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Abstract— The Self Organizing Maps (SOM) is regarded as an 
excellent computational tool that can be used in data mining and 
data exploration processes. The SOM usually create a set of 
prototype vectors representing the data set and carries out a 
topology preserving projection from high-dimensional input 
space onto a low-dimensional grid such as two-dimensional (2D) 
regular grid or 2D map. The 2D-SOM technique can be 
effectively utilized to visualize and explore the properties of the 
data. This technique has been applied in numerous application 
areas such as in pattern recognition, robotics, bioinformatics and 
also life sciences including clustering complex gene expression 
patterns. In this paper, the structure of traditionally 2D-SOM 
map has been enhanced to a three-dimensional Self Organizing 
Maps (3D-SOM) maps. It has the purpose to directly cluster data 
into 3D-SOM space instead of 2D-SOM data clusters. The 
primary works mostly involved the extensions of SOM algorithm 
in particular the number, relation and structure arrangement of 
its output neurons, neighbourhood weight update processes and 
distances calculation in 3D xyz-axis. The proposed method has 
been demonstrated by computing 3D-SOM visualization on iris 
flowers dataset using high level computer language. The 
performance of 2D-SOM and 3D-SOM in terms of their 
quantization errors, topographic errors and computational time 
has been investigated and discussed. The experimental results 
have shown that the 3D-SOM has been able to form a 3D data 
representation, has slightly higher quantization error and 
computational time but performed better topology preservation 
than in 2D-SOM. 
 
Index Terms— 3D Self Organizing Maps, Neural Network, Data 
Clustering, Iris flowers, quantization error, topographic error 
 

I. INTRODUCTION 
 
lustering is the task of organizing a set of objects into 
meaningful groups or clusters which can be disjoint, 
overlapping or organized in some hierarchical 

fashion. As described in (1), the key element of clustering is 
the notion that the discovered groups are meaningful. In some 
applications, it could be said that the similarity between the 
objects in the same groups could be maximized while the 
similarity between objects of different groups could be 
minimized in order for a cluster to be meaningful. In other 
word, an object can be described either by a set of 
measurements or relationships between objects in the same or 
different groups (2). 
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Furthermore, clustering can also be considered as an 
exploratory tool for analyzing large data sets and has been 
used extensively in numerous application such as in the area of 
pattern recognition, robotics, bioinformatics and also life 
sciences (1) including clustering complex gene expression 
patterns (3) (4) (5) (6) (7). Besides that, the SOM has also 
been found very useful for the study of ecological 
communities and sciences. In (8), the authors have shown that 
the SOM is useful and has comparable performance with other 
ordination techniques for the study of ecological modelling. A 
comprehensive study of SOM technique that has been applied 
to various ecological sciences problems has been addressed in 
(9). 
 

In fact, the limitations of the 2D-SOM when dealing with 
high dimensionality and complex data such as gene expression 
data have been highlighted in a review done in (4). The 
authors have presented a survey on various gene expression 
clustering techniques that have been used including SOM. 
They have also indicated that too few output neurons in the 
SOM gives large within-cluster distance, and too many output 
neurons will results in meaningless data diffusion. In their 
case, the sizes of dimension only vary in 2D xy-axis. In (6), 
the authors have described that higher-dimensional map is 
possible, but it would be difficult to visualize and it is not 
commonly used. In the work done in (3), the authors have 
indicated some difficulties that are associated with U-matrix, a 
method to visualize the SOM as described in (10), for a 
highly-dimensional input data when the dimension of SOM is 
small. They have introduced a side intensity modulated SOM 
(SIM-SOM) method that provides distinct line of separation 
between clusters when dealing with this U-matrix limitation. 
In the recent comprehensive review on SOM application to 
ecological science (9), the authors have suggested that the 
development of the SOM could be also based on its network 
architecture, convergence in complex spatial and temporal 
data, and the adaptability to evolve toward more efficient and 
sophisticated SOM in order to deal with the complexity in 
ecological processes. Therefore, advancement in visualization 
technique of SOM has also been expected to be further 
researched and studied. 
 

In general, the SOM has been considered as one of the 
excellent computational tools for data clustering and an 
effective platform for visualization of high dimensional data 
(11). The application of SOM to cluster iris flowers dataset 
was undertaken in (12) where the authors had developed their 
own SOM toolbox using Matlab software platform. However, 
in this toolbox, the usage of U-matrix can only handle 2D 
computations and the clustered data can only be visualized in 
2D-SOM traditional map. There were some works that have 
been done to extend the structure of 2D-SOM into 3D 
structure (13) (14) (15) (16). In (13), the authors have shown 
that it was feasible to design SOM as 3D map when they 
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introduced it for their music archive but this design was 
limited to only 3x3x3 SOM map. On the other hand, by using 
primary colour elements, the 3D-SOM topology was also 
found to be more informative and had revealed differences 
between geo-referenced elements that were not usually 
accessible with the application of 2D SOM (14). Meanwhile in 
(16), by using the toolbox in (12), the authors had improved 
the U-matrix and neurons arrangements to 3D-SOM structure 
for data clustering, but the performance of this structure was 
not evaluated.  
 

Therefore, in this research, the focus was given to enhance 
the technique of traditional 2D-SOM map by proposing a 3D-
SOM output visualization to cluster the data. The proposed 
technique should be able to form clustered data representation 
in 3D axis. The purpose of this 3D-SOM visualization would 
be to provide much bigger clustering space ability along the 
third axis, z-axis, without extending the dimensions of SOM 
along its traditional xy-axis. The primary work of the research 
involved the development of a 2D-SOM and later a 3D-SOM 
computer program using high level computer language. The 
comparison of the performance of quantization and 
topographic errors for clustering iris flowers between 2D-
SOM and 3D-SOM has been done through experimental 
works. 
 

II. METHODS 
 
A. The 2D Self Organizing Maps (2D-SOM) 
 

The SOM or Kohonen Map is an unsupervised artificial 
neural network technique and was developed by Teuvo 
Kohonen (17). It creates a set of prototype vectors 
representing the data set and carries out a topology preserving 
projection of the prototypes from high-dimensional input 
space onto a low-dimensional grid such as 1D or 2D grid of 
map units. This artificial neural network training involves the 
process of adjusting weights of neurons to the distributions of 
the input data. After the training process has been performed, 
clusters are identified by mapping object to the output 
neurons. As mentioned in (5), the SOM can be interpreted as a 
topology preserving mapping from input space onto the 2D 
grid map units. The elements of the SOM display can be called 
output neurons, map units or even virtual units, term that has 
been used in (8) for ecological modelling. The number of 
output neurons which typically varies from a few dozen up to 
several thousand usually determines the accuracy and 
generalization capability of the SOM. The SOM is trained 
iteratively and as described in (8) (17), the SOM algorithm can 
be presented in six following steps: 
 

 Step-1: Epoch t=0, the output neurons ൫ܸ ܷ൯,  ∈
{1, . . ,{ݒ, ݍ ∈ {1, . . , ܽ} are initialized with random values 
൫ݓ൯ ݐ݅ݓℎ ݓ ∈ {0, . . ,1}. 

 Step-2: A sample vector ݔ , ܿ ∈ {1, . . , ݊} is randomly 
chosen from the input data set. n is the number of items 
or species. 

 Step-3: Using Euclidean distance method, the distances 
between ݔ and all the output neurons ܸ ܷ ݅ ℎݐ݅ݓ  ∈
{1, . . ,݀݅݉ܺ}, ݆ ∈ {1, . . ,ܻ݀݅݉} are computed.  

 Step-4: Choose the winning neuron or the Best-
Matching-Unit (BMU), which is denoted by ܸ ܷ . It is the 

output neuron with prototype closest to ݔ as described in 
equation eq-1:  

 
ቚหݔ ݓ−  หቚ =  ݉݅݊ቄฬቚݔ −  ೕ ቚฬቅ (eq-1)ݓ

 Step-5: The output neurons are updated. The BMU/ܸ ܷ  
and its topological neighbours are moved closer to the 
input vector ݔ in the input space. The update rule for the 
output neuron ܸ ܷ  is as in equation eq-2: 

 
ݐ)ݓ + 1) = (ݐ)ݓ  + ݔ](ݐ)ℎ(ݐ)ߙ −  [(ݐ)ݓ
 (eq-2) 

 
where ݐ is time, (ݐ)ߙ is adaptation coefficient or learning 

rate and ℎ is a neighbourhood kernel function that 
centred on the winner unit: 

 

ℎ(ݐ) = expቆ−
ቚหೇೆିหቚ

మ

ଶఙమ(௧)
ቇ   (eq-3) 

 
 Step-6: Increase time t to t+1. If (ݐ <  ௫) then go toݐ

Step-2 else stop the training.  
 
In eq-3, ݎ and ݎ are positions of neurons ܸ ܷ  and ݉ on 
the SOM grid. ቚหݎ −  หቚ is the Euclidean distance betweenݎ
two points on the map between winning unit ܸ ܷ  and each 
output neurons ܸ ܷ . Both (ݐ)ߙ and (ݐ)ߪ decrease 
monotonically with time. The neighbourhood function in eq-3 
is a Gaussian function and it is the commonly used 
neighbourhood function in SOM. The intensity of the updating 
process is controlled by neighbourhood function, ℎ, which 
is focused to the winner neuron that having closest reference 
vector, ܸ ܷ . Once the SOM training has been completed, the 
computed distances between the input data vectors and the 
updated weights are calculated and the data are then mapped 
into their respective output neurons. 
 

The SOM algorithm training is usually performed in two 
phases, rough and fine-tuning. In the first phase, relatively 
large initial learning rate, ߙ , and neighbourhood radius ߪ are 
used while in the second phase, both learning rate and 
neighbourhood radius are small right from the beginning. The 
SOM defined by eq-2 is called the sequential learning where 
the reference vectors or weights are updated after a single 
input vector is presented. On the other hand, another way to 
update the reference vectors is known as batch learning 
algorithm as described in (18). Although the SOM is an 
unsupervised algorithm, some of its parameters must be 
defined before the algorithm is applied and analyzed. In (5), 
there are six parameters that have to be considered when 
implementing the SOM. They are topology, distance measure, 
map-size, reference vectors initialization, learning algorithm 
and neighbourhood functions. All these parameters together 
play important roles in the SOM algorithm as they could 
influence the results obtained. The use of SOM for clustering 
and visualization is discussed in more detail in (19) where it 
had shown that the number of output units used in SOM 
influences its applicability for either clustering or 
visualization. The author has also concluded that SOM is a 
very flexible tool that can be used for various forms of 
clustering and visualization but this flexibility come with a 
price in terms of diminishing performance.  
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B. The 3D Self Organizing Maps(3D-SOM) 
 

The focus of the research was on the development of 3D-
SOM, an enhanced SOM visualization technique that should 
be able to cluster data in three-dimensional xyz-axis. The 3D-
SOM program has been developed by using high level 
computer language. In this work, the same training algorithm 
of SOM as in (17) (8) has been applied. The six steps of 2D-
SOM mentioned previously have been programmed and 
extended later to handle 3D-SOM visualization. Figure 1 
shows the proposed technique consist multiple 2D 3x3 
neurons layers that have been stacked one on top of each other 
along z-axis layer. 
 

 
 

Fig. 1: The 3D-SOM 3x3x3 output neurons’ positions viewed from the top of 
z-axis. 
 

The number of prototype vectors or weights was equalled 
to the number of output neurons, v. All these weights were 
associated between the input neurons and the output neurons. 
The overview of the relations between the input vectors, 
weights and output neurons in 3D-SOM is shown in Figure 2. 
The weights were initialized in the same manner as in Step-1 
of the 2D-SOM previously. In Step-2, a sample vector 
ݔ , ܿ ∈ {1, . . , ݊} is randomly chosen from the input data set. In 
iris flowers dataset experiment, this sample vector ݔ was 
selected from its n species. In the next step, Step-3, the 
distances between ݔ and all the output neurons ܸ ௩ܷ were 
computed. This selection of BMU, denoted by ܸ ܷ , was done 
using the following equation: 
 

ቚหݔ −  หቚݓ =  ݉݅݊ ቄฬቚݔ −  ೕೖ ቚฬቅ    (eq-5)ݓ
where i, j and k represent the indexes of x, y and z-axis 
respectively. After the selection of the winning neuron, the 
next major step of 3D-SOM was to update the topological 
neighbours of this BMU by using equation eq-2, eq-3 and 
Gaussian function. The weights update process in 3D-SOM 

has been done in similar way as in SOM algorithm but this 
time this process has occurred in 3D xyz-axis. 
 

 
Fig. 2: Relation between the input vectors, reference vectors and output 
neurons in 3D-SOM. 
 

In fact, in 3D-SOM, the possible positions of BMU 
neighbours has increased drastically due to the existence of the 
third axis, z-axis. The neighbours’ positions with respect to x-
axis, y-axis, z-axis, xy-axis, xz-axis, yz-axis or xyz-axis now 
had to be taken into considerations. An example is that a 
neuron that is located at the most top left edge in 2D-SOM has 
only three adjacent neuron neighbours while a neuron with 
similar position in the 3D-SOM has seven adjacent 
neighbours. Figure 3 show an example of selected BMU 
positions with its adjacent and non-adjacent neighbours in 2D-
SOM and 3D-SOM In 3D-SOM and in eq-3 in particular, ݎ , 
the position of neuron ܸ ܷ  could also be located in the z-axis 
in addition to xy-axis. Therefore, the value of ቚหݎ −  หቚݎ
which was considered as the distance between two output 
neurons in three-dimensional xyz-axis. At the end of 3D-SOM 
training, the computed distances between the input data 
vectors and the updated weights were calculated. Finally, the 
data were then mapped into their respective output neurons 
based on the closest distance between both of them. 

 
C. Performance measurement of SOM 
 

One of the benefits of SOM is its ability to preserve the 
topology in the projection (20). The performance of SOM is 
usually analyzed by using two common criteria which are the 
quantization error, qe and topographic error, te. Both of them 
have been used to verify the quality of the SOM in (12). The 
first criterion represents the value of resolution while the 
second criterion represents the topology preservation. 
 

 
 

Fig. 3: An example of BMU situated at the position VU[0][0] for 2D-SOM (left) and VU[0][0][0] for 3D-SOM (right). This BMU position represents output 
neuron VU-1 for both 2D-SOM and 3D-SOM with their different number of adjacent neighbours.  
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According to (20), qe is equaled to the average distance 

between each data vector and it’s best matching unit (BMU) 
after SOM training. It can also be defined as following 
equation: 
 

qe =  ଵ

∑ฮݔపሬሬሬ⃗ − ݉௫ഢሬሬሬ⃗ ฮ (eq-7) 

 
where N is the number of data vectors and ݉௫ഢሬሬሬ⃗  is the best 
matching prototype of the corresponding ݔపሬሬሬ⃗  data vector. The 
smaller the quantization error indicates the closer data vectors 
mapped to its closest output neurons. Meanwhile, the 
topographic error, te, measures the proportion of all data 
vectors for which first and second BMUs are not adjacent 
units, and it can be defined as follow: 
 

te =  ଵ

∑ ሬሬሬሬሬ⃗ே(పݔ)ݑ
ୀଵ  (eq-8) 

 
The topographic error is calculated as in (eq-8) where the 

function ݔ)ݑపሬሬሬ⃗ ) is 1 if ݔపሬሬሬ⃗  data vector’s first and second BMUs 
are not adjacent and 0 otherwise. These standard qe and te as 
in (eq-7) and (eq-8) have been used to observe the 
performance of 3D-SOM compared to 2D-SOM in clustering 
iris flowers dataset in this research.  
 

III. EXPERIMENTAL FRAMEWORKS AND RESULTS 
 

The experiments for both 2D-SOM and 3D-SOM have 
been conducted with same parameters and the initial values 
and increasing number of output neurons in each x, y and z-
axis. For these experimental works purposes, the 2D-SOM 
and 3D-SOM algorithms have been trained using sequential 
learning. The initial weights have been randomly initialized 
between 0 and 1. For both techniques, in rough phase, the 
learning rate, α used was 0.5 and decreased linearly to zero 
while in fine-tuning phase, the learning rate used was 0.05 
and also decreased linearly to zero. The neighbourhood 
functions used were Gaussian function. The number of 
iterations has been set to 2000 for rough phase and 80000 for 
fine tuning phase. The experiments were conducted using 
Intel Core2Quad 2.5 GHz with 2.0 Gb memory. The iris 
flowers dataset consist of 150 flowers and they are divided 
into three equal numbers (50) that represents three different 
classes of flowers, Setosa, Versicolor and Virginica. This 
dataset can be obtained in (21). In each flower, four features 

were measured in cm, the length and width of sepal; and the 
length and width of petal. With varied dimensions from 4x4 
until 7x7 output neurons, the classes of Setosa and Virginica 
flowers have been appropriately clustered far from each 
others, while the class of Versicolor flower has been clustered 
between these two classes, and closer to Virginica class. This 
distribution of iris flowers species was consistent with the 
nature of the iris flowers dataset itself where Setosa class is 
linearly separable from the other two classes, and these two 
other classes are not linearly separable from each other as 
described in (21).  

 
For comparison, the result of iris flowers dataset 

clustering using 5x5 2D-SOM and 5x5x5 3D-SOM is shown 
in Figure 4. In 3D-SOM, the z-axis represents five different 
layers where each layer has 25 output neurons. In this figure 
too, the Virginica class has dominated mostly the two 
topmost layers while Setosa class has dominated mostly the 
two most bottom layers. Furthermore, Versicolor seems to be 
quite evenly distributed in all layers and they have maintained 
their locations in the middle between Setosa and Virginica 
classes throughout the five layers. There were also no 
appearances of Setosa classes in the two topmost layers. Only 
Versicolor and Virginica classes have appeared on them 
which could be interpreted that the dissimilarity between 
Setosa and Virginica has been shown by 3D-SOM throughout 
its z-axis. It also seems that the 3D-SOM has provided more 
output neurons or in other word, more space for the data to be 
clustered vertically.  

 
On the other hand, a number of experimentation works 

have also been performed to observe the performance of 2D-
SOM and 3D-SOM techniques when clustering iris dataset. 
There were 30 experiments of 2D-SOM with the total number 
of output neurons started from 4(2x2) until 900(30x30). 
Meanwhile, in 3D-SOM case, 43 experiments have been 
conducted with the total number of output neurons started 
from 8(2x2x2) until also 900(10x10x9). The number of 
output neurons in x, y and z-axis has varied from small to 
large in all experiments. The quantization and topographic 
errors measurement as described in the previous section have 
been applied. For each experiment in 2D-SOM and 3D-SOM, 
the program was run five times and the average values of 
both errors were taken. Their results are shown in Figure 5.  
 

 
 

Fig. 4: Iris clustering using 2D-SOM and 3D-SOM 
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In this figure, the values of quantization error and 
topographic error have been plotted according to the number 
of output neurons used in both techniques. In 2D-SOM case, 
the average time taken was between 0.5 seconds for 4 units 
and 49.42 seconds for 900 units while it took between 1.02 
seconds for 8 units and 50.35 seconds for 900 units in 3D-
SOM. This indicates that the computational time increased 
when the number of output neurons increased for both 2D-
SOM and 3D-SOM techniques. Furthermore, the time taken 
was slightly larger in 3D-SOM than in 2D-SOM because the 
number of adjacent neighbours is higher in 3D-SOM as 
described in Figure 3. 
 

 

 
 
Fig. 5: The quantization errors and topographic errors obtained in 2D-SOM 
(top) and 3D-SOM(bottom). Horizontal axis represents the total number of 
output neurons while vertical axis represents the error. 

 
From the results in Figure 5 too, the quantization errors 

and topographic errors in 3D-SOM behaved the similar way 
with those in 2D-SOM. It seems that as in 2D-SOM, the 
higher number of output neurons has also contributed to the 
lower values of quantization and topographic errors in 3D-
SOM. The results have shown consistent error behaviours as 
in (20) where the authors mentioned that when the number of 
units increased there were more neurons to represent the data, 
and each data vector will be then closer to its BMU. In our 
case, the proposed 3D-SOM structure has also shown the 
same behaviour as 2D-SOM structure in terms of these 
quantization and topographic errors. Therefore, the technique 
of 3D-SOM could be said as having comparable performance 
as in 2D-SOM for data clustering. The main difference 
between these two techniques lies on the visualization 
approach of data-neuron mapping where 2D-SOM map data 
on its 2D map while 3D-SOM map data on its 3D space. It 
was also noticed that 3D-SOM training consumed higher 
computational time due to its larger number of adjacent 
neighbour’s calculation. 
 
 
 
 

IV. CONCLUSIONS 
 

The SOM is considered as one of the excellent 
computational tools for data clustering. It can cluster data and 
map them into the usual 2D map. In this paper, the technique 
of 2D-SOM has been developed and programmed using high 
level computer language of C/C++ and later it has been 
enhanced to a 3D-SOM visualization technique for the 
purpose of clustering data in 3D xyz-axis instead of data 
clustering in traditional 2D-SOM xy-axis output map. The 
works have mainly involved in developing the technique, 
algorithm, output neuron arrangements and also C/C++ 
program. The major tasks taken were mostly involved the 
Step-3, Step-4, Step-5 and Step-6 of the SOM algorithm as 
described in Section 2. These steps were crucial as they 
represent very important elements of SOM algorithm which 
involved the structure of SOM’s output neurons and its 
neighbourhood weights updates. From the experimental 
results, both 2D-SOM and the 3D-SOM have been able to 
cluster iris flowers dataset according to their respective 
classes of Setosa, Virginica and Versicolor. The 3D-SOM 
visualization technique was also able to cluster data using its 
xyz-axis output neuron’s arrangement or structure. Besides 
that, the results have also shown that the 3D-SOM had 
slightly higher quantization error and computational time but 
performed better topology preservation than in 2D-SOM. The 
technique could also be used for clustering data that might 
not be obviously clustered neither easily interpreted using the 
traditional 2D-SOM such as the data that could be in very 
large size, high complexity and has multidimensional 
properties. Additional research could be undertaken to apply 
and analyze the 3D-SOM technique for clustering other 
complicated type of data such as gene expression data. 
Finally, the 3D-SOM visualization technique has the potential 
to be considered as another alternative pattern classifier 
visualization technique and could also be implemented in 
other suitable applications. 
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