
An Improved Framework for Intrusion Alert
Correlation

Huwaida Tagelsir Elshoush and Izzeldin Mohamed Osman

Abstract—Alert correlation analyzes the alerts from one
or more collaborative Intrusion Detection Systems (IDSs) to
produce a concise overview of security-related activity on the
network. The process consists of multiple components, each
responsible for a different aspect of the overall correlation
goal. The sequence order of the correlation components affects
the correlation process performance. The total time needed for
the whole process depends on the number of processed alerts
in each component. This paper proposes a new correlation
framework based on a model that reduces the number of
processed alerts as early as possible by discarding the irrelevant
and false alerts in the first phases. A new component is added to
deal with the unrelated alerts. A modified algorithm for fusing
the alerts is also proposed. The intruders’ intention is grouped
into attack scenarios and thus used to detect future attacks. The
contribution of this paper includes an enhanced new framework
for alert correlation, the implementation of the alert correlator
model based on the framework, and the evaluation of the model
using the DARPA 2000 intrusion detection scenario specific
datasets. The experimental results show that the correlation
model is effective in achieving alert reduction and abstraction.
The performance is improved after the attention is focused on
correlating higher severity alerts.

Index Terms—Intrusion detection, Alert correlation, Alert
reduction, Alert correlation datasets.

I. INTRODUCTION

IDSs may cooperate to complement each other’s coverage.
Even when different detection techniques are used, they

analyze each other’s alerts and reduce false positive alerts
[13][16][19][22].

Deploying multiple IDSs might generate a huge number
of alerts, where many are redundant, irrelevant and false
positive alerts. Hence, data reduction, such as alert aggrega-
tion, alert filtering and reducing false alerts, without losing
valuable information is essential [4][14][15].

Alert correlation is defined as a process that contains
multiple components with the purpose of analyzing alerts
and providing high-level insight view on the security state
of the network surveillance [4][22]. Thus correlation aims to
relate a group of alerts to build a big picture of the attacks,
and hence can be used to trace each attack to its source.

The core of this process consists of components that im-
plement specific function, which operate on different spatial
and temporal properties [2].

The correlation components are effective in achieving alert
reduction and abstraction. Research show that the effective-
ness of each component depends heavily on the nature of
the data set analyzed [2]. Moreover, the performance of the

Manuscript received March 23, 2012; revised April 15, 2012.
H. T. Elshoush is with the Department of Computer Science, School

of Mathematical Sciences, University of Khartoum, Sudan, e-mail:
htelshoush@uofk.edu.

I. M. Osman is with Sudan University of Science and Technology
Khartoum, Sudan, email: izzeldin@acm.org.

correlation process is significantly influenced by the topology
of the network, the characteristics of the attack, and the
available meta-data.

Since alerts can refer to different kinds of attacks at
different levels of granularity, the correlation process cannot
treat all alerts equally. Instead, it is necessary to provide
a set of components that focus on different aspects of the
overall correlation task. Some components, see Fig.1, e.g.
those at the initial and second units, implement general
functionality that is applicable to all alerts, independent of
their type. Other components (e.g. in the third unit) are
responsible for performing specific correlation tasks that
cannot be generalized for arbitrary alerts, but for certain class
of alerts.

Thus, one cannot, in general, determine a ranking among
components with respect to their effectiveness. Each com-
ponent can contribute to the overall analysis. Therefore, the
most complete set of components should be used [2].

This paper focuses on reordering the correlation com-
ponents such that redundant, irrelevant and false alerts are
reduced as early as possible for the purpose of reducing the
number of processed alerts to enhance the performance. The
unrelated alerts that are not correlated are dealt with in a
separate component. Hence, the overall effectiveness of the
correlation process is improved in the proposed model.

The rest of this paper is organized as follows: The
proposed correlation model is overviewed in section 2. In
Section 3, the evaluation of alert correlators is discussed
together with the factors affecting the alert reduction rates.
Section 4 discusses the implementation of our model. A
detailed description of the components of the correlation
process and the results of applying each component to the
sample datasets, DARPA 2000, is explained. Our model is
also compared with previous correlation systems. Section 5
reviews some of the related work. Section 6 concludes the
paper and recommends some future work.

II. THE PROPOSED CORRELATION MODEL OVERVIEW

Our system architecture, see Fig. 1, is composed of
ten main components, namely normalization, preprocessing,
prioritization, alert verification, alert fusion, focus recogni-
tion, uncorrelated removal, multi-step correlation, intention
recognition, and impact analysis.

The normalization and preprocessing components are con-
tained in the data normalization unit. The filter-based cor-
relation unit contains the prioritization and the verification
components. The alert fusion, focus recognition, uncorrelated
removal and multi-step correlation components are in the
data reduction unit.

In the normalization component, alerts that are generated
by multiples IDSs are collected and stored in a database

Proceedings of the World Congress on Engineering 2012 Vol I 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19251-3-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



Fig. 1. The Proposed Correlation Model.

before they are modeled and converted into a standard
format called Intrusion Detection Message Exchange Format
(IDMEF). Then data preprocessing is required in order to
clean the data, do feature extraction and selection, and finally
deal with any incomplete or missing data.

The filter-based correlation unit either assigns a priority
to each alert or identifies irrelevant alerts. Thus, alerts are
ranked based on their severity level in order to discover
the high and low risks alerts depending on information in
the asset DB. In the alert verification component, alerts are
verified to determine the false positives and invalid alerts.

Redundant alerts are fused based on similarity functions
[22] in the alert fusion component in the data reduction unit.
In the focus recognition component, alerts are aggregated
then classified using feature similarity. Unrelated and false
alerts tend to be random and will not correlate, hence
uncorrelated alerts are removed by uncorrelated removal
component. The last component of the data reduction unit,
multi-step correlation, is expected to achieve substantial
improvement in the abstraction level and data reduction. In
this component, priori information of the network topology,
known scenarios, etc are provided by the expert knowledge
DB, and hence high level patterns are specified .

In intention recognition component, relevant behavior is
grouped into attack scenarios to extract attack strategy and
plan recognition. In the final component, impact analysis, the
asset DB is consulted to determine all other services that are
dependent on a specific target and then this information is
added to the alert as a likely consequence of the attack.

III. EVALUATION OF ALERT CORRELATORS

A. Evaluating Alert Correlators

Correlation tools are evaluated “as a whole”, without an
assessment of the effectiveness of each component of the
analysis process. As a result, it is not clear if and how the
different parts of the correlation process contribute to the
overall goals of correlation [4].

According to [4], the evaluation of the correctness of the
correlation process has to be performed manually as:
• there exist very few shared datasets for correlation

evaluation, and

• generating alerts from raw data might be risky and may
bias the correlation evaluation process,

• no truth files are associated with datasets, which makes
it difficult to know if the correlated alerts are represen-
tative of a meaningful grouping of detected attacks.

The effectiveness of IDS sensors are evaluated using the
detection rate and the false positive rate. These values cannot
be easily calculated for an alert correlator due [4]:
• The false positive is not clearly defined for a correlator,

as it may receive a false positive (which is an IDS
sensors output) and therefore draws a wrong assumption
that an attack took place. Thus, validation of the input
alerts is necessary.

• If there exists an attack creating a single low-level alert,
no correlation will be performed and thus this may
be considered a missed attack and hence results in a
reduction in the detection rate.

B. Factors Affecting the Alert Reduction Rate

• Experiments showed that the achieved alert reduction
rate (RR) is highly dependent on the features of the
dataset being processed [4].

• A particular dataset that experience a high reduction rate
during one correlation step might achieve poor reduction
rates during other steps [4].

Hence, when testing correlation systems, it is important to
calculate reduction rates for different datasets. Furthermore,
it is useful to calculate the reduction rate during each
correlation step in addition to the total reduction rate [4].

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this section, the implementation of an intrusion alert
correlator based on the proposed framework is explained.

In our implementation, we used Microsoft SQL Server
2005 as the relational database to store the alert datasets, the
intermediate data, and the analysis results of each component
as well as the correlated alerts.

The alert log files generated by RealSecure IDS of the
DARPA simulation network is used [9].

A. Experiments on DARPA 2000 Datasets

DARPA 2000 [8] is a well-known IDS evaluation dataset
created by the MIT Lincoln Laboratory. It consists of two
multistage attack scenarios, namely LLDOS 1.0 and LLDOS
2.0.2. Both attack scenarios contain a series of attacks in
which an attacker probes, breaks-in, installs the components
necessary to launch a Distributed Denial of Service (DDoS)
attack against an off-site server, with different stealth levels.
LLDOS 2.0.2 is a bit more sophisticated than LLDOS 1.0.

Each scenario includes the network traffic collected from
both the demilitarized zone (DMZ) and the inside part of
the evaluation network. We have performed six experiments,
four on the proposed model and two on the comprehensive
approach model [2].

In both scenarios, the attacker tries to use the vulnerabil-
ity of Sadmind RPC service and launches buffer overflow
attacks against the vulnerable hosts. The attacker installs
the mstream distributed DOS software after he breaks into
the hosts successfully. Finally, the attacker launches DDOS

Proceedings of the World Congress on Engineering 2012 Vol I 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19251-3-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



attacks from the victims. The differences between these two
scenarios lay in two aspects: First, the attacker uses IPSweep
and Sadmind Ping to find out the vulnerable hosts in LLDOS
1.0 while DNS HInfo is used in LLDOS 2.0.2. Second, the
attacker attacks each host individually in LLDOS1.0, while
in LLDOS2.0.2, the attacker breaks into one host first and
then fans out from it [10][21].

B. Analysis and Performance Evaluation of Proposed Cor-
relation Model

1) Data Normalization Unit:
• Normalization

The interaction of collaborators from distinct IDS poses
various requirements. Dependent on the level of col-
laboration, these include a common language, protocol
or even a complete framework. Hence, in a distributed
environment with heterogeneous IDSs, specifying a
common alert format is fundamental for providing inter-
pretability among IDSs. Moreover, high level analysis
such as alert correlation also requires that the alerts that
are processed to be in a generic format. There exists
a variety of exchange formats; prominent examples in-
clude IDMEF and IODEF. Therefore, in this component,
all attributes of each sensor alert will be translated into
a common data format, IDMEF in particular [3][8]. The
IDMEF data model is implemented using a Document
Type Definition (DTD) to describe Extensible Markup
Language (XML) documents. IDMEF is also an object-
oriented representation and a Unified Modeling Lan-
guage (UML) model. If only one type of sensor was
used, then that sensor’s format could be used as the
standard format.

• Preprocessing
The goal of the preprocessing component is to supply,
as accurately as possible, missing alert attributes that are
important for later correlation components. Reducing
the dimensionality of the data improves the correlation
process considerably and detection accuracy is im-
proved as a result of removing irrelevant and redundant
features. Hence, this component handles null values,
missing and incomplete data [26]. Feature selection is
used to reduce the alert attributes, as it is revealed
from recent research [23][24][25] that feature selection
improves detection accuracy and performance. The type
information is useful because it allows one to group
attacks with a similar impact together.
In both scenarios, there are 45 features, of which only
7 features were extracted, namely EventID, timesec, Sr-
cIPAddress, DestPort, DestIPAddress, OrigEventName,
and SrcPort. The date attribute was represented in
date/time format, and we converted it to time in seconds
(represented as timesec). 5 alerts, representing incom-
plete data, were removed in all datasets, except for the
inside segment of scenario 1.0., see Table I.

2) Filter-based Correlation Unit: The primary goal is to
reduce the number of alerts to be correlated by eliminating
false, irrelevant and low risk alerts. False alerts need to be
handled at an early stage as they will have negative impact on
the correlation result, and moreover the number of processed
alerts will be greatly reduced.

TABLE I
IMPACT OF PREPROCESSING COMPONENT ON LLDOS SCENARIOS

DMZ 1.0 Inside 1.0 DMZ 2.0.2 Inside 2.0.2

Input alerts 891 922 430 494

Output alerts 886 922 425 489

TABLE II
IMPACT OF PRIORITIZATION COMPONENT ON LLDOS SCENARIOS

DMZ 1.0 Inside 1.0 DMZ 2.0.2 Inside 2.0.2

Input alerts 886 922 425 489

Output alerts 188 167 54 71

Reduction Rate 78.78% 81.89% 87.29% 85.48%

• Prioritization
In this component, depending on the information con-
tained in the asset DB, high and low risks alerts are
identified. The low risks that do not have significant
effect on the protected system are discarded. By alert
ranking, the data fed into the remaining components is
reduced as only the high and medium risks which are of
higher importance or relevance is considered in the later
components. That is, based on asset information, only
relevant risky alerts are processed. Thus as acknowl-
edged in [1], when the number of processed alerts is
reduced, the performance is improved as the total time
needed for the whole process depends on the number
of processed alerts in each component.
Based on asset information, groups may collaborate
in sending only valuable information or information
related to their protected system, so filtering might be
done to irrelevant information.
The ranking/priority of alerts of LLDOS scenarios from
[7] is used and thus low risk alerts are discarded, and
only the medium and high risk alerts are sent to the next
component. After implementing the proposed model,
the resulting alerts are shown in Table II.

• Alert Verification
It distinguishes between successful and failed intru-
sion attempts. The verification of an attack can be
accomplished by extending ID rules with an expected
“outcome” of the attack that describes the visible and
verifiable traces [2][6].
Verification can be performed using both passive and
active techniques, and each approach requires different
support from the ID infrastructure [2][6][12].
Because some sites might be interested in failed at-
tack attempts, an alert should be differentiated from
a successful instance. This alert reflects the missing
contextual information that the IDS would require to
determine a failed attack. Thus, it would be better if
IDSs rules can be modified to include such information.
As no sufficient information was found about the asset
DB, this component could not be implemented.

3) Data Reduction Unit: Similar alerts are fused and
thus data is reduced by eliminating data redundancies, and
irrelevant, false and unreal alarms using alert correlation, as
false alerts are less likely to be correlated.
• Alert Fusion

Algorithm 1 is the alert fusion component method.

Proceedings of the World Congress on Engineering 2012 Vol I 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19251-3-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



Algorithm 1: Alert Fusion Algorithm

Parameter window-size, fuse-window, thread-window
Global alert-queue, fuse, thread

fuse(alert)
al ← get a:alert with lowest start-time from alert-queue where
if alert.analyzer ∩ a.analyzer is empty and all overlapping attributes
except start-time, end-time, analyzer, alertid are equal then

fuse
window-size = fuse-window

else
if alert.victimhosts = a.victimhosts and alert.attackerhosts =
a.attackerhosts then

thread
window-size = thread-window

end if
end if
if al¬null then

replace al in alert-queue with fuse-merge(alert, al)
else

add alert to alert-queue
remove all a:alert from alert-queue where
a.start-time < (alert.start-time - window-size)
pass removed alerts to next correlation component

end if

fuse-merge(alert1, alert2)
r ← new alert
r.alertid ← get unique-id()
r.start-time ← min(alert1.start-time, alert2.start-time)
r.reference ← (alert1.alertid ∪ alert2.alertid)
if fuse then

r.end-time ← min(alert1.end-time, alert2.end-time)
for each attr:attribute except start-time, end-time, reference, alertid
do

r.attr ← alert1.attr ∪ alert2.attr
end for
fuse ← false

else
if thread then

r.end-time ← max(alert1.end-time, alert2.end-time)
r.analyzer = alert1.analyzer ∪ alert2.analyzer
thread ← false

end if
end if
if alert1.name = alert2.name then

r.name ← alert1.name
else

r.name ← “Attack Thread”
end if
for each attr:attribute except start-time, end-time, reference, analyzer,
alertid do

if alert1.attr = alert2.attr then
r.attr ← alert1.attr

else
r.attr ← null

end if
end for
return r

end
It combines a series of alerts that refer to attacks
launched by one attacker against a single target. This
component removes duplicates created by the indepen-
dent detection of the same attack by different sensors,
and also correlates alerts that are caused by an attacker
who tests different exploits against a certain program
or that runs the same exploit multiple times to guess
correct values for certain parameters (e.g., the offsets
and memory addresses for a buffer overflow) [2][6][12].
The alert fusion component keeps a sliding timewindow
of alerts. The alerts within the timewindow are stored
in a time-ordered queue. When a new alert arrives, it
is compared to the alerts in the queue, starting with
the alert with the earliest timestamp. A fusion match is
found if all overlapping attributes are equal and the new
alert is produced by a different sensor. The timestamp
of the meta-alert is assigned the earlier of the sub-alerts
times. On the other hand, attack threads are constructed
by merging alerts with equivalent source and target

TABLE III
IMPACT OF ALERT FUSION COMPONENT ON LLDOS SCENARIOS

DMZ 1.0 Inside 1.0 DMZ 2.0.2 Inside 2.0.2

Input alerts 188 167 54 71

Output alerts 92 110 34 45

Reduction Rate 51.06% 34.13% 37.04% 36.62%

TABLE IV
IMPACT OF FOCUS RECOGNITION COMPONENT(ONE-TO-MANY)

DMZ 1.0 Inside 1.0 DMZ 2.0.2 Inside 2.0.2

Input alerts 92 110 34 45

Output alerts 42 57 23 27

Reduction Rate 56.52% 48.18% 32.35% 40%

TABLE V
IMPACT OF FOCUS RECOGNITION COMPONENT(MANY-TO-ONE)

DMZ 1.0 Inside 1.0 DMZ 2.0.2 Inside 2.0.2

Input alerts 42 57 23 27

Output alerts 31 28 5 24

Reduction Rate 26.19% 50.88% 78.26% 11.11%

attributes that occur in a certain temporal proximity but
the alerts need not be produced by different sensors.
The timestamp of the meta-alert is assigned the earlier
of the two start-times and the later of the two end-times.
The value of the time window should be a good trade-
off between a small value, which would cause several
attack threads to go undetected, and a larger value,
which would slow down the system by requiring the
component to keep a large number of alerts in the queue.
Table III shows the results of our implementation.

• Focus Recognition
The focus recognition component has the task of iden-
tifying hosts that are either the source or the target
of a substantial number of attacks. This is used to
identify denial-of-service (DoS) attacks or port scanning
attempts. More specifically, this component aggregates
the alerts associated with single hosts attacking multi-
ple victims (called a one-to-many scenario) and single
victims that are targeted by multiple attackers (called a
many-to-one scenario) [2][6][12].
The one-to-many scenario has two tunable parameters:
the size of the timeout, which is used for the initial
window size, and the minimum number of alerts for
a meta-alert to be generated. In our experiments, the
minimum number of alerts in a meta-alert was two.
We first applied one-to-many focus recognition on
DARPA datasets, then followed by many-to-one fo-
cus recognition. Some horizontal scan and multi-scan
attacks were observed. Tables IV and V show the
reduction rates of the focus recognition component.
DMZ in scenario 2.0.2. shows a great reduction rate
as is expected being a multistage attack scenario.

• Uncorrelated Removal
As shown in [10], alert correlation can be used to dif-
ferentiate between false and true alerts. False alerts and
unreal alarms tend to be more random than actual alerts,
and are less likely to be correlated. Thus, based on this
founding, we intentionally removed the uncorrelated
alerts, resulting in Table VI, which shows great RR.

Proceedings of the World Congress on Engineering 2012 Vol I 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19251-3-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



TABLE VI
IMPACT OF UNCORRELATED REMOVAL COMPONENT ON LLDOS

SCENARIOS

DMZ 1.0 Inside 1.0 DMZ 2.0.2 Inside 2.0.2

Input alerts 31 28 5 24

Output alerts 6 7 3 5

Reduction Rate 80.65% 75% 40% 79.17%

TABLE VII
IMPACT OF MULTI-STEP CORRELATION COMPONENT ON LLDOS

SCENARIOS

DMZ 1.0 Inside 1.0 DMZ 2.0.2 Inside 2.0.2

Input alerts 6 7 3 5

Output alerts 6 5 2 4

Reduction Rate 0% 28.57% 33.33% 20%

• Multi-step Correlation
The goal of this component is to identify high-level
attack patterns that are composed of several individual
attacks. The high-level patterns are usually specified by
using some form of expert knowledge [2][11][12][22].
Specifically, it may also associate network-based alerts
with host-based alerts that are related to the same attack,
called attack session reconstruction. This requires either
real-time access to the systems being protected or very
detailed auditing information in order to map network
traffic to host activity. Identifying relations between
these two types of alerts is difficult because the infor-
mation that is present in the alerts differs significantly.
While multistep attack analysis may not generate the
same level of alert reduction achieved by other com-
ponents, it often provides a substantial improvement in
the abstraction level of the produced meta-alerts. Newly
detected attack strategies are fed back to the expert
knowledge DB to keep it updated.
Results of implementation is shown in Table VII.

4) Intention Recognition: Intention or plan recognition is
the process of inferring the goals of an intruder by observing
his/her actions [4]. It deduces strategies and objectives of
attackers based on attack scenarios that are output by corre-
lation systems. Failed attacks can be useful to know so that
they can be avoided in the future.

Using alert correlation, the intruders’ relevant behavior can
be grouped into attack scenarios, and later on, their attack
strategy or plan can be extracted and fed back to update the
expert knowledge DB.

5) Impact Analysis: The final component contextualizes
the alerts with respect to a specific target network. It deter-
mines the impact of the detected attacks on the operation
of the network being monitored and on the assets that are
targeted by the malicious activity.

Impact analysis requires a precise modeling of the rela-
tionships among assets in a protected network and requires
constant monitoring of the health of those assets. Insufficient
information deters the implementation of this component.

C. Summary of Experimental Results

Fig. 2 shows the effect of our correlation model on LLDOS
1.0 and 2.0.2 scenarios. There is a substantial drop in the

TABLE VIII
TOTAL ALERT REDUCTION FOR THE PROPOSED MODEL

DMZ 1.0 Inside 1.0 DMZ 2.0.2 Inside 2.0.2

Input alerts 891 922 430 494

Output alerts 6 5 2 4

Reduction Rate 99.33.% 99.46% 99.53% 99.19%

TABLE IX
NO. OF PROCESSED ALERTS USING PROPOSED MODEL FOR SCENARIO

2.0.2

Prepr. Prio. Fus. 1:M M:1 U.Rem. Multi total

DMZ 425 54 34 23 5 3 2 546

Inside 489 71 45 27 24 5 4 665

TABLE X
NO. OF PROCESSED ALERTS USING COMPREHENSIVE APPROACH FOR

SCENARIO 2.0.2

Prepr. Fus. 1:M M:1 Multi. Prio. total

DMZ 425 241 63 46 44 5 824

Inside 489 276 71 44 33 7 920

number of alerts in the priority component for all datasets.
This reduces the number of processed alerts considerably and
thus improves the correlation process performance.

Table VIII shows the total alert reduction for each dataset.
Tables IX and X show the number of processed alerts
in each component for our proposed model compared to
the Comprehensive approach discussed in [2]. Since the
processing time is proportional to the number of processed
alerts, hence Fig. 3 shows that our model gives better results.

Fig. 2. Effect of Correlation Model on LLDOS 1.0 and 2.0.2 Scenarios.

V. RELATED WORK

In [1], Taha et al presented an agent-based alert correlation
model. A learning agent learns the nature of dataset to select
which components to be used and in which order. They
proved that their method achieved minimum alerts to be
processed on each component, depending on the dataset, and
minimum time for correlation process. Their method differs
from ours, in that they have learning agent, and we specify an
order of the components which gives better performance by
processing less number of alerts, hence minimum correlation
time as only the high risk alerts are processed.

Proceedings of the World Congress on Engineering 2012 Vol I 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19251-3-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012



Fig. 3. Comparison of Processing Time of Proposed Correlation Model
and Comprehensive Approach on LLDOS Scenario 2.0.2.

Valeur et al in [2] presented a complete comprehensive
set of components. Their experiments demonstrated that the
effectiveness of each component is dependent on the data
sets being analyzed, and each component can contribute to
the overall performance.

From the analysis in [5], researchers propose an improved
solution for an alert correlation technique based on six ca-
pabilities criteria identified which are capabilities to perform
alert reduction, alert clustering, identify multi-step attacks,
reduce false alert, and to detect known and unknown attacks.

In [17], a decentralized, multi-dimensional alert correlation
algorithm for CIDSs is proposed. A two-stage algorithm,
implemented in a fully distributed CIDS, first clusters alerts
locally at each IDS, before reporting significant alert patterns
to a global correlation stage.

Ghorbani et al in [18] showed an overall view of the
applied techniques which have been used for different com-
ponents of an alert correlation framework.

Meinel et al in [20] identified the data storage and process-
ing algorithms to be the most important factors influencing
the performance of clustering and correlation. They pro-
posed and implemented the utilization of memory-supported
algorithms and a column-oriented DB for correlation and
clustering in an extensible IDS correlation platform.

VI. CONCLUSION AND FUTURE WORK

Automation of alert management and analysis is crucial
because of the large number of alerts. Alert correlation
analyzes the alerts and aims to relate different alerts to build a
big picture of the attack, thus giving a high-level view of the
security status. The proposed model attempts to minimize
the number of processed alerts on each component and
thus minimizing the correlation processing time. It removes
irrelevant, unreal and false alerts in the early phases of the
correlation by reordering the components. Uncorrelated alerts
are also dealt with in order to discard irrelevant and false
positives. Thus by diverting more resources to deal with high
risk/priority alerts to be correlated, the effectiveness of alert
correlation is improved.

The experimental evaluation reported in this paper is still
preliminary, though it has demonstrated the potential of
the proposed model. Further experiments and comparisons
with different datasets and a real network dataset will be
investigated.

REFERENCES

[1] A. E. Taha, I. Abdel Ghaffar, A. M. Bahaa Eldin and H. M. K. Mahdi,
“Agent Based Correlation Model For Intrusion Detection Alerts,” Pub-
lished by the IEEE Computer Society, May 2010.

[2] F. Valeur, G. Vigna, C.Kruegel and R. Kemmerer, “A Comprehensive
Approach to Intrusion Detection Alert Correlation,” Published by IEEE
Transactions on Dependable and Secure Computing, the IEEE Com-
puter Society, Vol. 1, No. 3, pp. 146-169, July-September, 2004.

[3] H. Debar, D. Curry and B. Feinstein, “The Intrusion
Detection Message Exchange Format (IDMEF)”. Available:
http://www.ietf.org/rfc/rfc4765.txt, 2007.

[4] A. A. Ghorbani, W. Lu and M. Tavallaee, “Network Intrusion Detection
and Prevention: Concepts and Techniques,” Published by Springer, a
textbook, 2010.

[5] R. Yusof, S. R. Selamat and S. Sahib, “Intrusion Alert Correlation
Technique Analysis for Heterogeneous Log,” IJCSNS International
Journal of Computer Science and Network Security, VOL.8 No.9, pp.
132-138, Sept. 2008.

[6] F. Valeur, “Real-time ID Alert Correlation,” PhD Thesis, June 2006.
[7] M. M. Siraj, M. A. Maarof and S. Z. M. Hashim, “Intelligent Alert

Clustering Model for Network Intrusion Analysis,” Published by ICSRS
Publication, Int. J. Advance. Soft Comput. Appl., Vol. 1, No. 1, July
2009, ISSN 2074-8523.

[8] MIT Lincoln Laboratory 2000 DARPA Intrusion Detection Scenario
Specific Datasets. http://www.ll.mit.edu/index.html.

[9] Ning P. TIAA: A Toolkit for Intrusion Alert Analysis. Available from:
http://discovery.csc.ncsu.edu/software/correlator/; 2007.

[10] P. Ning, Y. Cui and D. S. Reeves, “Constructing Attack Scenarios
through Correlation of Intrusion Alerts,” in Proceedings of the 9th ACM
Conference on Computer and Communications Security, Washington
D.C., pp. 245-254, November 2002.

[11] P. Ning, Y. Cui and D. S. Reeves, “Analyzing Intensive Intrusion Alerts
Via Correlation,” in Proceedings of the 5th International Symposium
on Recent Advances in Intrusion Detection (RAID 2002), LNCS 2516,
Zurich, Switzerland, pp. 74-94, October 2002.

[12] C. Kruegel, F. Valeur and G. Vigna, “Intrusion Detection and Corre-
lation - Challenges and Solutions,” Published by Springer, a textbook,
2005.

[13] P. Ning, S. Jajodia and X. S. Wang, “Intrusion Detection in Distributed
Systems - An Abstraction-Based Approach,” Published by Kluwer
Academic Publishers, a textbook, 2004.

[14] G. P. Spathoulas and S. K. Katsikas, “Reducing false positives in
intrusion detection systems,” Published by Elsevier Ltd. Computer
Security, 2009.

[15] S. X. Wu and W. Banzhaf, “The Use of Computational Intelligence
in Intrusion Detection Systems: A Review,” Published by Elsevier Ltd.
Applied Soft Computing Journal, Vol. 10, pp. 1-35, Jan. 2010.

[16] C. V. Zhou, C. Leckie and S. Karunasekera, “Decentralized multidi-
mensional alert correlation for collaborative intrusion detection,” Pub-
lished by Elsevier Ltd. Journal of Network and Computer Applications,
Vol. 32, pp. 1106 -1123, Sept. 2009.

[17] C. V. Zhou, C. Leckie and S. Karunasekera, “A survey of coordinated
attacks and collaborative intrusion detection,” Published by Elsevier Ltd.
Computer Security, pp. 1-17, June 2009.

[18] R. Sadoddin and A. Ghorbani, “Alert Correlation Survey: Framework
and Techniques,” Oct-Nov. 2006.

[19] R. Bye, S. A. Camtepe and S. Albayrak, “Collaborative Intrusion
Detection Framework: Characteristics, Adversarial Opportunities and
Countermeasures,” August 2010.

[20] S. Roschke, F. Cheng and C. Meinel, “A Flexible and Efficient
Alert Correlation Platform for Distributed IDS,” Fourth International
Conference on Network and System Security, 2010.

[21] Y. Cui, “A Toolkit for Intrusion Alerts Correlation Based on Prereq-
uistes and Consequences of Attacks,” MSc. Thesis, Dec. 2002.

[22] H. T. Elshoush and I. M. Osman, “Alert Correlation in Collaborative
Intelligent Intrusion Detection Systems - A Survey,” Published by
Elsevier Ltd. Journal of Applied Soft Computing, Volume 11, Issue 7,
pp. 4349-4365, October 2011.

[23] A. Zainal1, M. A. Maarof1 and S. M. Shamsuddin, “Features Selection
Using Rough-PSO in Anomaly Intrusion Detection,” 2007.

[24] A. Zainal, M. A. Maarof and S. M. Shamsuddin, “Feature Selection
Using Rough Set in Intrusion Detection”.

[25] F. Amiri, M. M. R. Yousefi, C. Lucas and A. Shakery “Improved Fea-
ture Selection for Intrusion Detection System,” Published by Elsevier
Ltd. Journal of Network and Computer Applications, Jan. 2011.

[26] J. J. Davis and A. J. Clark, “Data Preprocessing for Anomaly-based
Network Intrusion Detection: A Review,” Published by Elsevier Ltd.
Journal of Computer and Security, pp. 353-375, October 2011.

Proceedings of the World Congress on Engineering 2012 Vol I 
WCE 2012, July 4 - 6, 2012, London, U.K.

ISBN: 978-988-19251-3-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2012




