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Abstract—In this article, we study a ratio-

dependent predator-prey system where predator pop-

ulation is subjected to harvesting with Michaelis-

Menten type harvesting rate. We study the existence

of heteroclinic bifurcations in an exploited predator-

prey system by using Melnikov’s method. Our simu-

lation results also show that the system may exhibit

monostability, bistability and tristability depending

on the initial values of the system populations and

the harvesting effort.
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1 Introduction

The standard Lotka-voltera type models assume that the per-
capita rate of predation depends on the prey numbers only.
This means that the predator’s functional response is a func-
tion of prey density only. In general, predator’s functional re-
sponse should certainly be a function of both prey and preda-
tor densities [1, 2] as there is often competition among the
predators for their food. A simple alternative assumption is
that the per capita rate of predation depends on the ratio of
prey to predator densities.

It is well known that classical prey-dependent predator prey
model exhibits the ”paradox of enrichment” [3, 4] which states
that enriching a predator prey system (by increasing the car-
rying capacity) will cause an increase in the equilibrium den-
sity of the predator but not in that of prey and will destabilize
the positive equilibrium, and thus increases the possibilities
of the stochastic extinction of the predator. However, nu-
merus field observations provide contrary to this paradox of
enrichment. It is often observed in nature that fertilization
increases the prey density, but does not destabilize a stable
steady state and fails to increase the amplitude of the os-
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cillations in system that already cycle [5]. Another paradox
that the predator-prey model with prey-dependent Michaelis-
Menten functional response exhibits is the so-called ”biolog-
ical control paradox” [6], which states that we cannot have
both a low and stable prey equilibrium density. However,
there are many examples of successful biological control where
the prey is maintained at very low densities compared with
its carrying capacity [7]. A ratio dependent predator-prey
model with Michaelis-Menten functional response does not
show these paradoxes ([10]-[15]) and assumed, therefore, to
be superior than their prey-dependent counter part. Kuang
and Beretta [10] observed that ratio-dependent predator-prey
models are richer in boundary dynamics and showed that if
the positive steady state of the system is locally asymptoti-
cally stable then the system has no nontrivial positive periodic
solutions. Jost et. al [11] demonstrated that the equilibrium
for a ratio dependent predator prey model can either be a
saddle point or an attractor. Xiao and Ruan [12] and Bere-
zovskaya et. al. [14] observed that there exist different kinds
of topological structures in the vicinity of the origin of a ratio
dependent predator prey model. Hsu et. al. [16] considered
a ratio dependent food chain model and studied the extinc-
tion dynamics as well as the sensitivity of the system to initial
population densities. Berezovskoya et. al. [15] presented an
algorithmic approach to analyze the behavior of ratio depen-
dent predator prey system. Tang and Zhang [17] gave an
analytical condition on parameters for the existence of the
hetroclinic loop. Most recently Li and Kuang [18], applying
the same ideas and techniques to a different Hamiltonian sys-
tem, obtained a new explicit relation in higher order expansion
for the bifurcation curve of a heteroclinic loop. The hetero-
clinic bifurcation plays an important role in understanding the
dynamics of the system [13, 14] because heteroclinic bifurca-
tion may trigger a catastrophic shift from the state of large
oscillations of predator and prey populations to the state of
extinction of both populations [18].

Harvesting in a predator prey system may be two fold. The
primary objective is optimal exploitation of the harvested
stock to maximize the profit ([20]-[22]). In contrast, some
researchers ([23]-[26]) considered harvesting from ecological
point of view. Xiao and Jennings [27] observed numerous
kinds of bifurcation in a ratio-dependent predator-prey model
where prey is being harvested at a constant rate. Xiao et al.
[28] considered a constant harvesting term in predator equa-
tion and observed subcritical, supercritical and the cusp bifur-
cation of codimension 2. We also studied a ratio-dependent
predator-prey model in presence of parasite where the prey
population was subjected to harvesting [29]. The dynamics of
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zero equilibria was thoroughly investigated to find out condi-
tions on the system parameters such that trajectories starting
from the domain of interest can reach the zero equilibrium
following any fixed direction. Meza et al. [30] studied a ratio-
dependent predator-prey model where predator is subject to
an on-off control, known as threshold policy. They showed
that an equilibrium on the boundary may slide to an stable
interior equilibrium point due to on-off control and thus avoid
the extinction of species. One important question in the bioe-
conomic modeling of productive resources is the rate of har-
vesting. It is shown that Michaelis-Menten type functional
form of catch rate, h(t), given by

h(t) =
qEx

bE + lx
,

where b and l are positive constants, q is the catchability co-
efficient and E is the external effort devoted to harvesting,
is better than the constant rate of harvesting and catch-per-
unit-effort harvesting [31, 32]. None of these studies ([27]-
[30]), however, considered the Michaelis-Menten type func-
tional form of catch rate in their model systems. The objec-
tive of this paper is to rigorously study the existence of hete-
roclinic bifurcation in a ratio-dependent predator-prey model
where the predator population is subjected to harvesting with
Michaelis-Menten type harvesting rate.

The organization of the paper is as follows: Section 2 deals
with the model development. Section 3 is devoted to the study
of heteroclinic bifurcations. Numerical studies and discussion
are presented in Section 4.

2 The model

The following assumptions are made in formulating the math-
ematical model:

• Let x(t) and y(t) be, respectively, the prey and predator
densities at time t.

• Assume that the prey population grows logistically to its
carrying capacity K with intrinsic growth rate r.

• Let d0 be the food independent death rate and b0 be the
conversion efficiency of the predator.

• Assume that predator follows ratio-dependent Type II func-
tional response αxy

ay+x
, where α is the maximum prey consump-

tion rate and a is the half-saturation constant.

• Let predator is harvested following the Michaelis-Menten
type catch rate.

Based on these assumptions, we formulate the following ratio-
dependent predator-prey model with predator harvesting:

dx
dt

= rx(1 − x
K

) − αxy

ay+x
,

dy

dt
= αb0xy

ay+x
− d0y − qEy

bE+ly
.

(2.1)

All parameters are assumed to be positive. Taking x =

Kx
′

, y = Ky
′

a
and t = at

′

α
, we can write down the system

(2.1) as
dx

′

dt
′ = α0x

′

(1 − x
′

) − x
′

y
′

x
′
+y

′ ,

dy
′

dt
′ = β0x

′

y
′

x
′
+y

′ − γ0y
′

− E0y
′

E
′
+y

′ ,
(2.2)

where α0 = ar
α

, β0 = ab0, E0 = a2qE

αKl
, γ0 = ad0

α
, E

′

= abE
Kl

and

E
′

0 = aq

bα
.

For convenience, we replace x
′

, y
′

, t
′

by x, y t, respectively,
and rewrite the above system as

dx
dt

= α0x(1− x) − xy

x+y
,

dy

dt
= β0xy

x+y
− γ0y − E0y

E
′
+y

.
(2.3)

Changing the independent variable t to (x+y)t
′′

and replacing

t
′′

by t for convenience, the system (2.3) becomes

dx
dt

= α0x(1 − x)(x + y) − xy,
dy

dt
= β0xy − γ0y(x + y) − E0y(x+y)

E
′
+y

.
(2.4)

It is easy to show that the system (2.3) in the first quadrant is
equivalent to the polynomial system (2.4) [14, 17, 12]. Using
Briot Boughet’s transformations

x → x
′′′

, y → x
′′′

y
′′′

, t → t
′′′

x
′′′ , (2.5)

the system (2.4) can be written as

dx
dt

= x[α0 − α0x − (1 − α0)y − α0xy],
dy

dt
= y[(β0 − α0 − γ0) + α0x + (1 − α0 − γ0)y + α0xy

− E0(1+y)

E
′
+xy

].

(2.6)
For convenience, we have written x, y, t in place of
x

′′′

, y
′′′

, t
′′′

, respectively, in (2.6). Transformation (2.5) is
a homomorphism in the first quadrant and its inverse maps
the y-axis to the point (0, 0). Now changing the variables

x → x
α0

, y → y, t → t, (2.7)

the equation (2.6) can be transformed into the following sim-
pler system:

dx
dt

= x[α0 − x − (1 − α0)y − xy],
dy

dt
= y[(β0 − α0 − γ0) + x + (1 − α0 − γ0)y + xy

− α0E0(1+y)

α0E
′
+xy

].
(2.8)

System (2.8) has to be analyzed with the following initial con-
ditions:

x(0) > 0, y(0) > 0.

3 Heteroclinic Bifurcation

In the system (2.8), we simply use α0 and γ
′

= β0 − α0 − γ0

(or equivalently α0 and β0) as our unfolding parameters while
fixing γ0 and get the following transformed equations as

dx
dt

= x(α0 − x − y) + x(α0y − xy),
dy

dt
= y

[

γ
′

+ x + (1 − γ0)y
]

+ y(xy − α0y) − α0E0(1+y)

α0E
′
+xy

.

(3.1)
This system can then be viewed as a perturbation of the sys-
tem

dx
dt

= x(α0 − x − y),
dy

dt
= y [γ + x + (1 − γ0)y] ,

(3.2)

as α0, γ, x and y all are very small. Here γ = γ
′

− E0

E
′ =

β0 − α0 − γ0 − E
′

0. Note that the coefficients of second order
terms in (3.2) do not depend on α0 and γ, and we shall assume
that γ0 < 1.
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The system (3.2) is integrable if

γ = −
2(1 − γ0)

2 − γ0
α0 < 0 (3.3)

and in this case the function

Fα0
(x, y) =

1

b
x

a
y

b
(

α0 − x −
2 − γ0

2
y

)

, (3.4)

where

a =
2(1 − γ0)

γ0
and b =

2 − γ0

γ0
(3.5)

are constant along the solution curves. In fact, when (3.3)
holds along any solution curve (x(t), y(t)) of (3.2), we have

d

dt
Fα0

(x, y) =
1

b
y

b
x(α0 − x − y)×

[

ax
a−1

(

α0 − x −
2 − γ0

2
y

)

− x
a
]

+
1

b
x

a
y [γ + x + (1 − γ0)y]×

[

by
b−1

(

α0 − x −
2 − γ0

2
y

)

−
yb(2 − γ0)

2

]

= 0.

This gives,

x(α0−x−y)

[

aα0x
a−1

y
b − (a + 1)xa

y
b −

a(2 − γ0)

2
x

a−1
y

b+1

]

+y{γ + x + (1 − γ0)y}×
[

bα0x
a
y

b−1 − (b + 1)
2 − γ0

2
x

a
y

b − bx
a+1

y
b−1

]

= 0.

Using the transformations x → ǫx, y → ǫy, α0 = ǫγ1 and
γ = − 2(1−γ0)

2−γ0
ǫγ1 + γ2ǫ

2 and rescaling time t → 1
ǫ
dt, equation

(3.1) transforms into

dx
dt

= x(γ1 − x − y) + ǫx(γ1y − xy),
dy

dt
= y

[

− 2(1−γ0)
2−γ0

γ1 + x + (1 − γ0)y
]

+ ǫ(γ2y − γ1y
2 + xy2)

− E0

E
′ ǫy(1 + ǫy)(1 + ǫxy

γ1E
′ )

−1.

(3.6)
Multiplying (3.6) by the integrating factor xa−1yb−1, we
obtain the equivalent perturbed Hamiltonian system

dx
dt

= xayb−1 [(γ1 − x − y) + ǫx(γ1y − xy)] ,
dy

dt
= xa−1bb

[

− 2(1−γ0)
2−γ0

γ1 + x + (1 − γ0)y + ǫ(γ2 − γ1y + xy)
]

(3.7)

−x
a−1

b
b

[

E0

E
′
ǫ(1 + ǫy)(1 +

ǫxy

γ1E
′
)−1

]

.

One can check that Fγ1
(x, y) = 1

b
xayb

(

γ1 − x − 2−γ0

2
y
)

is the
Hamiltonian for (3.7) when ǫ = 0, where a and b are given in
(3.5).

We use the Melnikov theory [33, 34, 35] to locate the param-
eter values that produce a heteroclinic cycle for (3.7) in case
ǫ 6= 0. In the following, we have employed the technique used
in [33, 34]. We can set γ1 = 1, without any loss of general-
ity. The heteroclinic cycle for ǫ = 0 lies on the level curve
Fγ1

(x, y) = 0, denoted by Γ0, which corresponds to a triangle
formed by the three line segments determined by x = 0, y = 0
and x + 2−γ0

2
y = 1. Let

G(x, y) =
(

x
a
y

b−1(y − xy), xa−1
y

b(γ2 − y + xy)
)

.

The Melnikov function is

M(γ2) =

∫ ∫

int Γ0

traceDG(x, y)dxdy,

where

traceDG(x, y) = (a − b − 1)xa−1
y

b + (b − a)xa
y

b

+γ2bx
a−1

y
b−1

and int Γ0 denotes the region bounded by Γ0. M(γ2) = 0 has
a unique solution

γ2 = −

[

(a − b − 1)I(a − 1, b) + (b − a)I(a, b)

bI(a − 1, b − 1)

]

,

where

I(u, v) =

∫ ∫

Γ0

x
u
y

v
dxdy, u > −1, v > −1.

It is easy to see that

I(u, v) =
∫ 1

0
xu

∫
1−x

s

0
yvdydx

= 1
(v+1)sv+1

∫ 1

0
xu(1 − x)v+1dx,

where s = 2−γ0

2
. We also have,

I(u + 1, v) = −
v + 2

v + 1
sI(u, v + 1) + I(u, v).

Using integration by parts, we obtain

I(u, v + 1) =
(v + 1)

(u + 1)s
I(u + 1, v).

Thus, we get

I(u + 1, v) =
(u + 1)

(u + v + 3)
I(u, v)

and

I(u, v + 1) =
(v + 1)

s(u + v + 3)
I(u, v).

Therefore,

γ2 = −
1

s(a + b + 1)

[

a − b − 1 +
a(b − a)

a + b + 2

]

.

Now, we have

a + b =
4 − 3γ0

γ0
, a − b = −1, s =

2 − γ0

2
.

Putting these values we get,

γ2 =
6γ0

(2 − γ0)2(4 − γ0)
.

The Melnikov theory [34] shows that if

γ = −
2(1 − γ0)

2 − γ0
α0 +

6γ0

(2 − γ0)2(4 − γ0)
α

2
0 + O(α3

0) (3.8)

then the system (3.1) has a heteroclinic cycle and it is stable
[14].

Condition (3.8) is equivalent to
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β0 = γ + α0 + γ0 +
E0

E
′

= γ0 +
E0

E
′

+
γ0

2 − γ0
α0

+
6γ0

(2 − γ0)2(4 − γ0)
α

2
0 + O(α3

0). (3.9)

We thus state the following lemma.

Lemma 5.3.1. We assume that γ0,
E0

E
′ are fixed and γ0 < 1,

E0

E
′ < 1, γ0 + E0

E
′ < 1. For small α0, if condition (3.9) holds,

the system (3.1) has a stable heteroclinic cycle connecting

saddles at (0, 0), (α0, 0) and

(

0,
−(β0−α0−γ0−

E0

E
′
)

1−γ0

)

.

In this case, foloowing Tang and Zhang [17], there exists a
stable heteroclinic cycle. The positive coexistence equilibrium
(

α0γ0++γ0−β0+
E0

E
′

γ0
,

β0−γ0−
E0

E
′

γ0

)

lies inside the heteroclinic cy-

cle and it is a spiral source.

Conditions of Lemma 5.3.1 shows that for small α0,

γ0 +
E0

E
′

< β0 < α0γ0 + γ0 +
E0

E
′
, γ0 < 1. (3.10)

The system (2.8) in [13] shows that in this case a limit cy-
cle in the system is always stable and unique once it exists.
We therefore conclude that there is no limit cycle inside the
heteroclinic cycle, since it is attracting.

Lemma 5.3.1 and the transformation used to convert (2.2) to
(2.9) give the following theorem.

Theorem 5.3.1. Assume that γ0 is fixed and γ0 < 1. If
for small α0 condition (3.10) holds, system (2.3) has a stable
heteroclinic cycle connecting saddles at (0, 0) and (1, 0).

4 Simulations and discussion

To illustrate the analytical results, we consider the following
fixed parameter values: α0 = 0.5, β0 = 0.16, γ0 = 0.1, E

′

=
0.05 and E0 = 0.001. This parameter set satisfies conditions
of the Theorem 5.3.1 and the system (2.3) exhibit heteroclinic
bifurcations (Fig. 1). Here (0, 0) is an attractor, (1, 0) is a
saddle and the interior equilibrium is an unstable focus. There
is a heteroclinic loop consisting of the origin (0, 0), the sad-
dle equilibrium (1, 0), the heteroclinic orbit connecting (0, 0)
& (1, 0) and the seperatrices between (0, 0) & (1, 0). The
solid line denotes the seperatrices. Any trajectory started be-
low the seperatrices (denoted by dash-dot line) converges to
(0, 0) spirally and any trajectory above the seperatrices (de-
noted by dotted line) converges to (0, 0) monotonically (Fig.
1). If we slightly increase the parameter value of E0 from
0.001 to 0.0022, keeping other parameter values unaltered,
some trajectories (denoted by dotted lines) go to (0, 0) and
some produces limit cycle (denoted by dash-dot lines), which
is unique, depending on the initial values of the system pop-
ulations (Fig. 2). If we again increase the parameter value
of E0 from 0.0022 to 0.004, keeping other parameter values
unaltered, the system exhibits bistability (Fig. 3). In this
case, some trajectories (denoted by dotted lines) go to (0, 0)
and some converge to the interior equilibrium (denoted by
dash-dot lines).

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

x

y

Figure 1: The phase portrait of the system (2.3) for
α0 = 0.5, β0 = 0.16, γ0 = 0.1, E

′

= 0.05 and E0 = 0.001.
Here (0, 0) is an attractor, (1, 0) is a saddle and the in-
terior equilibrium is an unstable focus. The figure shows
existence of heteroclinic loop in the system (2.3).

0 0.2 0.4 0.6 0.8 1 1.2
0

0.05

0.1

0.15

0.2

0.25

x

y

Figure 2: The phase portrait of the system (2.3) for E0 =
0.0022. Other parameters are as in the Fig. 1. Here some
trajectories go to (0, 0) and some converge to the unique
limit cycle surrounding the interior equilibrium.

0 0.2 0.4 0.6 0.8 1 1.2
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0.05
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0.2

0.25

0.3

x

y

Figure 3: The phase portrait of the system (2.3) for E0 =
0.004. Other parameters are as in the Fig. 1. The system,
in this case, exhibits bistability. Here some trajectories
go to (0, 0) and some converge to the interior equilibrium
depending on the initial value.
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Figure 4: The phase portrait of the system (2.3) for E0 =
0.005. Other parameters are as in the Fig. 1. The system,
in this case, exhibits tristability.
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Figure 5: The phase portrait of the system (2.3) for E0 =
0.01. Other parameters are as in the Fig. 1. The system,
in this case, exhibits bistability.
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Figure 6: The phase portrait of the system (2.3) for E0 =
0.05. Other parameters are as in the Fig. 1. The system,
in this case, exhibits monostability.
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0.1

0.12

x

y

Figure 7: The phase portrait of the system (2.3) for α =
0.2. Other parameters are as in the Fig. 1. Here all
trajectories, independent of the initial values, go to (0, 0).

If we further increase the parameter value of E0 from 0.004
to 0.005, the system exhibits tristability (Fig. 4). Here, some
trajectories (denoted by dotted lines) converge to (0, 0), some
converge to (1, 0) (denoted by dashed lines) and some con-
verge to the interior equilibrium (denoted by dash-dot lines),
depending on the initial values of the system populations. If
the parameter value of E0 is increased again from 0.005 to
0.01, keeping other parameter values intact, the system ex-
hibits bistability (Fig. 5).

It is observed that some trajectories (denoted by dotted lines)
go to (0, 0) and some converge to (1, 0) (denoted by dashed
lines). A further increment in E0 from 0.01 to 0.05 leads the
system to monostability (Fig. 6). All trajectories, in this
case, converges to (1, 0) (denoted by dashed lines). If we re-
duce the value of the parameter α from 0.5 to 0.2, keeping
other parameter values as in the Fig. 1, then all trajectories
converge to (0, 0) (Fig. 7). It is to be observed that we have
obtained different dynamics (see, Fig. 1 to Fig 6) of the sys-
tem (2.3) only by changing the parameter value of E0, which
is directly related to the harvesting effort (E) of the preda-
tor population. Thus, an exploited ratio-dependent predator-
prey system, where the predator population is subjected to
harvesting with Michaelis-Menten type harvesting rate, may
exhibit very rich dynamics including heteroclinic bifurcation
and multistabilities.
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