, Inc. for NASA. 
The primary objective of the Metrics Data Program is to 
collect, validate, organize, store and deliver software 
metrics data. MDP provides access to the data repository 
containing software metrics and associated error data at the 
function/method level. The data repository stores and 
organizes the data which has been collected and validated 
by the Metrics Data Program. The repository contains 
software metrics and the associated error data at the 
function/method level for NASA software development 
projects. The data is neither representative of nor generated 
by IV&V analysis. 
The repository metrics include: 

 McCabe Software Metrics 
 Halstead Metrics 
 Line of Code Metrics 
 Error metrics derived from the association between 

errors and functions/modules 
 Requirement Metrics 

The association between the error data and metrics data in 
the repository provides the opportunity for users to 
investigate the relationship of metrics or combinations of 
metrics to the software. The primary goal of the repository 
is to provide project non-specific data to the software 
community. The data that is made available to general users 
has been sanitized and authorized for publication through 
the MDP website by officials representing the projects from 
which the data has originated. The database uses unique 
numeric identifiers to describe individual error records and 
product entries. The repository data is available at no cost 
[14]. Datasets used in fault prediction systems often include 
Metrics that are shown in Table I. The description of each 
Metric is mentioned in its adjacent cell in the table. 

 
TABLE I 

 Attributes Within the MDP Datasets 

Metric Comment 

1 Loc McCabe's line count of code 

2 v(g) McCabe "cyclomatic complexity" 

3 ev(g) McCabe "essential complexity" 

4 iv(g) McCabe "design complexity" 

5 N Halstead total operators + operands 

6 V Halstead "volume" 

7 L Halstead "program length" 

8 D Halstead "difficulty" 

9 I Halstead "intelligence" 

10 E Halstead "effort" 

11 B Halstead "error" 

12 T Halstead's time estimator 

13 loCode Halstead's line count 

14 loComment Halstead's count of lines of comments 

15 loBlank Halstead's count of blank lines 

16 loCodeAndComments Count of code and comment lines 

17 uniq_Op unique operators 

18 uniq_Opnd unique operands 

19 total_Op total operators 

20 total_Opnd total operands 

21 BranchCount Count of the flow graph 

22 Problems 
Module has/has not one or more 
reported effects 

 

B. Bagging Classifier 

 Classification is learning a function that maps a data item 
into one of several predefined classes. Examples of 
classification methods used as part of knowledge discovery 
applications include classifying trends in financial markets 
and automated identification of objects of interest in large 
images databases [17]. In fault detection systems, classifiers 
are used to predict whether each module contains fault or 
not. 

Bagging is a method for generating multiple versions of a 
predictor and using them to get an aggregated predictor. The 
aggregation averages over the versions when predicting a 
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numerical outcome and does a plurality vote when 
predicting a class. The multiple versions are formed by 
making bootstrap replicates of the learning set and using 
these as new learning sets. Tests on real and simulated 
datasets using classification and regression trees and subset 
selection in linear regression show that bagging can give 
substantial gains in accuracy. The vital element is the 
instability of the prediction method. If perturbing the 
learning set can cause significant changes in the predictor 
constructed, then bagging can improve accuracy [18]. 

III. RESULTS AND DISCUSSION 

 Due to the variety of classifiers the WEKA supports and 
also its efficient environment for experimental data analysis, 
we used the WEKA software. As it was stated previously 
Lessman et al. [15] already had conducted research in this 
field. According to his opinion classifiers do not differ much 
from each other. We will extend this research by studying 
more classifiers. We are interested in determining an 
appropriate classifier for our proposed method. Therefore, 
the values of AUC, ACC are calculated for several 

classifiers and eventually according to these values, the best 
classifier is selected. 

The AUC is recommended as the primary accuracy 
indicator for comparative studies in software defect 
prediction since it separates predictive performance from 
class and cost distributions, which are project specific 
characteristics that may be unknown or subject to change. 
Therefore, the AUC- based evaluation has the potential to 
significantly improve convergence across studies [15]. 
Table II shows the results of evaluating 37 classifiers on 
five different NASA datasets. In order to compare the 
performance of the mentioned classifiers, two of the most 
commonly used criteria are chosen. ACC and AUC values 
are calculated as an indication of how classifiers perform on 
each dataset. Since AUC is usually chosen as the most 
significant criteria for this purpose, we have concentrated on 
this value. In each column of the table, the cells containing 
the highest AUC (with less difference from the highest 
AUC value) are highlighted. 

 
TABLE II 

 Investigating Classifiers’ Performances on NASA Datasets 

Dataset KC1 KC2 CM1 PC1 JM1 

Classifier ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC 

1 BayesNet 69.89 0.791 78.35 0.824 64.65 0.689 74.39 0.703 68.05 0.701 

2 NaiveBayes 82.36 0.790 83.52 0.834 85.34 0.658 89.17 0.650 80.42 0.679 

3 NaiveBayes Updateable 82.36 0.790 83.52 0.834 85.34 0.658 89.17 0.650 80.42 0.679 

4 Logistic 85.68 0.796 82.95 0.808 88.15 0.730 92.42 0.809 81.35 0.713 

5 Multilaye Perceptron 85.91 0.771 84.67 0.828 87.55 0.734 93.59 0.723 80.95 0.690 

6 SGD 85.20 0.539 84.48 0.663 89.55 0.497 93.05 0.512 80.77 0.504 

7 SimpleLogistic 85.72 0.798 84.29 0.838 89.15 0.544 92.60 0.651 81.12 0.711 

8 SMO 84.77 0.516 82.75 0.597 89.55 0.497 92.96 0.500 80.72 0.502 

9 Voted Perceptron 83.73 0.548 30.26 0.575 90.16 0.500 92.60 0.499 52.21 0.559 

10 IBK 84.40 0.735 80.45 0.643 84.73 0.589 90.06 0.740 76.97 0.640 

11 Kstar 83.97 0.832 79.11 0.612 87.14 0.644 91.79 0.655 78.56 0.638 

12 LWL 84.44 0.765 79.50 0.779 89.75 0.682 93.23 0.713 80.65 .667 

13 AdaBoostM1 84.96 0.783 81.41 0.784 90.16 0.700 93.05 0.803 80.79 0.710 

14 Attribute Selected Classifier 84.30 0.699 82.56 0.739 89.35 0.542 93.41 0.740 80.86 0.666 

15 Bagging 85.44 0.809 82.95 0.823 89.75 0.720 93.50 0.915 81.42 0.742 

16 Classification Via Regression 85.58 0.793 81.80 0.820 89.35 0.752 93.14 0.868 81.24 0.720 

17 CV Parameter Selection 84.54 0.496 79.50 0.487 90.16 0.490 93.05 0.486 80.65 0.499 

18 Filtered Classifier 84.87 0.752 82.37 0.762 90.16 0.490 93.50 0.589 81.12 0.696 

19 Logit Boost 85.39 0.784 83.52 0.824 88.95 0.724 93.14 0.843 80.89 0.713 

20 Multi Class Classifier 85.68 0.796 82.95 0.808 88.15 0.730 92.42 0.809 81.35 0.713 

21 Multi Scheme 84.54 0.496 79.50 0.487 90.16 0.490 93.05 0.486 80.65 0.499 

22 Random Committee 85.49 0.804 81.22 0.786 87.75 0.731 93.59 0.762 81.06 0.723 

23 Random SubSpace 85.44 0.789 83.90 0.816 90.16 0.627 93.23 0.835 81.41 0.733 

24 Stacking 84.54 0.496 79.50 0.487 90.16 0.490 93.05 0.486 80.65 0.499 

25 Vote 84.54 0.496 79.50 0.487 90.16 0.490 93.05 0.486 80.65 0.499 
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26 Input Mapped Classifier 84.54 0.496 79.50 0.487 90.16 0.490 93.05 0.486 80.65 0.499 

27 Decision Table 84.87 0.785 83.14 0.823 89.15 0.626 92.87 0.738 80.90 0.703 

28 JRIP 84.54 0.587 82.18 0.698 89.35 0.529 93.32 0.602 81.04 0.570 

29 OneR 83.64 0.569 81.22 0.657 88.35 0.517 92.87 0.529 79.43 0.533 

30 PART 84.82 0.747 82.18 0.753 88.75 0.721 93.68 0.926 80.74 0.712 

31 ZeroR 84.54 0.496 70.50 0.487 90.16 0.490 93.05 0.486 80.65 0.499 

32 Decision Stump 84.54 0.711 70.69 0.773 90.16 0.643 93.05 0.690 80.65 0.655 

33 J48 84.54 0.689 81.41 0.704 87.95 0.558 93.32 0.668 79.50 0.653 

34 LMT 85.72 0.798 84.29 0.838 89.15 0.555 92.87 0.693 81.24 0.711 

35 Random Forest 85.15 0.771 82.95 0.802 88.55 0.710 93.68 0.825 80.84 0.722 

36 Random Tree 82.69 0.608 80.84 0.620 84.33 0.549 91.07 0.661 75.45 0.592 

37 REP Tree 85.11 0.822 81.60 0.725 89.15 0.502 93.59 0.782 80.67 0.704 

 

 
As it is illustrated in Table II, Bagging usually depicts a 

high AUC for each dataset. Although other classifiers might 
acquire a high performance for a specific dataset, they don’t 
perform well overall but bagging classification manages to 
perform better than the other classifiers. For instance 
classification via regression approach illustrates high AUC 
values but still lower than bagging. Hence we have chosen 
Bagging as the appropriate classification algorithm for 
defect prediction systems. 

A. Bagging Performance Evaluation 

In this section, bagging classification, which was chosen 
according to our experiments, is compared against the most 
commonly used classifier in fault detection systems (Naïve 
Bayes) as well as classification via regression approach that 
managed to illustrate acceptable results in the previous 
datasets. We determined the best approach by evaluating 
classifiers on 5 NASA datasets. In order to evaluate bagging 
and its performance on other datasets, we conduct our 
experiments on 11 different datasets. In the following 
experiments, the input features are determined by an 
approach discussed in [13]. Table III depicts the selected 
metrics. 

TABLE III 
 Selected Set of Metrics for Fault Detection Systems 

 
We have conducted another experiment in order to 

compare the performance of three of the best classifiers. 

These classifiers were determined by the results of the 
previous experiment. Table IV illustrates the outcome of 
this comparison. By testing Bagging, Naïve Bayes and 
Classification via Regression on each dataset, AUC and 
ACC were determined. As it is depicted in table IV, 
Bagging manages to outperform the two rival approaches, 
Naïve Bayes and Classification via Regression, in 7 
datasets. 

 
 

TABLE IV 
Comparison of the appropriate Classifier (Bagging) and one of the most 
commonly used Classifiers in fault detection systems (Naïve Bayes) 

 
Classifier 

 
Dataset 

Classification via 
Regression 

Naïve Bayes Bagging 

AUC ACC AUC ACC AUC ACC 

0.791 85.20 0.757 83.59 0.807 85.68 KC1 1 

0.835 82.95 0.806 83.90 0.839 83.33 KC2 2 

0.856 92.87 0.641 89.90 0.811 93.32 PC1 3 

0.699 88.95 0.615 86.14 0.733 89.95 CM1 4 

0.713 81.13 0.646 80.58 0.733 81.04 JM1 5 

0.907 89.36 0.814 89.50 0.907 90.60 PC4 6 

0.814 88.80 0.764 63.46 0.817 89.25 PC3 7 

0.760 99.58 0.770 98.31 0.778 99.58 PC2 8 

0.831 91.56 0.696 86.35 0.674 91.81 MW1 9 

0.949 99.42 0.868 95.25 0.931 99.41 MC1 10 

0.814 90.39 0.794 88.42 0.806 89.51 KC3 11 

 

IV. CONCLUSION 

 In this paper, we have investigated comparison of 37 
classification algorithms over 5 public NASA datasets. By 
comparing different classification algorithms, we figured 
that Bagging shows a better performance than the rest of 
classifiers in fault detection systems. So, we chose Bagging 
as our appropriate classifier. For verification of the selected 
classifier, performance of Bagging, Naïve Bayes and 
Classification via Regression were compared on more 
datasets. The results illustrated that Bagging has the highest 

Metric Comment 

v(g) McCabe "cyclomatic complexity" 

ev(g) McCabe "essential complexity" 

iv(g) McCabe "design complexity" 

E Halstead "effort" 

T Halstead's time estimator 

loCode Halstead's line count 

loBlank Halstead's count of blank lines 

loCodeAndComments Halstead's count of lines of comments 

uniq_Opnd unique operands 

BranchCount Count of the flow graph 
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performance on fault detection systems. Therefore by 
employing Bagging as the appropriate classifier, the 
prediction system is more accurate. 

As future work, we can focus on Bagging algorithm and 
through its optimization for fault detection systems, increase 
the detecting performance. 
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